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ABSTRACT

The diocotron mode of an off-axis electron column is studied in a coaxial version of the Malmberg–Penning trap. Measurements of the dio-
cotron frequency as a function of the bias on the central conductor agree well with a derived theory including finite-length corrections and
confinement potential contributions. When the experimental parameters are adjusted to give a very low diocotron frequency, the column
motion abruptly changes from an axis-encircling orbit to a large banana-shaped orbit in the r � h plane with extent Dh � 270� and
Dr=R � 0:25, where R is the wall radius. This banana motion is apparently in response to a previously unknown background construction
asymmetry. The size of the asymmetric potential is deduced from orbit data and found to be 45–100mV. Theoretical modeling shows this to
be consistent with a small radial offset d in the center wire position of d=R ¼ 0:034. Implications and applications of these findings are dis-
cussed and a note on obtaining the line density of an electron column in a coaxial trap is given.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098959

I. INTRODUCTION

The Malmberg–Penning trap is a common device for the con-
finement and study of non-neutral plasmas.1 It consists of a conduct-
ing cylinder divided axially into at least three parts and immersed in a
uniform axial magnetic field, B. Potentials on the end cylinders pro-
vide axial confinement and the axial magnetic field provides radial
confinement. The Occidental College trap modifies this basic design
by adding a conducting wire running axially down the center of the
trap, thus producing a coaxial configuration.2 The original intention of
this modification was to provide a way to adjust the radial electric field
(and, thus, the azimuthal E�B drift) so as to investigate resonances in
transport experiments. For these experiments, electrons injected from
an off-axis gun were smeared into a low density annular configura-
tion3 which was then perturbed with applied asymmetric electric fields
to produce transport.4,5 In contrast, this paper reports on experiments
where the injected off-axis electron column is left intact and executes
azimuthal E�B motion around the central wire, which we will refer
to as the diocotron mode.6 The electric field producing this motion is
set not only by the bias on the center wire but also by the image
charges on the trap conductors and by the confining potentials at the
ends of the trap. Our experimental measurements of the experimental

frequency of this diocotron mode as a function of the center wire bias
show good agreement with a theory developed to include these
contributions.

When the center wire bias is adjusted so that the sum of these
contributions approaches zero, we expect to obtain a stationary col-
umn. Instead, we observe that the column orbits cease to be purely azi-
muthal and instead follow a banana-shaped path in the r � h plane,
revealing a previously unknown asymmetry in the trap fields.11

Analysis of these data suggests that this may be due to a small radial
offset in the position of the central wire. Although field asymmetries
due to construction imperfections have previously been invoked to
explain the confinement properties of Malmberg–Penning traps,12 this
result is the most direct measurement of such an asymmetry to date.

The paper is organized as follows: Sec. II gives a brief description
of the experimental device. Section III gives experimental results on
the diocotron mode in the coaxial trap. Section IV presents the obser-
vations of banana orbits which are then analyzed in Sec. V. These
results are discussed in Sec. VI. Supporting theory is presented in Sec.
VII followed by conclusions in Sec. VIII. A short note on obtaining
the line density of an electron column in a coaxial trap is included in
Appendix A.
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II. EXPERIMENTAL DEVICE

The device used in these experiments (shown schematically in
Fig. 1) consists of eight aligned cylinders (inner radius R¼ 1.525 in.,
length¼ 6.000 in., and inter-electrode gaps¼ 0.050 in.) immersed in
an axial magnetic field (B ¼ 364G for experiments in this paper). The
cylinders labeled S1–S5 are divided azimuthally into eight equal sec-
tors, labeled as a–h, while G1–G3 are undivided cylinders. As in other
traps, two of the cylinders (use G2 and G3 for this description) are
biased negatively to provide axial confinement while the rest are
grounded. A conducting wire (radius a¼ 0.007 in.) stretched along
the axis of the trap allows for control of the radial electric field. The
machine is run in repeating cycles: inject, hold, and dump. To start,
the potential on G3 and the center wire is grounded. Electrons are
injected from a small, off-axis electron gun, producing a long, thin
(radius �2:5mm) electron column with density �107 cm�3 and axial
temperature kT ¼ 4 eV. The potentials on G3 and the center wire are
then set to their operating values for the remainder of the cycle.
During the hold period, charges induced on some of the sectored cyl-
inders are monitored to provide information on the column motion.
At the end of a cycle, the potential on G2 is grounded allowing the
electrons to leave the trap and hit the phosphor screen, providing
information about the position of the electrons as well as their total
charge. Other trap details are given elsewhere.13 It is sometimes desir-
able to trap columns of varying length. In this paper, these cases are
designated by giving the two cylinders on which the trapping poten-
tials are applied. For example, the case just described is denoted
G2–G3. An alternate shorthand gives a rough indication of the column
length L by giving the number of cylinders between these two confine-
ment cylinders: the G2–G3 case is then denoted L5 since there are five
cylinders between G2 and G3.

III. THE FINITE LENGTH DIOCOTRON MODE
IN A COAXIAL TRAP

We start with experiments on the coaxial diocotron mode since
this provides the necessary background and context for the observa-
tion and analysis of the banana orbits. The diocotron mode is well
known in conventional Malmberg–Penning traps and consists of the
azimuthal E�B drift of an off-axis plasma column.14 The drift veloc-
ity is set by the z-averaged electric field at the center of the column
and this field has contributions from the image charges on the wall of
the device and the confining end potentials.8 A similar mode occurs in
the coaxial trap, but the electric field producing the drift now also has
contributions from the center wire bias and image charges on the cen-
ter wire. Also, since the electrons are injected off-axis, there is no need

for external excitation of the diocotron mode. The theory for this
mode in our trap is given in Sec. VIIA.

