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Radial transport produced by static nonaxisymmetric fields is thought to limit the confinement of
non-neutral plasmas and experiments with applied asymmetries have verified that such fields do
produce transport. A theoretical model of such transport is presented which is appropriate for long,
thin plasmas. The theory allows for asymmetries with nonzero frequency and includes the linear
collective response to applied wall voltages. For the regime where the effective collision frequency
is large, the asymmetry-induced radial particle flux is derived from the drift kinetic/Poisson
equations including collisions. For low collision frequencies a heuristic derivation is given. In both
regimes the resulting transport is dominated by particles that move in resonance with the
asymmetry. Possible applications of the theory to several experiments are discuss&€99©
American Institute of Physic§S1070-664X99)01707-3

I. INTRODUCTION resonance with the asymmetry. As these particles repeatedly
encounter the asymmetry they take radial steps in the same

It has long been suspected that the ultimate confinemen{irection, thus allowing them to diffuse more quickly than
of long, thin non-neutral plasmas is limited by the presencgonresonant particles. The form of the resulting radial par-
of electric and magnetic fields that break the cylindrical sym+jcje flux depends on the relative size of an effective collision
metry of the trap. While experimeritst high neutral pres- frequencyvey and the oscillation frequency of particles
sures agree very well with a transport théobased on col- trapped in the asymmetry. When>wr, frequent colli-
lisions with neutrals, at the lowest neutral pressures thgjons interrupt the trapped particle orbits and the basic radial
confinement time is much lower than expectéthe anoma- step is the radial drift velocity times the time between colli-
lous transport increases with machine lefigihd decreases  sjons. Deviations from unperturbed orbits are small and a
when experiments are performed in a device designed tgertyrbation approach is appropriate. This is called the reso-
minimize the field asymmetrieésWhile experiments with nant plateau regime. Wheng<wr, a trapped particle can
appliedfield asymmetries have verified that such fields pro-complete at least one oscillation before a collision knocks it
duce radial transport, no connection to a transport theory hast of resonance. Now the basic radial step is the radial
been made. A typical technique in these experiments is t@ytent of the drift during a trapping oscillation and the orbits
apply asymmetric wall voltages to the various sectors of theye fully nonlinear. A heuristic derivation of the resulting
confinement region and measure the resulting change in thggia| flux is often employed for this so-called banana re-
transporf 8 gime.

This paper presents a theory of the radial transport pro-  The geometry of the non-neutral experiments is cylindri-
duced in a cylindrical non-neutral plasma by such appliecty| with an axial magnetic field. The magnetic field is typi-
asymmetric wall voltages. The wall voltages are allowed tocally strong enough that the larmor radius is much smaller
have non-zero frequency so that the theory can apply t0 €%han any other scale length in the plasma and all relevant
periments with either static or nonstatic asymmetries. In CONfrequencies are small compared to the cyclotron frequency.

trast to the earlier phenomenological fluid theory of Fitz-ynder these conditions the basic equations for an electron
patrick and YU’ we allow the asymmetric potential to vary plasma = —e) are Poisson’s equation,

axially (as it does in most experimehtand base our theory

on the drift kinetic equation with a collision operator. We 5

have also included the plasma’s collective response to the v <;/>:477ef fdv,

wall voltages and show that this can produce large changes

in the transport flux. the drift kinetic equation with a collision operator,
Many of the basic notions involved in our theory were

developed in early studies of radial transport in tandem  Jf of edpaf c_

mirrors1%-where static asymmetric end cells produced ra- 3t Y3z m 9z 90 | 52XV Vi=C(f), @

dial grad-B drifts that largely determined the radial particle

flux. A key prediction of both theories is that the resulting and the boundary conditions on the conducting walls. Here

transport will be dominated by particles whose axial bounces the axial velocityC( ) is the approximate Fokker—Planck

motion and azimuthal drift motion causes them to move incollision operatof®

()
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FIG. 1. Schematic of the plasma model used for this theory. The plasma is nmT
assumed to have flat ends and be of lerigth fi(r,0,z,t)= 4 folo(r)- ex Tz-l—l 0—owt|,
nl,w
11
Cif )= 9 |_,df ot 3 where the sums are over both negative and positive values.
(1) =veeg v Fof), Note especially thab can be positive or negative. A positive

