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The techniques of chaos theory are employed in an effort to better understand the complex single-

particle dynamics of asymmetry-induced transport in non-neutral plasmas. The dynamical equa-

tions are re-conceptualized as describing time-independent trajectories in a four-dimensional space

consisting of the radius r, rotating frame angle w, axial position z, and axial velocity v. Results

include the identification of an integral of the motion, fixed-point analysis of the dynamical equa-

tions, the construction and interpretation of Poincar�e sections to visualize the dynamics, and, for

the case of chaotic motion, numerical calculation of the largest Lyapunov exponent. Chaotic cases

are shown to be associated with the overlap of resonance islands formed by the applied asymmetry.

Published by AIP Publishing. https://doi.org/10.1063/1.5017710

I. INTRODUCTION

The cylindrical Malmberg-Penning non-neutral plasma

trap provides a suitable platform for fundamental studies of

plasma transport since its excellent confinement can be per-

turbed and the resulting transport studied in a controlled

manner. There have been many such experiments1–11 that use

applied non-axisymmetric electric or magnetic fields (i.e., field

asymmetries) as the perturbation. These asymmetries produce

radial drifts that result in measurable radial transport, but it

has been difficult to produce a matching local transport theory.

Early attempts to model this transport resulted in resonant par-

ticle transport theory,12 but comparisons between this theory

and experiments7 did not show agreement. To determine the

missing physics, we have previously studied the asymmetry-

induced dynamics13 and the resulting transport14,15 using a

single-particle computer code. These studies revealed motions

that cannot be described by a simple perturbation theory. In

addition to lab-frame trapped particle populations, there were

indications of chaotic motion. In this paper, we apply some of

the methodologies of chaos theory to single-particle dynamics

in our trap in an effort to better characterize these dynamics.

The study of chaos is a mature and multi-faceted field as

witnessed by the number of texts on this topic.16–22 Thus,

before beginning, is it helpful to orient ourselves. Chaos studies

can be divided into two categories, those involving discrete

time steps (often called mappings and based on iterative equa-

tions) and those involving time as a continuous variable and

based on differential equations. While the study of mappings is

interesting and elegant, in our case, where the starting point is

the differential equations of motion, it is not of much use since

the determination of the map requires the prior solution of

the equations of motion. This brings us to the second category,

studies based on differential equations. These can be sub-

divided into studies of dissipative systems and non-dissipative

(or conservative) systems depending on the evolution in time

of a hypervolume in the n-dimensional space formed by the

dynamical variables.23 For a dissipative system, such a hyper-

volume shrinks in time to some lesser-dimensional object

(point, line, plane, fractal) called an attractor. For a conserva-

tive system, the hypervolume remains constant, but may

change shape, stretching, and contracting in complicated ways.

Conservative systems do not have attractors. As we note below,

there is a simple test to determine if a system is dissipative or

conservative. Finally, we note that systems that can be cast in

Hamiltonian form are a subset of conservative systems, and

that the existence of quantities that remain constant on trajecto-

ries (i.e., constants of the motion) can occur for either dissipa-

tive or conservative systems.

We now turn to our problem. We want to model single-

particle motions in our modified Malmberg-Penning trap in

which the usual non-neutral plasma column has been replaced

by a biased wire running along the axis of the trap (see Fig. 1).

Low density electrons injected into the trap are subjected to

an electric field asymmetry produced by variable-frequency

voltages applied to the forty wall sectors. Due to the low elec-

tron density, the asymmetry potentials in the trap are essen-

tially the vacuum potentials. The biased center wire produces

a symmetric radial electric field which produces an azimuthal

E�B drift similar to that occurring in higher density traps.

Additional details have been given in previous papers.5,7

The geometry of our trap is cylindrical, so the usual

cylindrical coordinates (r, h, z) are natural, with the z origin

at one end of the confinement region of length L and radius

R. With the confining magnetic field in the ẑ-direction, the

governing equations of motion are

_r ¼ 1

B
Ehðr; h; z; tÞ

_h ¼ � 1

rB
Erðr; h; z; tÞ

€z ¼ q

m
Ezðr; h; z; tÞ:

(1)

Here, we have used the drift approximation for _r and _h,

whereas €z is simply given by Newton’s second law. The

components of the electric field are derivatives of the poten-

tial which we take to be made up of a radially dependent part
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/0(r) produced by the center wire bias and an asymmetry

potential /1(r, h, z, t). These will be specified later.