The diocotron mode can be observed either by monitoring the
variation of image charges on a wall sector15 or by viewing the phos-
phor screen images as a function of dump time. Typical oscilloscope
traces of four wall sectors of ring S2 are shown in Fig. 2 for an electron
column confined between cylinders S4 and G2. The wall sectors are
connected directly to an oscilloscope and the cable capacitance
together with the scope input impedance acts as an integrator circuit.
By varying the center wire bias, one can produce diocotron drifts in
either counterclockwise [Fig. 2(a)] or clockwise [Fig. 2(b)] directions.
Note, however, that for both of the cases shown the center wire bias is
positive, thus demonstrating that the drift direction does not depend
on the center wire bias alone. Finally, it has been verified that the
potentials on the wall sectors have negligible effect on the mode itself
by viewing the phosphor screen images with the sectors either
grounded or attached to the oscilloscope; no change was observed.

FIG. 1. Schematic of the Occidental College trap. The addition of a conducting cen-
ter wire produces a coaxial configuration and allows for adjustment of the radial
electric field. The five cylinders labeled S1–S5 are divided azimuthally into eight
sectors each, labeled as a–h, and shown at the far left as viewed from the gun end
of the trap. A narrow electron column is injected from an off-axis gun. Motion of the
column is diagnosed by monitoring image charges on the wall sectors or by dump-
ing the column onto a phosphor-coated screen.

FIG. 2. Wall probe signals arising from a typical diocotron mode. From top to bot-
tom, the signals are from sectors e, c, a, and g of cylinder S2 and the column is
trapped between cylinders S4 and G2 (cf. Fig. 1). Signals are offset by 17mV for
clarity and the solid lines are added to show the angular progression of the mode.
(a) Counterclockwise rotation observed when the center wire bias is set to 1.60 V.
(b) Clockwise rotation observed when the center wire bias is set to 7.36 V.
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Figure 3 shows sample data of the variation of the measured
diocotron frequency fR ¼ vh=2pr ¼ �Er=2prB with the center wire
bias /cw. Depending on conditions, vh (and thus fR) can be either posi-
tive or negative, and the /cw values are chosen to show both cases.
Data are shown for two cases: a short column, labeled as L1, with a
radius r=R ¼ 0:56 and confined between S2 and G2 with a confine-
ment potential of �120V, and a long column, labeled L5, with a
radius r=R ¼ 0:63 and confined between G3 and G2 with a confine-
ment potential of �130V. Both cases show a linear variation of fR
with /cw, although in the L1 case there is a noticeable deviation as fR
approaches zero.

The diocotron frequency depends on the axially averaged radial
electric field Er which includes contributions from the center wire,
image charges, and the confining potentials. These are derived in Sec.
VIIA. An examination of Eqs. (29) and (30) shows that the slope of
the fR vs /cw curves in Fig. 3 is given by ½2pr2B ln ða=RÞ��1. Fitting a
line to the data and using this equation gives a value for the radial
position r of the column that is in good agreement with the value
obtained from the phosphor screen image. Indeed, the simplicity of
this measurement and analysis makes it a good alternative for finding
r in the absence of a phosphor screen.

Obtaining the theoretical value for the x-intercept /cw0 of the line
is more complicated. As shown in Eq. (31), there are four terms con-
tributing to /cw0, representing contributions from the image charges,
finite-length corrections, and the confining potentials. Nevertheless,
the resultant calculation (shown by the open symbols in Fig. 3 with the
error bars reflecting uncertainty in r and k, the column line charge
density) shows good agreement with the experiment. The contribution
of each term in Eq. (31) (including the minus signs) is given in Table I,
showing the general need to include these in the theoretical model.

IV. OBSERVATION OF BANANA ORBITS

It appears from the data in Fig. 3 that one can adjust the value of
the center wire bias /cw to make the diocotron frequency fR equal to
zero (i.e., a stationary column). As one approaches this condition,
however, there is an abrupt change in the wall probe signals. This is

shown in Fig. 4 for two values of /cw on either side of the expected fR
¼ 0 value. One can extract some information about the motion of the
column from an examination of the signals. The smaller (larger) spikes
are produced when the column is farther from (closer to) the wall
probe. The added solid lines show that the column is reversing direc-
tion periodically. The double spikes in the top and bottom signals of
Fig. 4(a) merge in Fig. 4(b) showing that the column reaches but no
longer passes sectors e and g, so the azimuthal extent of the orbit is
smaller.

FIG. 3. Sample data showing the variation of diocotron frequency fR with the center
wire bias /cw . The lines are fits to the data. The open symbols are the theoretical
values for the x-intercept.

TABLE I. Contributions to the theoretical expressions for /cw0 given by Eq. (31) for
the data of Fig. 3. The four terms represent the contributions of (1) the image
charges on the wall and center wire in an infinite-length model, (2) the finite-length
corrections, and (3) and (4) the radial electric field from the confining end potentials.

Term! 1 2 3 4 Total

L5 3.142 �0.069 1.689 1.326 6.088
L1 3.426 �0.530 13.507 5.517 21.920

FIG. 4. Wall probe signals showing banana orbits. Solid lines are added to show
the reversal of the direction of angular progression. Conditions are the same as for
Fig. 2 except for the center wire bias. (a) Center wire bias is set to 6.81 V. (b)
Center wire bias is set to 4.37 V.
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These conclusions are confirmed and extended by viewing the
column motion via the phosphor screen diagnostic. An image is taken
using a video camera and frame grabber and the resulting image is
analyzed to give the r � h coordinates of the column. This is repeated
at increasing dump times to show the orbit of the column. The initial
position of the column is obtained by dumping the column immedi-
ately after capture. Results are displayed in Fig. 5 as viewed from the
phosphor screen end of the machine. Notable are the large radial
excursion of the orbit (Dr=R � 0:25) and the large h variation
(Dh � 270�). For reference, comparing with Fig. 1, sector a is centered
at�90�, b at�45�, c at 0�, and so on.