w corresponds to an asymmetry that rotates in the same di-
rection as the plasma column; a negatiwveasymmetry ro-
tates against the column. The Fourier mode amplitudes are

vee IS the 90° collision frequency, andis the axial electron
thermal velocityT(r)/m. Expanding the gradients in Eq.
(2) gives

given by
of of edpaf cldpof c¢c1dgof
_+U__|___¢_ ___d)_____d) =C(f). L dZ 27Td6’
at dz mdzdv Br dar 96 Br 96 or bni1o(r)
4
To solve these equations we will linearize the guiding (nm
center distribution functiofi and the electrostatic potentigl X exp i TZHa_wt $u(r.0.2,8) (12

and find the radial fluX" in second order. Section Il gives q iiarly forf is the d . f th .
this derivation, and Sec. Il discusses numerical methods fof"! S|m|gry Ontw- Herer:jst F ur(f':\tl:f)n of the et>)<per|—
finding the potential produced by the wall voltages. Sectiof"ent: Su stituting in Eq9) and solving forf,, ,, we obtain

IV discusses possible connections between the theory and cl ofq nm e of,
various experiments. Ba L mav
fn,l,w(r): nm ¢n,|,w(r)- (13)
Il. DERIVATION OF THE TRANSPORT EQUATIONS — v+l wg— 0—i Ve
L

We take as our model a cylindrical plasma of length
with flat ends(see Fig. 1 The model thus ignores end ef- Here we have noted thatt/B)(1/r)(d¢o/dr) is the azi-
fects and is most suitable for long, thin plasmas. This modeMuthal EXB rotation frequencywr and have defined an
allows us to replace the actual plasma by an infinitely longeffective collision frequencys,

plasma with periodicity . It also allows us to linearizé Cfr1w)=— Ve Frl o (14)
and ¢ as follows: mhe e e
&(r,0,z,t)= po(r)+ ¢1(r,0,z,t) (5) B. Second order
and Since our interest is in radial transport we integrate Eq.
H(r.0,2,)=fo(r)+f4(r.0,2,1). ©) (4) overz, 6, andv. Defining
Returning these to Eq4) and keeping only zeroth order N(r,t):fL d_ZfzdeJm Go-f(r.0.20 5
terms gives L2 Jo —w
ofg  dfg and notingf(z=L)=f(z=—-L) andf(v=*%»)=0 we ob-
g _H)E_C(f()) (7) tain
which has the well known solution N fL dzf% f ¢ of ¢ af
() ) rB ar 90 96 or
no r 1%
fo(r)= \/2__2exr< - ﬁf) . (8) (16)
m We note that the second term can be written as
Herev may also be a function of radius. (a/ar)[f(&wqe)]—f(a/ar)(ads/aa) and after integrating
A. First order by parts obtain
Keeping terms of first order in Eq4) gives _t_gl J fL dszar f duf—= ] (17)
J ror
gty 9f1 e ddidfo cladydfy ¢ 1 dfy
ot - tv _+ maoz v BT or 90 BT 90 ar Substituting in from Eqs(5) and (6) gives
N ¢l (L dz 277
=C(fy). 9 _:___f f f
. o gt BT oar d”fl ae (18
We now take advantage of the various periodicities in the
model to write From Egs.(10) and(11),

29 Jun 2000 Downloaded to 134.69.9.153. Redistribution subject to AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.



Phys. Plasmas, Vol. 6, No. 7, July 1999

flﬁj;l (mw frlol): p{i(n{zﬂe—wt)))

(s

n1I" o'

wffizera])

Eliminating f,,, ,, using Eq.(13), the right-hand side of19)
becomes

i bnr1r,0r (1)

19

cl fg nme afo
- rB or L mav
2 2 i ey
AINO) ! ! ’ .
e TU+|Q)R_w_|Veﬁ

xexp{i

mz
(n+n’)T+(I+|’)0—(w+w’)t]). (20
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Note that although the flux involves an integral over all ve-
locities this is strongly conditioned by the resonance function

verr- [(N7IL)0+lwg—w)?+13¢]"L.  This function, which
peaks at the velocity
Ures:ﬁ(w_le) (29

and has full-width at half-maximumuov = 2L v/n, shows
that the flux tends to be dominated by particles that move
resonantly with the asymmetry mode specifiedripyl, and

w. If Av<v (i.e., if the width of the resonance is small
compared to variations ify), then