Chaos theory takes a geometric approach to dynamics

by studying trajectories in an abstract n-dimensional space.16

To this end, the equations of motion are cast as n first-order

autonomous differential equations for n dynamical variables xi

_x1 ¼ f1ðx1;…; xnÞ
..
.

_xn ¼ fnðx1;…; xnÞ;
(2)

or, in n-vector form, _x ¼ fðxÞ. The n dynamical variables

define a point in an n-dimensional space referred to as state

space or, in the context of Hamiltonian dynamics, phase

space. In addition, the n differential equations define a unique

direction for the trajectory at that point. The fact that the dif-

ferential equations are autonomous (i.e., without explicit time

dependence) means that the trajectories are time-independent.

One can categorize such a system as dissipative or conserva-

tive by calculating the appropriate n-dimensional divergence

r� f. If this quantity is zero, the system is conservative, and,

if less than zero, dissipative.16,20,24

To cast our equations in this form, we introduce the

axial velocity v ¼ _z and note that in our experiment the vari-

ables h and t come in the combination xt – lh � –lw, where

x is the frequency of the applied asymmetry. Writing the

components of the electric field in terms of derivatives of the

potential /, we obtain

_r ¼ � 1

rB

@/
@w
ðr;w; zÞ

_w ¼ �x
l
þ 1

rB

@/
@r
ðr;w; zÞ

_v ¼ � q

m

@/
@z
ðr;w; zÞ

_z ¼ v:

(3)

Thus, our dynamics can be viewed as trajectories in the four-

dimensional space formed by r, w, z, and v. The r� f test

shows that the system conserves state space volume. In addi-

tion, note that the quantity

E ¼ 1

2
mv2 þ q/ðr;w; zÞ � qxB

2l
r2 (4)

is a constant of the motion, as can be verified by calculating
_E and using Eq. (3). This means that the trajectories are con-

strained to remain on constant E 3-D hypersurfaces in the

4-D state space.

We also note that our equations of motion can also be

cast in Lagrangian or Hamiltonian form. The appropriate

Lagrangian is

Lðr;w; z; _r; _w; _zÞ ¼ 1

2
mð _zÞ2 � q/ðr;w; zÞ þ qBr2

2

x
l
þ _w

� �
:

(5)

One can easily verify that Lagrange’s equations for the varia-

bles r, w, and z reproduce the equations for _r ; _w, and _z given

in Eq. (3). For the Hamiltonian, note that the conjugate

momenta are pr ¼ @L=@ _r ¼ 0; pw ¼ @L=@ _w ¼ qBr2=2, and

pz ¼ @L=@ _z ¼ m _z, giving

Hðw; z; pw; pzÞ ¼
X

i

piqi � L

¼ 1

2m
p2

z þ q/ðpw;w; zÞ �
x
l

pw: (6)

We can thus also view our dynamics as trajectories in the

four dimensional phase space formed by w, z, pw, and pz and

our system as consisting of two degrees of freedom. The r� f
test gives zero for any Hamiltonian system, thus confirming

our previous characterization of the system as conservative.

Finally, note that the Hamiltonian is a constant of the motion

since it does not depend explicitly on time. By substituting

in the expressions for pz and pw, we again obtain Eq. (4).

II. ANALYTICAL RESULTS

To proceed, we must now specify the form of the poten-

tial /(r, w, z). We use a form that is relevant to our experi-

mental work

/ðr;w; zÞ ¼ /0ðrÞ þ /1ðrÞ cos kz cos ð�lwÞ: (7)

Here, the cylindrically symmetric potential /0(r) is produced

by the biased wire along the axis of the trap, while the second

term is a perturbing asymmetric potential produced by appro-

priately biased wall patches, with k and l being the axial

and azimuthal wavenumbers, respectively. This asymmetry is

used in the experiments since its simplicity makes compari-

sons with theory unambiguous; details are given in Ref. 7.

Using this potential in Eq. (3) and specifying q¼ –e gives

_r ¼ � l

rB
/1ðrÞ cos kz sin ð�lwÞ

_w ¼ �x
l
þ xRðrÞ þ

1

rB

d/1

dr
cos kz cos ð�lwÞ

_v ¼ � ek

m
/1ðrÞ sin kz cos ð�lwÞ

_z ¼ v;

(8)

where we have defined xRðrÞ � 1
rB

d/0

dr , the azimuthal rotation

frequency produced by the biased center wire.