Other significant features of the banana orbits are shown in Figs.
6 and 7. In Fig. 6, the initial position of the column is varied using a
movable electron gun to show that the banana orbit is bounded by
passing orbits at larger and smaller radii. The legend shows the initial
r/R value and the initial position is indicated by an open symbol. Data
are taken at 10 ls intervals. The arrows show the direction of the
orbits above and below the banana and for the banana orbit time
increases in the counterclockwise direction. For the r=R ¼ 0:42 case,
data are taken for two cycles around the screen to better show the
orbit.

Figure 7 shows that the radial location of the banana orbit can be
varied by adjusting the center wire bias /cw. For these data, the initial
radial position of the column is set and then /cw is adjusted to produce
a banana orbit at that radius. The legend in the figure shows the initial
r/R value and corresponding /cw. The /cw values are found to match,
within experimental error, those given by Eq. (31) showing that the
banana orbits occur where �Er ¼ 0. For the cases shown in Fig. 7,
Dr=R is roughly 0.25 and the period T of the orbits roughly 300 ls.

The banana orbits are apparently produced by the presence of an
asymmetric (i.e., h-dependent) potential. A simple model of the
banana oscillations allows one to estimate the size of this potential.
The variation in radial position of the column is taken as
r0 ¼ �r þ Dr

2 cosxT t, where xT ¼ 2p=T is the oscillation frequency.
The maximum value of the radial velocity vr ¼ dr=dt is then
vmax
r ¼ xTDr=2. Taking the z-averaged asymmetric potential to have
the form �wðrÞ cos lh, the maximum value of the radial E�B drift is
vmax
r ¼ Emax

h =B ¼ l�wð�rÞ=�rB. Equating these gives �wð�rÞ ¼ p�rBDr=lT .
Values for �w obtained for the four cases of Fig. 7 are given in Table II,
where the rightmost limit of the orbits has been used for �r and we
have taken l¼ 1.

While the focus in this paper is on the initial behavior of the col-
umn motion, we have made some observations of the long-term evo-
lution. The diocotron orbits are essentially undamped on short time
scales, but the wall signals decrease in amplitude over the same time-
scale (�100ms) as the loss of particles, i.e., the transport timescale.
For the banana orbits, the transport timescale is shorter (�20–40ms).
On this timescale, we have observed cases where a banana orbit
becomes a passing orbit and cases where the radial and azimuthal
extents of the banana orbit gradually shrink until the column is either
left stationary at or executes small oscillations around h � �70�.
While we do not yet fully understand these behaviors, it seems reason-
able that the orbit should change on the timescale for particle loss since
the asymmetry amplitude depends on the column’s line charge [see
Eq. (38)].

We have made some attempt to cancel the asymmetry producing
the banana orbit by applying potentials to various wall sectors in the

confinement region. While such applied potentials do affect the
banana orbit, changing its radial position and/or its orientation, we
have been unable to obtain a configuration that eliminates the banana
orbit altogether.

FIG. 5. Coordinates of the column (r/R and h) extracted from phosphor screen
images showing a banana orbit for G2–G3 trap and /cw ¼ 5:16 V. The initial posi-
tion is r=R ¼ 0:52 and h ¼ 57� and the time between points is 10 ls. (a) Data
as seen from the phosphor screen end of the machine displayed in a polar plot to
define the coordinate system. The angular range is taken as �210� to 150� to
accommodate the orientation of the banana orbit. For reference, comparing with
Fig. 1, sector a is centered at �90�, b at �45�, c at 0�, and so on. (b) Same data
displayed in a scatterplot. The definition of the full banana width Dr=R is
indicated.
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V. ANALYSIS

To investigate the axial dependence of the asymmetry, the experi-
ment has been run with a short L1 electron column trapped at various
axial positions in the trap (i.e., G3–S4, S5–S3, etc.). The banana orbit is
observed at each location and shows little variation. I conclude that
the asymmetry producing the banana orbit has little or no axial
variation.

The particular orientation of the banana orbit (roughly symmet-
rical around h � �40� � hw in Fig. 5) led to an examination of the
trap construction for any element with that orientation. It was found

that the center wire support at the screen end of the trap has that ori-
entation and this led to the hypothesis that the asymmetry is produced
by the center wire not being exactly on-axis. Since care was taken dur-
ing the assembly of the trap to ensure proper positioning of the wire, it
is hard to believe that it could be offset by much from a central posi-
tion. So the question arises, how much offset would it take to produce
an asymmetry of the size observed?

To obtain an estimate of the offset, the following calculation is
performed. It is convenient to place the wire centered at r¼ 0 and let
the grounded wall be offset by some small amount d in the direction
hw. The (r, h) coordinates of the wall are then related by r ¼ d cos ~h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � d2 þ ðd cos ~hÞ2

q
� Rþ d cos ~h, where ~h ¼ h� hw and the

approximation is good to first order in the small parameter d=R. This
configuration is approximately equivalent to a centered wall of radius
R having a non-zero potential that varies as �dd/=dr cos ~h, where /
is the potential at the wall calculated without an offset. Laplace’s equa-
tion can then be solved subject to these boundary conditions giving
the theoretical value of the asymmetric potential produced by the off-
set. Since one can measure the amplitude of this potential, it is then
possible to use this experimental value in the theoretical expressions to
find the implied offset. The necessary theoretical expression is
obtained in Sec. VIIB. The results for the four cases of Fig. 7 are
included in Table III. Note the consistency of the d=R values for the
four cases, with the standard deviation being about 9% of the average.
This consistency supports the validity of the model. Using the average
value d=R ¼ �0:0343 and the measured R gives d ¼ �0:052 inches
¼ �1:3mm, a plausible value although distressingly large given the
care that was taken in the construction of the trap. The negative sign
means that the direction of the offset is opposite to the assumed direc-
tion of �40�. Note that the small size of d=R is consistent with the
assumptions of the model. This offset is large compared to the esti-
mated gravitational sag in the wire of 0:0028 in: ¼ 0:071mm

FIG. 6. Orbits produced with differing initial radius values for a fixed center wire
bias showing that the banana orbit is bounded by passing orbits. G2–G3 trap and
/cw ¼ 10:2 V. The legend shows the initial r/R which is also indicated by the open
symbol for each series. The time between points is 10 ls.