Veft

nar 2 , Hmé\(v_vres)- (25)
Tv+|wR—w + vk

The velocity integral in Eq(23) is now easily done. We
obtain

- L [clgnyol?[dfe nm e rB df,
Returning this expression to E(.8), we perform thez- and I'=- n;w In[| rB oar L mecl dv
#-integrals and also integrate over the duration of the experi- Ures (26)
ment to obtain
If we plug in f, of the form of Eq.(8) this becomes
N\ ¢l 5 Lfm q )
ot Bra T .Y r—-3 Mo L |cldnol°[ 1 dno  1dT
nl,o \/271';2 |n| rB | Ng dr T dr
cl ofy nm e dfy
Ba L mav _1 nmloe |y
XE |¢n|w| il — , (21) x| x2—= +\/_— |vX e ", (27)
—uv+l —i
L VTR @ et where x=v,¢/VvV2v and w. is the cyclotron frequency

where (IN/dt)=(1/7) [5dt(dN/dt) and we have used the
=¢n - Multiplying top and bottom by

fact that¢_, _| _,,

eB/mc.
It is worth noting several features of this solution. As is
typical of plateau regime transport, the flux is independent of

the complex conjugate of the denominator and keeping thellision frequency and proportional to the square of the
real part of the resultsince the physical result must be feal asymmetry amplitude. The plasma lengtrappears explic-

gives
oN 10 cldnol?
<ﬁ>—2“m—rrn% B
14
f do eff ,
nr 2
(—v-l—le w| +veg

ofg nm e rB of,
or L mcl ov

(22

itly, but is also part of the variablg. Also hidden in this
variable is the asymmetry frequenay and we note thax
can be positive or negative asis greater than or less than
wg. Thus, while static field asymmetrie® £0, x<0) move
electrons radially outward, an appropriately chosen asymme-
try (w>wg, Xx>0) can move particles radially inward.
Equation(27) can be heuristically derived to within a
numerical factor. Start from the relatitfh

Jf

I'=-D|Z

Av, (28
H

Noting thatN is 277L times the plasma density and recalling where, for the case of a static asymmetry<0), the de-
the particle continuity equation, we can identify the averagdivative is taken at constamt since the Hamiltonian is con-

radial particle flux as

2
Cld)n,l,w
rB

—v+log—w| + v

L

* Veft
J dU 2
o (I’HT

(9fo nmT e rB df,

or L mecl dv 23

stant for a particle moving in a static field, the distribution
function and diffusion coefficient are evaluated at the reso-
nant velocity, and\v is the width of the velocity resonance.
Since the Hamiltonian for this pIasmaH;—(pZ/Zm) edp

+ uB, the Maxwellian distribution function can be written

H+edo— ,uB)

mp(
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Noting thatng, T, and ¢, are functions of, it is straight- L\2/ 10 \2 ebni o 12

forward to show that (Ig)(dfq/dr)y reproduces the curly Vee(ﬁ o, T)

bracket of Eq(27) for the caseo=0. In order to include the r=->, ( ( i )2 T do ]3,2
R

w#0 case, §fy/dr)y must be generalized todfy/adr)g, nlo

s ) o nm/ ro. dr
whereH=H — (w/l)P, is the Hamiltonian in a frame rotat- T

ing at frequencyw and P, is the single particle canonical No [ 1dn, 1 dT( ) 1)
PRI i ima- X—={———+=—|X*"— %
e_mgu_lar momentulm Whl;:??m the gwdmg cente_r _approx_lma \/ﬁ N dr | T dr >
tion is equal to—smw.r<.~" The diffusion coefficient D is
estimated as the average step size squared divided by the N rog 2
time between collisiond = (Ar)?/ 7. The average step size T2 =X(e (3D

Ar is the radialEX B drift velocity v,=(cE4/B) times the

time between collisions. Since the relevant collisions occuf); pETERMINATION OF THE ASYMMETRIC

at the enhanced rate,; we obtainD = (1/veg)(Cléy, /rB). POTENTIAL IN THE PLASMA

Finally the width of the velocity resonandes in the plateau

regime can be obtained by taking the half-width of the ve-  In order to evaluate the flux we must determine the com-
locity resonance function appearing in E@23), Ap  Plex Fourier mode amplitudes,, .(r) produced in the