A. Conditions for chaos

We first note that Eq. (8) satisfies the necessary condi-
tions for chaos in a bounded system.16,20 These are (1) the

presence of nonlinearity that couples at least some of the

FIG. 1. Schematic of the Occidental College Trap. The usual non-neutral

plasma column is replaced by a biased wire that produces an azimuthal

E�B drift similar to that found in other devices. The five cylinders labeled

S1–S5 are divided azimuthally into eight sectors each. These forty wall sec-

tors are biased to create an asymmetric field that causes radial transport of

the low density electrons injected from an off-axis gun.
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equations (provided by the terms with sine and cosine func-

tions) and (2) the number of equations minus the number of

constants of motion must be greater than or equal to three

[we have four equations and one constant given by Eq. (4)].

Interestingly, chaos theory does not yet have a way to deter-

mine sufficient conditions for chaos.18 As we shall see, tra-

jectories for our system can be either regular or chaotic

depending on initial conditions.

B. Fixed point analysis

We next consider the fixed (or equilibrium) points of

Eq. (8), i.e., those points where _r; _w; _z; _v are all zero. While

these points constitute a very small portion of state space,

their properties often give insights into the larger picture.17

From the _z equation, we see immediately that fixed

points require v¼ 0. Similarly, from the _r and _v equations,

cos kz sin ð�lwÞ ¼ 0 and sin kz cos ð�lwÞ ¼ 0 are required.

These can be simultaneously satisfied in two ways: (1) kz¼ 0,

6p and –lw¼ 0, 6p [making sin kz and sin ð�lwÞ zero] or (2)

kz ¼ 6 p
2

and �lw ¼ 6 p
2

[making cos kz and cos ð�lwÞ zero].

Here, we have restricted the domain of the sine and cosine

functions to –p to þp. Finally, we require _w ¼ 0 which

means that xRðrÞ � x
l þ 1

rB
d/1

dr cos kz cos ð�lwÞ ¼ 0. For the

case 1 fixed points, this reduces to xRðrÞ � x
l 6 1

rB
d/1

dr ¼ 0

while the case 2 simply requires xRðrÞ � x
l ¼ 0. Since /1 is

typically small compared to /0, both of these cases set the

requirement that x� lxR(r), which sets the value of r for the

fixed points.

We next examine the stability of the fixed points by con-

sidering small displacements dr, dw, dv, and dz from these

equilibria. Each of the equalities in Eq. (8) can be Taylor

expanded in powers of these displacements. To first order in

the displacements, the result can be cast in the matrix form

d

dt

dr

dw

dv

dz

0
BBBB@

1
CCCCA ¼

�Cr cos kz sin ð�lwÞ lC cos kz cos ð�lwÞ 0 kC sin kz sin ð�lwÞ
xr þ Dr cos kz cos ð�lwÞ lD cos kz sin ð�lwÞ 0 �kD sin kz cos ð�lwÞ
�Fr sin kz cos ð�lwÞ �lF sin kz sin ð�lwÞ 0 �kF cos kz cos ð�lwÞ

0 0 1 0

0
BBBB@

1
CCCCA

dr

dw

dv

dz

0
BBBB@

1
CCCCA; (9)

where C ¼ l
rB /1ðrÞ; D ¼ l

rB
d/1

dr ; F ¼ ek
m /1ðrÞ; Cr ¼ dC

dr ; Dr

¼ dD
dr ; Fr ¼ dF

dr , and xr ¼ dxR

dr , and where the elements of the

4� 4 matrix are evaluated at the fixed point under consider-

ation. If we denote the column vector (dr, dw, dv, dz) as dr

and the matrix as J, we can write Eq. (9) in the compact

form

d _r ¼ Jdr: (10)

J is called the Jacobian or stability matrix. Equation (10) can

be solved by solving an associated eigenvalue problem.17 To

see this, assume that dr has the form

dr ¼
X4

i¼1

ciAie
ki t; (11)

where ci and ki are constants and Ai are constant four-

vectors. Then

Jdr ¼ J
X4

i¼1

ciAie
ki t ¼

X4

i¼1

ciJAie
ki t: (12)

The last expression is equal to d _r if JAi ¼ kiAi, that is, if Ai

and ki are the eigenvector and eigenvalue for the transforma-

tion J. The solution of Eq. (10) can thus be found by finding

these eigenvectors and eigenvalues and plugging into Eq.