FIG. 7. The banana orbit changes its radial position as the center wire bias is
varied. Examples from a G2–G3 trap. The legend shows initial r/R and /cw values.
Initial position is also indicated by the open symbol for each plot. Time between
points is 10 ls and time increases in the counterclockwise direction.

TABLE II. Experimental values of �r=R; /cw , and �w for the four cases of Fig. 7. The
rightmost limit of the orbits has been used for �r .

�r=R 0.345 0.410 0.548 0.721
/cw(V) �0.60 1.48 7.28 19.6
�w(mV) 45.6 52.1 79.8 100.4

TABLE III. Calculated values for the five terms in the curly bracket of Eq. (38) and
the resulting value for d=R using the experimental parameters of the four cases of
Fig. 7. The corresponding experimental /cw and �w values are given in Table II. The
five terms represent the relative contributions of (1) the center wire potential, (2) the
electron column and its image charges in an infinite-length model, (3) the finite-
length corrections to this model, and (4) and (5) the confining potentials.

�r=R Term! 1 2 3 4 5 d=R

0.345 �0.038 �0.640 0.019 �0.400 �0.271 �0.034
0.410 0.113 �0.912 0.025 �0.460 �0.320 �0.034
0.548 0.741 �1.815 0.044 �0.599 �0.447 �0.039
0.721 2.625 �4.404 0.081 �0.853 �0.717 �0.031
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VI. DISCUSSION

Several comments on these results are in order. The discovery of
the asymmetry was made only because the coaxial configuration
allows for the attainment of the fR � 0 condition by adjusting /cw. At
/cw values far from this condition (as have commonly been used in
the transport experiments on this device), the effect of the asymmetry
would be too small to be directly observed. This shows an advantage
of the coaxial configuration for detecting small asymmetric fields.

If the asymmetry is indeed caused by an offset center wire, future
versions of coaxial traps might include an adjustment of the wire’s end
supports so that any offset can be minimized. On the other hand, a
deliberate offset of the center wire producing an asymmetric potential
could be used to adjust the radial position of the column. This can be
seen from the data shown in Fig. 7. A column starting at r=R ¼ 0:89
with /cw ¼ 19:6V could be allowed to evolve until the orbit crossed
the /cw ¼ 7:28V curve, at which point the center wire bias would be
switched to that value. The column would then be allowed to evolve
until it crossed the /cw ¼ 1:48V curve where the center wire would
again be switched. Repeating the process (or some suitable variation of
it) would allow one to position the column at practically any radius.

We have made a preliminary test of this position manipulation
technique, switching /cw to a new value at the innermost point in the
banana orbit. When the new /cw value was selected appropriately, the
column orbit did indeed shift to a banana at a smaller radius.
Repeating this process twice, we caused the inner edge of the banana
orbit to move from r=R ¼ 0:51 to 0.30.

The possible effect of this asymmetry on previous transport
experiments should be noted. In those experiments,4,5 the injected
electrons are first smeared into a low-density annulus. Then, an
applied asymmetry, produced by voltages applied to the sectors of the
confinement region, is used to produce radial transport. Since the den-
sity is low, the applied asymmetry is essentially the vacuum field,
which can be readily calculated. Both the fields and the resulting
experimental transport are then known, allowing for close compari-
sons between experiment and theory. This paper has shown that there
is another asymmetry, likely produced by an offset center wire, which
has not been previously accounted for. While the amplitudes of this
asymmetry shown in Table II are less than those applied in the trans-
port experiments (typically a few tenths of a volt), this comparison is
misleading because the conditions in the transport experiments are
not the same as those in this paper. Referring to Eq. (38), the second
through fourth terms are proportional to k0 and will decrease when
the electron column is smeared out. The fifth term, depending on the
electron temperature, would not change significantly. The value of /cw
used in the transport experiments, however, is significantly larger (typ-
ically ��80V), so the first term would dominate and the value of �w
could be comparable to that of the applied asymmetry. The presence
of �w would, thus, need to be accounted for in any future comparison
between experiment and theory, but this is beyond the scope of this
paper.

VII. SUPPORTING THEORY

In this section, we derive the results referred to in Secs. III–VI.
First, we derive the axially integrated radial electric field that sets the
diocotron frequency. Then, we use these results to calculate the
amount of radial offset in the center wire position needed to produce a
given asymmetry amplitude.

A. The finite length diocotron mode in a coaxial trap

The azimuthal E� B drift of an off-axis electron column in a
coaxial trap is produced by an electric field having contributions from
three sources: (1) the biased center wire, (2) the image charges on the
conducting wall and center wire, and (3) the radial component of the
confining fields at the ends of the trap. In this section, each of these
contributions is calculated. I follow the method of Fine and Driscoll8

but give details, since this is the first time (to my knowledge) these
methods have been applied to a coaxial trap and in this context a num-
ber of complications arise.

Taking the three contributions in order, the potential due to an
infinitely long biased center wire (potential /cw, radius a) bounded by
a grounded cylinder at radius R is easily found by direct integration of
Laplace’s equation. The result is

/ðrÞ ¼ /cw
ln ðr=RÞ
ln ða=RÞ : (1)

To determine the contribution of the image charges, we must solve
Poisson’s equation for an arbitrary charge distribution qðrÞ

r2/ðrÞ ¼ �qðrÞ=�0: (2)

To allow qðrÞ to have finite length, the Green’s function method is
employed. In this method, Green’s function Gðr; r0Þ is first found by
solving

r2Gðr; r0Þ ¼ d3ðr� r0Þ (3)

and the result is then used to obtain the potential

/ðrÞ ¼ � 1
�0

ð
dV 0Gðr; r0Þqðr0Þ: (4)

Here, r and r0 are the field and source position vectors, respectively; d3

is the three-dimensional delta function; dV 0 is a volume element; and
the integral is over a volume including all the sources. The correctness
of this method can be seen by applying the Laplacian operator to
Eq. (4). Applying Eq. (3) then gives Eq. (2) which shows that Eq. (4) is
indeed the solution to Eq. (2).