= vesLinmr. Plugging these estimates into E88), the factor plasma by the applied wall potentials. For perturbed poten-

of veq cancels and the resulting flux is equal to the Ieft—hano{ial‘? of the form of Eq.(10), Poisson’s Eq(1) becomes
side of Eq.(27) divided by . using Eq.(13) to eliminatef,, , ]

As stated in the Introduction, the plateau regime corre{1 d d 12 [nw)?
sponds to a collisionality regime wheng>wy. For our rarfar 20\TC én.1,0(r)

case where the asymmetry varies in bathnd 6, the trap-

ping frequency is given by C_I ﬂ_ nm e ﬂ
rB dr L mdv
=47Tef dv o l . bntolr). (32
—u+ —w+i
, [e[nm\? cl®dwg L VTR @ et
o=\ ST TR ar bnl,w- (29 . . . i,
This equation must be solved subject to the conditions that

én). is finite atr=0 and equal to the wall potential at
=R. Although analytical solutions exi$tfor special cases
(e.g., constant density and temperatusenumerical solution
is required for experimental density and temperature profiles.
Fortunately, this is quickly and easily done using a modifi-
cation of the “shooting” technique.

For Maxwellianf, the right hand side of Eq32) can
be cast in terms of the plasma dispersion funcfi@(x) and

An estimate forv; can be obtained by examining the form
of Egs. (3), (13), and (14). Because of the presence of a
velocity resonance, the first term in E) will dominate
and we can estimate.;~v.{v/Av)> But the velocity reso-
nance has half-widtAv = v4L/n7. Combining these we ob-

tain its derivativeZ'(x) for which numerical codes exist. This
relieves us of the task of numerically evaluating the integral.
The result 88
2
ngf~ Vee(nTﬁ) =Vee|"|2w§, (30 [d_z_,_li_f_(n_w)z &
dr? " rdr r2 |\ L nlw
:{ L. i(“’_ﬁ [ @e)?
where wy, is the axial bounce frequencyv/L. Sincew, is R ON dri a a
large compared t@.., vei Will be larger thanve.. This is a
. . . ILx da
reflection of the fact that only a small change in the velocity XZ'(X)| 1+ — ]¢n| o (33
is necessary to knock a particle out of resonance. The colli- Nt o dr "

sion time for this type of event is much less than for a ninetyHere wy is the plasma frequency ara=v2v. The radial

degree collision. derivatives on the left hand side are now written as second
Similar heuristic arguments can be employed to obtairorder central finite difference expressidfisEquation (33)

an approximate expression fbrin the banana regime where then becomes

wT=ver. The basic radial step is now the width of the reso-

nance island which may be estimated As~(v,/wy) ¢”1_2¢j2+¢i*1 £¢j+1_¢j71_7"¢.=0. (34)

—(Clhn; o/TBwy) and thus D= vey(Cldh, . /MBar)’. The (Ar) rj 24r 2k

width of the velocity resonance, which is broadened in theHere we have suppressed thel, » indices and have di-

banana regime, is given iyv ~(L/n7) w+. In this case the vided the space between-0 andR into intervals of length

collision frequency does not cancel out and we obtain Ar specified by the index. The quantityn; is defined as

29 Jun 2000 Downloaded to 134.69.9.153. Redistribution subject to AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.



Phys. Plasmas, Vol. 6, No. 7, July 1999 Theory of asymmetry-induced transport in a non-neutral . . . 2703

10° 16 . 1.0 .
10* A B
10!
g 10° 8| 1l os| i
D 10! .
= 107 0 0.0
102 | #/do | ' )
1o 1.0 : 1.0 :
10° © ()]
10': 05| 1l os| _
107
(a)
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10 /R
e 10°
5] " FIG. 3. Fourier mode amplitudé(= ¢, ,) normalized to its value at the
D 10 iy
= , wall ¢, vs radius. The labels A—D correspond to points indicated in Fig.
10 2(a). Graph A corresponds to a normal mode solution while C shows shield-
103 ing behavior. Graphs B and D are intermediate cases. Note the difference in
107 vertical scale for graph A.
10° N
A5 0 50 5 1018 standing waves and the strong dip nesag corresponds to
(b) o (MHz) Debye shielding. We emphasize, however, that there is con-