(11). The eigenvalues are found by solving the characteristic

equation of the matrix J, i.e., the determinant jJ� kIj ¼ 0,

which, in our case, gives four values ki. When each of these

values is substituted into the eigenvalue equation, we obtain

the corresponding eigenvector Ai.

When the stability matrix is evaluated at the fixed

points, the sine and cosine terms will give zero or 61. For

the case 1 fixed points, J reduces to

0 lCS 0 0

�G 0 0 0

0 0 0 �kFS

0 0 1 0

0
BBBB@

1
CCCCA; (13)

where –G¼xrþDrS and the sign parameter S¼ 1 when (kz,
–lw) are either (0, 0) or (6p, 6p), while S¼ –1 when (kz, –lw)

are either (0, 6p) or (6p, 0). The resulting eigenvalues are

½�i
ffiffiffiffiffiffiffiffi
kFS
p

; i
ffiffiffiffiffiffiffiffi
kFS
p

;�i
ffiffiffiffiffiffiffiffiffiffiffi
lCGS
p

; i
ffiffiffiffiffiffiffiffiffiffiffi
lCGS
p

� with the corresponding

eigenvectors ½ 0; 0;�i
ffiffiffiffiffiffiffiffi
kFS
p

; 1
� �

; 0; 0; i
ffiffiffiffiffiffiffiffi
kFS
p

; 1
� �

; ði
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lCS=G

p
;

1; 0; 0Þ; ð�i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lCS=G

p
; 1; 0; 0Þ�. We first note that, because of

the zeros in the eigenvectors, the motion in the r–w plane is

independent of the motion in the v–z plane. Second, since we

have defined C, F, and G to be positive for typical experimen-

tal conditions, the character of the case 1 solutions thus

depends only on the sign parameter S. For S¼ 1 (case 1a), the

eigenvalues are all imaginary. Such a fixed point is termed

elliptical (or a center) since the resulting solutions can be cast

in the form of ellipses in the r–w and v–z planes, with the rate

of rotation about the center determined by the appropriate

eigenvalue. For S¼ –1 (case 1b), the eigenvalues are all real,

giving the so-called hyperbolic (or saddle) points. Here, the

solutions can be cast in the form of hyperbolas in the r–w and

v–z planes. Analysis of the r–w motion shows that the flow is

toward the origin in the first and third quadrants of the r–w
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plane and away from the origin in the second and fourth quad-

rants. For the v–z motion, the flow directions are reversed.

For the case 2 fixed points, J reduces to

0 0 0 kCS

�H 0 0 0

0 �lFS 0 0

0 0 1 0

0
BBBB@

1
CCCCA; (14)

where –H¼xr and S¼ 1 when (kz, –lw) are either (p/2, p/2)

or (–p/2, –p/2), while S¼ –1 when (kz, –lw) are either (p/2,

–p/2) or (–p/2, p/2). The resulting eigenvalues are [–R, –iR,

iR, R] with the corresponding eigenvectors ½ð�Q;�T;�R;1Þ;
ðiQ;T;�iR;1Þ;ð�iQ;T; iR;1Þ;ðQ;�T;R;1Þ�. Here, we have

defined R¼ðHkClFÞ1=4;Q¼ðk3C3=HlFÞ1=4
, and T¼(HkC/

lF)1=2 for compactness, all of which are real for typical

experimental conditions. Note that here the sign parameter S
has cancelled out, so all case 2 solutions have the same char-

acter. Here, the motion is more difficult to characterize, but

the form of the eigenvalues and eigenvectors shows that the

motion is fully four-dimensional with a mixture of elliptical

and hyperbolic elements. The location and classification of

all of the fixed points relative to the asymmetric potential are

noted in Fig. 2.

III. NUMERICAL RESULTS

We now turn to results obtained by numerically solving

Eq. (8). To do so, we must specify further details of our model.

The potential /0(r) is given by /cwlnðR=rÞ=lnðR=aÞ, where

/cw and a are the bias and radius of the center wire, respec-

tively. The asymmetry potential amplitude function /1(r) is

given by /10(r/R)l, with /10 a constant. This form closely

approximates the exact vacuum solution. The axial wavenum-

ber k¼ np/L, with n being an integer. For the results shown in

this paper, we use typical experimental values: B¼ 364 G,

/cw¼ –80 V, l¼ k¼ 1, /10¼ 0.2 V, and ln(R/a)¼ 5.3838.