For this problem, the Laplacian and d3 are written in cylindrical
coordinates (r; h; z)

1
r
@

@r
r
@G
@r

� �
þ 1
r2
@2G

@h2
þ @

2G
@z2
¼ 1

r
dðr � r0Þdðh� h0Þdðz � z0Þ: (5)

Next, the Fourier transform and series16 are used

dðz � z0Þ ¼ 1
2p

ð1
�1

dkeikðz�z
0Þ (6)

and

dðh� h0Þ ¼ 1
2p

X1
m¼�1

eimðh�h0Þ (7)

and we assume that G can be written as

Gðr; r0Þ ¼ 1
4p2

X1
m¼�1

ð1
�1

dk gmðk; r; r0Þeimðh�h0Þeikðz�z
0Þ: (8)

Using these in Eq. (5), the differential equation for gmðk; r; r0Þ is
obtained
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1
r
d
dr

r
dgm
dr

� �
� k2 þm2

r2

� �
gm ¼

1
r
dðr � r0Þ: (9)

The solutions to Eq. (9) for r 6¼ r0 are the modified Bessel functions
ImðkrÞ and KmðkrÞ,17 so, generally, gm will be a combination of these
with coefficients that allow the various boundary conditions to be sat-
isfied. Rather than immediately focusing on the current problem, a
general approach applicable to a variety of cases is developed.

Let n1ðkrÞ be a linear combination of the modified Bessel func-
tions for r < r0 and n2ðkrÞ be an independent linear combination for
r > r0. Assume that n1ðkrÞ and n2ðkrÞ have been constructed to satisfy
whatever boundary conditions are present for r < r0 and r > r0,
respectively. Then, we take

gmðk; r; r0Þ ¼ C1ðr0Þn1ðkrÞ ðr < r0Þ
¼ C2ðr0Þn2ðkrÞ ðr > r0Þ; (10)

where C1 and C2 are to be determined by applying the continuity and
jump conditions at r ¼ r0. The first of these gives

C1ðr0Þn1ðkr0Þ ¼ C2ðr0Þn2ðkr0Þ: (11)

The jump condition is obtained by integrating Eq. (9) from r0 � � to
r0 þ �, giving

r
dgm
dr

� �r0þ�
r0��
¼ 1: (12)

Letting �! 0, one obtains

C2ðr0Þn02ðkr0Þ � C1ðr0Þn01ðkr0Þ ¼ 1=r0; (13)

where n01 ¼ dn1=dr and n02 ¼ dn2=dr.
To complete the determination of C1 and C2, a useful result

involving the Wronskian W ¼ n1n
0
2 � n2n

0
1 is employed. Taking the

derivative of W with respect to r, one obtains W 0 ¼ n01n
0
2 þ n1n

00
2

�n02n
0
1 � n2n

0 0
1. Since n1 and n2 satisfy Eq. (9), one can use that equa-

tion to obtain n0 01 and n0 02. After some cancelation, one obtains
W 0 ¼ �W=r, which can be integrated to obtain

W ¼ n1ðkr0Þn02ðkr0Þ � n2ðkr0Þn01ðkr0Þ ¼ A=r0; (14)

where A is an integration constant to be determined and the result has
been evaluated at r ¼ r0. One can now solve Eqs. (11), (13), and (14)
to find C1ðr0Þ ¼ n2ðkr0Þ=A and C2ðr0Þ ¼ n1ðkr0Þ=A. Equation (10)
then becomes

gmðk; r; r0Þ ¼ n2ðkr0Þn1ðkrÞ=A ðr < r0Þ
¼ n1ðkr0Þn2ðkrÞ=A ðr > r0Þ; (15)

which can be written in the compact form as

gmðr; r0Þ ¼ n1ðkr<Þn2ðkr>Þ=A; (16)

where r< (r>) is the smaller (larger) of r and r0.
The constant A is determined from Eq. (14) using the n1 and n2

forms appropriate for the boundary conditions of the problem. As an
example, consider a charge distribution in space with no conducting
boundaries.19 Our boundary requirements are that n1 and n2 are finite
at r¼ 0 and r ¼ 1, respectively, so, given the behavior of the Bessel
functions at these limits,17 n1ðkrÞ ¼ ImðkrÞ and n2ðkrÞ ¼ KmðkrÞ are
satisfactory choices. Using these in Eq. (14) and employing the proper-
ties of the Bessel functions,17 the simple result A¼ �1 is obtained and

gmðk; r; r0Þ ¼ �Imðkr<ÞKmðkr>Þ: (17)

For the coaxial trap, the boundary conditions are / ¼ 0 at r¼ a
and r¼R, so appropriate choices are n1ðkrÞ ¼ ImðkrÞKmðkaÞ
�ImðkaÞKmðkrÞ and n2ðkrÞ ¼ ImðkrÞKmðkRÞ � ImðkRÞKmðkrÞ which
then give A ¼ KmðkaÞImðkRÞ � KmðkRÞImðkaÞ. Note that the poten-
tial due to a non-zero bias on the center wire is known and can be
added in later. The result is

gmðk; r; r0Þ ¼
Imðkr<ÞKmðkaÞ � ImðkaÞKmðkr<Þ½ � Imðkr>ÞKmðkRÞ � ImðkRÞKmðkr>Þ½ �

KmðkaÞImðkRÞ � KmðkRÞImðkaÞ
: (18)