tinuous variation between these extreme cases and that an
FIG. 2. E,(r=0) normalized td,=E,(r = R) vs asymmetry frequency for  gccyrate determination of the transport flux depends sensi-
typical experimental parametersB£:300C). (& Peak densityny a1y on this calculation. Note also that, for a given asym-
=10"cm™® with temperature shown as a parameter. For comparison, y o . ! 9 o _y
wr(r=0)=3 MHz. Inset shows the normalized radial density profile used M€ty frequency, the field might be enhanced or diminished
for computation(b) Temperature:1 eV with peak densitytimes 16 cm™3) by these collective effects, depending on the details of the
shown as a parameter. p|asma parameters.
This variation in the amplitude dt, is accompanied by

strong variations in the radial dependenceqf; ,. A sam-

n:EJr(n_”)er IL Z(x:) i “’_S) pling of this variation is shown in Fig. 3, where we plot the
! rJ-2 L nmrjow, 7 drl a normalized magnitude ap, , vsr for the four frequencies
5 indicated in Fig. 2a) on theT=1 eV curve. Again the ex-
% Z'(x)| 1+ ILx % . (35) treme cases of standing wavé®A) and shielding(3C) are
a/; ) narjwe dr shown along with two intermediate cas&8, 3D).

Solving Eq.(34) for ¢;,, we obtain
2+(Ar)?y;  2rj—Ar
j+1= Ar iT 2r AT bj-1- (36) It is interesting to compare these results with previous
1+ — ) and ongoing experimental work. The presence of
2r; asymmetry-induced transport in non-neutral plasmas was
To use this generating equation we need the first two valuefirst suggested by the discovémyf confinement time scaling
of ¢;. We first note that solutions of the formm'w:Ar' with (L/B) 2. Comparing with our results, it is tempting to
satisfy EQ.(33) for small r. Since radial transport is pro- seize upon thel(/w..)>~L?/B? in the leading factor of the
duced only for cases whetle: 0 (see the equations féh) we  banana regime flux given in E¢31) and contrast this with
may take¢(r=0)=0. For the second value, take any non-the L/B? for the plateau regim@Eq. (27)]. However,L is
zero value. Since; and 7; are known for allj, we may now  also hidden in the variable, and the third term in brackets
iterate (36) until we reach the wall radius and obtaiby, also containsw... Thus, without a knowledge of the spec-
where M is the index at the wall. Howevewp,, ,(R) is  trum of background asymmetries it is impossible to draw a
known from Fourier analysis of the applied wall potentials.firm conclusion.
Thus if we multiply all theg; by ¢, ,(R)/ $u we have our Consistent with this theory, early experimérftsfound
solution. that standing waves could produce enhanced transport. These
The resulting solutions vary strongly with radius and experiments also reported that modes rotating in the same
asymmetry frequency, as well as several experimental pa- direction as the plasma column but at a faster fag, w
rameters. Some indication of this is given in Figs. 2 and 3> wg) produced inward transport. More recently, Huang and
Noting that Eq.(27) depends orE,=1¢, ,/r, we plot in co-worker§ and Anderegg and co-workéfshave used an
Fig. 2 the normalized magnitude &fy(r=0) vs w for typi-  asymmetry withow>wg to balance the normal background
cal experimental parameters. Note tBgtcan vary by many transport and produce a steady-state plasma. The importance
orders of magnitude. This variation reflects typical plasmeaof standing waves in enhancing transport is also clear in this
behaviors; the peaks occur at the frequencies of varioulatter paper.

IV. DISCUSSION
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In order to study asymmetry-induced transport aparhumerical comparison of the experimental and theoretical
from such collective enhancements, Eggle$tdms mea- flux, will be presented in a subsequent paper.
sured the confinement of low density (0° cm™3) electrons From this discussion it should be clear that asymmetry-
in a trap where a biased wire running along the axis of thanduced transport is far from understood. Several experi-
trap replaces the plasma column. Under these conditions theenters are currently studying this transport, but the results
variations inE, shown in Fig. 2 are essentially eliminated. are not yet in agreement with each other or with any theory.
The confinement time in this trap was found to have théwhile the theory presented in this paper can certainly stand
same magnitude and_(B) ? scaling as observed in the further refinemente.g., a more realistic treatment of particle
higher density experiments. Since the low density and highemotion at the ends of the plasinave hope it will contribute
temperature of this experiment give an electron—electron colto discussions of this phenomena.
lision frequencyv,, that is much lower than in the plasma
experiments, it was argued that the transgbeing the same ACKNOWLEDGMENTS
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