Numerical solutions are obtained using Mathematica’s

NDSOLVE routine.25 We treat our system as having an infi-

nite extent in z with periodicity 2L, which is equivalent to

assuming specular reflection at the ends of our confinement

region of length L. We use the following scalings for our

solutions: r is scaled to the wall radius R, z to L, v to

v0¼ 106 cm/s, time t to 10�6 s, and frequencies to either

106 Hz (for k) or 106 rad/s (for x).

To check the accuracy of our solutions, we plug the

resulting numerical functions for r, w, z, and v back into Eq.

(8) and take the difference between the two sides. A perfect

solution would give zero for each equation. Judicious choices

among NDSOLVE’s options keep these quantities below

10�10 for our solutions, while variations in the constant E are

in the range dE/E� 10�6. Our setting are: MaxSteps ! 1,

InterpolationOrder!All, AccuracyGoal! 15, PrecisionGoal

! 15, Method! StiffnessSwitching.

A. Lyapunov exponent

While the fixed point analysis in Sec. II B gives some

indication of the types of motion to expect, we want to be able

to characterize the motion for an arbitrary initial point in state

space. Chaotic dynamics are characterized by the exponential

divergence of neighboring initial points. The rate of diver-

gence is given by the Lyapunov exponents, one for each

dimension of the state space. The standard conceptual picture

is to imagine a point in state space surrounded by a small

sphere whose surface represents neighboring initial conditions.

As the system evolves, the central point will follow its trajec-

tory, while the surface of the sphere will deform into an ellip-

soid as the sphere stretches or contracts along its axes. The

average rates of change along the axes are the Lyapunov expo-

nents ki, defined by

ki ¼ lim
t!1;dið0Þ!0

1

t
ln

diðtÞ
dið0Þ

� �� �
; (15)

FIG. 2. Location of fixed points relative to the asymmetric potential.

(a) 3-D plot of the normalized asymmetry potential. At the fixed point

radius, this potential is stationary. (b) Contour plot of the normalized asym-

metry potential with the location and classification of the fixed points

indicated.
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where di(t) is the length of the ellipsoid along the ith axis at

time t. The presence of chaos is then indicated by a positive

ki. While this formal definition is widely quoted, it is not

of much use in numerical calculations. Since the motion is

bounded, di(t) will quickly reach its maximum value, after

which the 1/t factor will decrease ki to zero. An alternate

method for calculating the largest Lyapunov exponent was

developed by Benettin et al.19,26 The idea is to follow two

neighboring trajectories separated by an initial small distance

d0 for a time s, after which the distance between them is

renormalized to its initial small value. The computation is

then continued until a time 2s, at which point the renormali-

zation is repeated, and so on at time intervals of s. At each

multiple k of s, the partial sum

kk ¼
1

ks

Xk

j¼1

ln
dj

d0

� �
(16)

is computed, where dj is the distance between the two trajec-

tories before normalization. Then, the maximum Lyapunov

exponent is given by

k ¼ lim
k!1

kk; (17)

which can be estimated by plotting kk versus k. Example

plots are shown in Fig. 3. For both the cases shown, we have

taken the initial conditions to be v¼ 10, w¼ 0, and z¼ –0.05

and have set the parameter x to 0.5. The solid circles have

initial r/R¼ 0.674, while the open circles have 0.750. The

numerical solutions extend only to k¼ 4000, but this is long

enough for the first case to show its asymptotic value. The

second case continues to fall with increasing k thus implying

k¼ 0 [cf. Eq. (17)]. As previously discussed, positive k indi-

cates chaotic motion, while k¼ 0 occurs for regular motion.

B. Poincar�e sections

As an aid in visualizing trajectories in our four-

dimensional state space, we employ Poincar�e surface of sec-

tions. In our case, these are constructed by noting the values

of r, w, and v whenever the trajectory passes z¼ 0 (or integer

multiple of 2L) with a positive velocity. The code is run to

t¼ 6000 to get a reasonable number of points. Longer runs

make it difficult to distinguish between the different symbols

and do not add significantly to the patterns shown. We then

plot the normalized values of w versus r (with w constrained

to be between –p and p) and v versus r. The resulting plots

depend on the selected initial conditions and the parameter

x. Representative examples are shown in Figs. 4, 5, and 6

for x values of 0.5, 0.35, and 2.0 and initial v values of 10,

5, and 5, respectively. Common initial conditions are w¼ 0

and z¼ –0.05, and we plot several initial values of r/R on the

same graph. The legend gives these initial r/R values and the

value of kk at the end of the solution. For simplicity, we con-

sider any kk� 0.007 to be zero, indicating regular (i.e., non-

chaotic) motion. This somewhat arbitrary cutoff value is in

accordance with the behavior seen in Fig. 3 and the amount

of scatter in the Poincar�e sections.