To obtain the potential using Eq. (4), the charge distribution qðr0Þ
must be specified. For this experiment where the column radius is
small compared to R, the electron column can reasonably be modeled
as a line charge extending in the z�direction and centered at ðr0; h0Þ

qðr0Þ ¼ kðz0Þ
r0

dðr0 � r0Þdðh0 � h0Þ: (19)

Using this in Eq. (4) gives

/ðrÞ¼� 1
4p2�0

X1
m¼�1

ð1
�1

dk
ð1
�1

dz0 kðz0Þeimðh�h0Þeikðz�z
0Þgmðk;r;r0Þ:

(20)

It is useful to note that, in the case of an infinite-length column [i.e.,
kðz0Þ ¼ k0 constant], the z0 integral can be performed using the fol-
lowing relation:

ð1
�1

dz0 e�ikz
0 ¼ 2pdðkÞ: (21)

Then, in performing the k-integral in Eq. (20), one may replace the
Bessel functions in Eq. (18) with their small k limits.17 This gives

/ðr;hÞ¼ k0
2p�0

lnðr<=aÞlnðr>=RÞ
lnða=RÞ þ

X1
m¼1

cosmðh�h0Þ

m 1� a
R

� �2m
 !

8>><
>>:

� a2r>
R2r<

� �m

þ r<
r>

� �m

� r>r<
R2

� �m

� a2

r>r<

� �m
" #9>=

>;: (22)

The results obtained so far give the potential produced by both
the electron column and the image charges in the conducting wall and
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center wire. For the calculation of the diocotron frequency, one is
interested in finding the potential produced by the image charges
alone. The appropriate Green’s function, which I call gmiðk; r; r0Þ, is
obtained by subtracting Eq. (17) from Eq. (18). I denote the radial
derivative of this as g 0miðk; r; r0Þ ¼ dgmiðk; r; r0Þ=dr.

To proceed, I further specify that the line charge has a constant
value k0 and extends from z ¼ �L=2 to L=2. Then, the z0� integral

can be evaluated, giving 2
k sin

kL
2

� �
. In the experiment, the axial bounce

frequency is large compared to the azimuthal drift frequency, so it
makes sense to use the z�averaged value of the electric field �Er

¼ 1
L

Ð
Erdz where the integral is from z ¼ �L=2 to L=2. Then, the

z� integral can also be evaluated, giving another factor of 2
k sin

kL
2

� �
.

The result is (adding the subscript i to denote the image field)

�Eri ¼
k0

4p2�0L

X1
m¼�1

ð1
�1

dk eimðh�h0Þ 2
k
sin

�
kL
2

� !2

g0miðk; r; r0Þ

2
4

3
5;

(23)

which will be evaluated at the location of the electron column, r ¼ r0
and h ¼ h0. Note that the sum over m can be written in terms of real
functions as 1þ

P1
m¼1 2 cosmðh� h0Þ.

To proceed, the square bracket in Eq. (23) is numerically evalu-
ated using Mathematica.18 The dimensionless parameters r0=R and
C � L=2R are varied and it is found that, for C greater than some
value C0, the bracket varies linearly with C and is well represented by
Aðr0Þ þ C � Bðr0Þ. The linear threshold value C0 varies from about
0.3 for r0=R values of 0.1 or 0.9 to about 0.8 for r0=R ¼ 0:5, so the lin-
ear variation with C applies to all but the very shortest columns. The
functions Aðr0Þ and Bðr0Þ are shown by the closed circles in Fig. 8.
The simple form of this result leads one to compare with a calculation
of Eri for an infinite-length line charge. This can be obtained from a
z-independent solution of Poisson’s equation20 or by using gmi in
Eq. (20) and applying the procedure leading to Eq. (22) to obtain
the potential produced by the image charges, /iðr; hÞ. Then, Eri1
¼ �@/i=@r evaluated at r¼ r0, h ¼ h0. The result can be written

Eri1 ¼ �
k0

2p�0r0

ln ðr0=RÞ
ln ða=RÞ �

X1
n¼1

ðr0=RÞ2n � ða=r0Þ2n

1� ða=RÞ2n

" #( )

� � k0
2p�0r0

Dðr0Þ; (24)

where Dðr0Þ is the curly bracket in Eq. (24). This, multiplied by
�4pR=r0, is plotted as the solid line in Fig. 8(b), showing good agree-
ment. The result of Eq. (23) may, thus, be written as

�Eri ¼ Eri1 þ
k0

4p2�0L
Aðr0Þ: (25)

Finally, the contribution to the column’s azimuthal drift from the
radial component of the confining electric field at the ends of the trap
is considered. The confining potential was previously found in Ref. 21
and is given by

/endðr; zcÞ ¼ �
X1
m¼0

Am~F 0ðkmrÞe�kmzc ; (26)

where ~F 0ðkmrÞ ¼ J0ðkmrÞY0ðkmaÞ � J0ðkmaÞY0ðkmrÞ, J0 and Y0 are
Bessel functions of the first and second kind,17 km are the k values

satisfying ~F 0ðkRÞ ¼ 0, zc is measured from the end of the confining
cylinder, and Am is defined in Ref. 21. The potential due to the center
wire bias is z-independent and, thus, not relevant to this calculation.
For our calculation of the diocotron frequency, one is interested in the
radial electric field produced by the confining potential

Erðr; zcÞ ¼ �
X1
m¼0

Amkm~F 1ðkmrÞe�kmzc ; (27)

where ~F 1ðkmrÞ ¼ J1ðkmrÞY0ðkmaÞ � J0ðkmaÞY1ðkmrÞ.
As in the calculation of Eri, we are interested in the z-averaged

value of Er. The first step is to find the plasma reflection point zcr using
energy conservation by equating the total energy at the axial center of
the plasma column (Etot ¼ kT þ q/col , with T being the temperature)
with the potential energy at zcr [i.e., q/endðzcrÞ]. Note that knowing zcr
also allows one to determine the column length L. Because /end
involves an infinite sum of terms involving zc, finding zcr must, in gen-
eral, be done numerically. In practice, however, it is often sufficient to