FIG. 3. Obtaining the Lyapunov exponent for two different initial values of

r/R using the method of Ref. 26.

FIG. 4. Poincar�e sections taken at the z¼ 0 crossing for fourteen different

initial r/R values through time t¼ 6000 for x¼ 0.5 and vinit¼ 10. The leg-

end shows the initial r/R values and the corresponding Lyapunov exponent

k. Values of k below 0.007 should be considered to be zero and to indicate

regular motion. (a) Plot of normalized w versus r. The elliptically shaped

curves centered on r/R� 0.74 are due to axially trapped particles. (b) Plot of

normalized v versus r for the same set of initial r values. The solid lines

show the maximum possible velocity for two representative initial radii:

r/R¼ 0.60 and r/R¼ 0.67.
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The Poincar�e sections have a number of interesting fea-

tures. Looking first at the w versus r plots, we note the pres-

ence of the closed elliptically shaped curves centered at r/

R� 0.74, 0.88, and 0.37 in Figs. 4, 5, and 6, respectively.

These centers are the elliptical fixed points found in Sec. II B

with the radius of the center given by x� lxR(r). We have

verified this conclusion by producing Poincar�e sections for a

wide range of x values. Examination of the full time record

(r, w, z, and v versus t) shows that these ellipses are formed

by the regular motion of particles that are axially trapped in

the asymmetry potential. The large radial excursions of these

particles make them especially interesting for transport stud-

ies. By varying the initial radius and the amplitude of the

asymmetry /10, we find that the largest ellipse has a full

radial excursion (largest r minus smallest r) given by Dr=R
� 0:21ðr0=RÞ1:5ð/10ðVÞ=0:2Þ0:5, where r0 is the location of

the center. This is the same scaling as that for a particle

with oscillating ~E � ~B radial velocity vr ¼ vr0 sin x0t, i.e.,

Dr¼ 2vr0/x0 where x0 �
ffiffiffiffiffiffiffiffi
lCG
p

is the frequency for r–w
motion around the elliptical fixed point found in Sec. II B.

At initial r values just outside of the largest ellipse bound-

ary, we see chaotic particles that also have large radial excur-

sions. The full time record here shows that these particles

switch from being axially trapped to passing in an irregular

way. The behavior is highly sensitive to the initial v value. At

the remaining rinit values, we see both regular and chaotic cases

with varying amounts of radial motion. Notable are the points

lying on the flattened, elongated curves [e.g., rinit/R¼ 0.45 in

Fig. 4(a)]. These seem to occur when particles are interacting

resonantly with one of the two counter-propagating helical

waves that make up our asymmetry (see the discussion below

in Sec. III C). Note that in Fig. 6(a) that the radial excursions

FIG. 5. Poincar�e sections taken at the z¼ 0 crossing for fourteen different

initial r/R values through time t¼ 6000 for x¼ 0.35 and vinit¼ 5. The leg-

end shows the initial r/R values and the corresponding Lyapunov exponent

k. Values of k below 0.007 should be considered to be zero and to indicate

regular motion. (a) Plot of normalized w versus r. The elliptically shaped

curves centered on r/R� 0.88 are due to axially trapped particles. (b) Plot of

normalized v versus r for the same set of initial r values. The solid lines

show the maximum possible velocity for two representative initial radii:

r/R¼ 0.65 and r/R¼ 1.00.

FIG. 6. Poincar�e sections taken at the z¼ 0 crossing for fourteen different

initial r/R values through time t¼ 6000 for x¼ 2.0 and vinit¼ 5. The legend

shows the initial r/R values and the corresponding Lyapunov exponent k.

Values of k below 0.007 should be considered to be zero and to indicate reg-

ular motion. (a) Plot of normalized w versus r. The elliptically shaped curves

centered on r/R� 0.37 are due to axially trapped particles. (b) Plot of

normalized v versus r for the same set of initial r values. The solid lines

show the maximum possible velocity for two representative initial radii:

r/R¼ 0.345 and r/R¼ 0.46.
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for these cases are comparable to that for the axially trapped

particles.