FIG. 8. Plots of the quantities A and B defined in the text vs the scaled column
position r0=R. The closed circles show values obtained numerically. (a) Plot of
Aðr0Þ vs r0=R. (b) Plot of Bðr0Þ vs r0=R. The solid line is the curly bracket in Eq.
(24) multiplied by �4pR=r0 showing that the quantity B is related to Eri for an
infinite-length line charge.
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employ the approximation of keeping just the first term of the sums in
Eqs. (26) and (27). Then, the energy conservation step gives Etot
� �q~F 0ðk0rÞA0 exp ð�k0zcrÞ. Axially averaging Er from zcr to
zcr þ L=2 (the middle of the plasma column of length L) then gives

�Er �
2
L

~F 1ðk0rÞ e�k0L=2 � 1½ �A0e
�k0zcr � 2

L
Etot
q

~Cðr0Þ

¼ 2~Cðr0Þ
L

kT
q
þ k0
2p�0

Jðr0Þ
� �

; (28)

where ~Cðr0Þ ¼ ~F 1ðk0r0Þ=~F 0ðk0r0Þ; Jðr0Þ is the curly bracket in Eq.
(22) evaluated at the column location (i.e., r ¼ r0, h ¼ h0) and, in the
second step, the term exp ð�k0L=2Þ is ignored as negligible compared
to 1. It is interesting to note that, in this approximation, the confining
potential does not appear in the expression for �Er . While a larger con-
fining potential produces a larger Er, it also restricts the electrons from
penetrating into the confinement rings. The two effects cancel leaving
no dependence on confining potential. The confining potential does,
however, effect the calculation of �Er in the determination of the col-
umn length L.

Putting it all together, the total radial electric field producing the
diocotron mode is given by

�Er ¼ E1 þ
k0

4p2�0L
Aðr0Þ þ

2~Cðr0Þ
L

kT
q
þ k0
2p�0

Jðr0Þ
� �

; (29)

where now including the field produced by the center wire bias /cw

E1 ¼ �
1
r0

/cw

ln ða=RÞ þ
k0
2p�0

Dðr0Þ
� �

: (30)

The value of the center wire bias giving �Er ¼ 0 is then

/cw0 ¼ ln ðR=aÞ k0
2p�0

Dðr0Þ �
Aðr0Þ
2p

r0
L
� 2~Cðr0ÞJðr0Þ

r0
L

� �(

� 2~Cðr0ÞkT
q

r0
L

)
: (31)

Going from left to right, the first term is due to the image charges
on the wall and center wire in an infinite-length model. The second
term is due to finite-length corrections, and the third and fourth
terms are due to the radial electric field from the confining end
potentials. The quantities ~Cðr0Þ; Dðr0Þ, and Jðr0Þ are plotted vs the
scaled radius r0=R in Fig. 9 using parameters that match the experi-
mental device.

B. Potential produced by a radially offset wall

In this section, we calculate the asymmetric potential w produced
by a wall potential of the form �dd/=drjR cos ~h, where d is the offset
constant and / is the potential found in Sec. VIIA. For such a bound-
ary, we generally expect a potential of the form wðr; zÞ cos ~h and
Laplace’s equation reduces to @2w=@r2 þ @w=r@r � w=r2

þ @2w=@z2 ¼ 0. As we have seen in Sec. VIIA, the potential / has
contributions from the biased center wire, the electron column and its
image charges, and the confining fields at the ends of the trap. The

center wire potential has no z-dependence so @2w=@z2 ¼ 0 and
Laplace’s equation has solutions of the form wðrÞ ¼ Ar þ Br�1, with
A and B constants determined by the boundary conditions wðaÞ ¼ 0
(since there is no h-variation on the center wire) and wðRÞ
¼ �dd/=drjR. Using Eq. (1), we obtain

wðrÞ ¼ � d
R

/cw

ln ða=RÞ
r
R
1� a2=r2

1� a2=R2
: (32)

Considering next the contribution from the finite-length electron
column and its images, the solution will have the form wðr; zÞ
¼
Ð
dk exp ðikzÞ½AkI1ðkrÞ þ BkK1ðkrÞ�, where I1ðkrÞ and K1ðkrÞ are

modified Bessel functions of first order, Ak and Bk are constants, and
the integral is from �1 toþ1. In this case, we use Eq. (20) to deter-
mine the boundary condition at the wall. It should be noted that this
boundary condition is dynamic, changing as the column moves, but
since we are seeking the maximum amplitude of the asymmetric
potential, we set h0 ¼ hw. We then proceed as in Sec. VIIA, taking the
column as a constant line charge of length L. After obtaining wðr; zÞ,
we find the z-averaged potential and evaluate at the column position,
obtaining

�wðr0Þ ¼ d
k0

4p2�0L

ð1
�1

dk
2
k
sin

kL
2

� �� �2

cðk;R; r0Þ

"

� I1ðkr0ÞK1ðkaÞ � I1ðkaÞK1ðkr0Þ
I1ðkRÞK1ðkaÞ � I1ðkaÞK1ðkRÞ

#
; (33)

where cðk;R; r0Þ ¼ g 00ðk;R; r0Þ þ 2
P1

m¼1 g 0mðk;R; r0Þ. As in Sec.
VIIA, we numerically evaluate the square bracket and find that it
varies linearly with C ¼ L=2R and can be represented by A1ðr0Þ þ C
�B1ðr0Þ, with the functions A1ðr0Þ and B1ðr0Þ shown by the closed
circles in Fig. 10. We have verified that B1ðr0Þ is related to w produced
by an infinite-length line charge using Eq. (22) for the boundary con-
dition at r¼R. Thus, we can write

FIG. 9. This figure shows ~C , D, J, and ~F vs r0=R. These functions are defined in
the text.
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�wðr0Þ ¼ �w1ðr0Þ þ d
k0

4p2�0L
A1ðr0Þ; (34)

where

�w1ðr0Þ ¼ d
k0

8p2�0R
B1ðr0Þ: (35)

Finally, using the results and techniques of Sec. VIIA, the contri-
bution from the ends can be written

�wðr0Þ ¼
2d
L
Etot
q

~Fðr0Þ; (36)

where

~Fðr0Þ ¼
~F 1ðk0RÞ
~F 2ðk0RÞ

~F 2ðk0r0Þ
~F 0ðk0r0

; (37)

~F 2ðkmrÞ ¼ J1ðkmrÞY1ðkmaÞ � J1ðkmaÞY1ðkmrÞ, and the other quan-
tities are as previously defined. For reference, ~Fðr0Þ is plotted vs

r0=R in Fig. 9. The total axially averaged asymmetric potential is
then

�wðr0Þ ¼
d
R

/cw

ln ðR=aÞ
r0
R
1� a2=r20
1� a2=R2

þ k0
2p�0

B1ðr0Þ
4p
þR
L
A1ðr0Þ
2p

�(

þ2R
L
Jðr0Þ~Fðr0Þ

�
þ 2R

L
kT
q

~Fðr0Þ
)
: (38)

We see that the asymmetric potential has contributions from five sour-
ces. Going from left to right, they are (1) the center wire potential, (2)
the electron column and its image charges in an infinite-length model,
(3) the finite-length corrections to this model, and (4) and (5) the con-
fining potentials. The relative size of these terms for some experimen-
tal data is given in Table III.

VIII. CONCLUSIONS

The diocotron mode has been experimentally studied in a coaxial
Malmberg–Penning trap and found to agree with a theory that
includes corrections due to a finite-length column and contributions
from the confining potentials. When experimental parameters are
adjusted to give a very low diocotron frequency, the column orbit
abruptly changes to a banana-shaped motion, indicating the presence
of a previously undetected field asymmetry in the trap. Modeling
shows that a small radial offset in the position of the center wire can
account for such an asymmetry.
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APPENDIX A: FINDING THE LINE CHARGE DENSITY k IN
A COAXIAL TRAP

It is a common technique in Malmberg–Penning traps to
obtain the line density of the plasma column by measuring the
charge on one of the trap rings when the plasma is injected or
dumped.22 The electric field of the plasma column produces a sur-
face charge on the inner wall of the ring that, in total, is equal but
opposite the charge on the total capacitance Cr between the ring
and ground. Cr includes any discrete capacitance to ground
included in the measurement circuit as well as any stray or distrib-
uted capacitance (e.g., cable capacitance). Measuring the voltage Vr

on this capacitance, thus, results in a measurement of the total
charge on the wall of the ring, since Q ¼ CrVr , and, by Gauss’s
Law, this is equal in magnitude to the charge of the plasma column

FIG. 10. Plots of the quantities A1 and B1 defined in the text vs the scaled column
position r0=R. The closed circles show values obtained numerically. (a) Plot of
A1ðr0Þ vs r0=R. (b) Plot of B1ðr0Þ vs r0=R. The solid line is obtained from the ana-
lytical solution for w produced by an infinite-length line charge.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 082103 (2022); doi: 10.1063/5.0098959 29, 082103-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


within the ring. This assumes that measurements are made on a
timescale short compared to RinCr , where Rin is the input resistance
of the device measuring Vr.

In a coaxial trap, however, this technique is more complicated
because both the center wire and the column produce an electric
field at the wall and there are surface charges on both the ring and
the center wire.23 The result is that ring voltage depends not only
on the line density k but also on the position r0 of the electron col-
umn as well as the center wire potential. For example, when the
plasma column is long compared to the ring length Ls, we can use

Eq. (22) for the column potential. Combining this with the center
wire potential [Eq. (1)] and taking the radial derivative to obtain
the electric field, we can find the surface charge density
r ¼ ��0ErðR; hÞ on the inner wall of the ring. Integrating over the
surface of the ring gives the total charge Q. The voltage on the
capacitor is then

Vr ¼
Q
Cr
¼ 2p�0Ls

Cr ln ðR=aÞ
/cw þ

k
2p�0

ln ðr0=aÞ
� �

: (A1)

This should be compared to the simpler expression for a non-
coaxial trap: Vr ¼ kLs=Cr . Note that in Eqs. (1) and (22) the wall
potential is at ground rather than Vr, so our result assumes Vr is
negligible compared to /cw and k

2p�0
. This requires Cr to be large

compared to the capacitance 2p�0Ls
ln ðR=aÞ between the center wire and the

wall. These conditions are satisfied in our experiment.
Typical data for this case are shown in Fig. 11, with part (a)

showing /cw vs time and part (b) showing the ring voltage Vr vs
time. At the start of an experimental cycle, /cw is switched to zero
and the electron gun is pulsed. For this example, the electron col-
umn is dumped shortly after injection. The Vr signal reflects all of
these events.

It is useful to replot these data as Vr vs /cw, as shown in Fig.
11(c). The linear variation in Vr on the top portion of the curve is
produced by the variation in /cw before the electrons are injected.
The slope of this portion of the curve can then be related to the
effective capacitance Cr since the physical dimensions Ls, R, and a
are all known. This technique, thus, eliminates the need for a capac-
itance bridge or other such device to obtain Cr. Also, since the
capacitance is obtained from the data itself, there is no question
about measuring Cr at the wrong frequency.

The lower half of the curve is produced after the electrons
are injected. A linear fit to these data is made with the slope
constrained to be the same as the upper curve and the average
offset between the two curves obtained. If the column position
r0 is known, this offset is easily related to the line density k
using Eq. (A1).
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