Turning now to the v versus r plots, we first note that the

different initial r values give differing amounts of v variation,

and, in some cases, the amount of v variation can be very

large compared to the initial value. For example, in Fig. 5(b)

the velocity varies from its initial value of 5 to over 40 for the

rinit/R¼ 0.45 case. Generally, the amount of v variation shown

is related to the amplitude of the radial excursions since the E
value given in Eq. (4) is constant and set by the initial condi-

tions. Equation (4) has a minimum at the fixed point radius,

so particles to the left of the fixed point increase their velocity

as they move to larger radii, while particles to the right of the

fixed point increase their velocity as they move to smaller

radii. To illustrate this, we have plotted solid lines showing v
versus r derived from Eq. (4) for two representative cases on

each plot. This line shows the maximum v value possible as

the particle moves radially. The points plotted are on or below

this line since the value of w varies for the Poincar�e sections.

An apparent exception to this general picture seems to

be the axially trapped particles which show little variation in

v despite their large radial excursions. This is due to two

effects. First, the axially trapped particles are near the mini-

mum of E so radial excursions do not produce as much v vari-

ation as they do at other radii. Second, the regular, oscillatory

motion of the axially trapped particles correlates the v and z
motions of the particles; since the Poincar�e sections are taken

at a fixed value of z, the variations in v are reduced.

Finally, we note that the chaotic cases shown in Figs. 4,

5, and 6 have k in the range 23–96 kHz which introduces a

time scale for collisionless mixing of the orbits that is com-

parable to other characteristic time scales for this system

(azimuthal rotation and axial bounce times). We have not yet

explored the importance of this, but similar situations have

been noted in the astrophysics literature to have significant

effects.22,27 The effect of chaos on transport in plasmas has

been studied for some time28 but it has not, to our knowl-

edge, been considered in the context of non-neutral plasmas.

C. Resonance overlap

The observed occurrence of a mixture of both regular

and chaotic motion is common in conservative systems but

raises the question of why certain initial conditions give cha-

otic or regular motion. The answer appears to be related to

the Chirikov resonance overlap condition.21,29,30 To see this,

first note that our asymmetry can be decomposed into two

equal amplitude counter-propagating helical waves

/1ðrÞcoskzcosð�lwÞ¼/1ðrÞ
2

cosðkz� lwÞþ cosð�kz� lwÞ½ �:

(18)

The two helical waves have resonant velocities 6vres where

vres ¼
lxRðrÞ � x

k
: (19)

These resonant velocities vary with radius and are shown by

the solid lines in Fig. 7. Particles moving with either helical

wave are trapped in its potential and oscillate around vres at

the trapping frequency13

xT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

m
k2 � l2

rB

dxR

dr

� �
/1ðrÞ

s
: (20)

These oscillations form resonance islands with half-width

Dv¼ 2xT/k. The boundaries of these islands are shown by

the dashed lines in Fig. 7.

FIG. 7. Plot of the resonant velocity (solid lines) and the resonant island

boundaries (dashed lines) for the two helical waves constituting the asym-

metric potential. In addition, filled (unfilled) symbols are plotted for initial

(r, v) values giving chaotic (regular) motion. Triangular symbols are used

for initial conditions matching those in Figs. 4, 5, and 6. This is done for (a)

x¼ 0.5, (b) x¼ 0.35, and (c) x¼ 2.0 to show the association of chaotic

cases with resonance overlap.
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We now add to the plot the results of Lyapunov exponent

calculations for a variety of initial r and v values; initial z and

w are held constant with value zero. Cases giving kk	 0.007

are considered chaotic and plotted with a filled symbol, while

regular motion is indicated by an unfilled symbol. The initial

conditions producing Figs. 4, 5, and 6 are plotted with trian-

gular symbols.

The pattern seen is that the chaotic cases are associated

with the helical resonances. They are found where the two

resonance islands are close together or overlapping, or where

an initial condition is close to a resonance island boundary.

This pattern is similar to that found in other systems where

chaos is associated with resonance overlap.21,29,30

A notable exception to this picture occurs in our system

near the point where the two resonant velocities cross (i.e.,

where vres¼ 0). Even though the two resonance islands are

fully overlapping, the motion is regular. This is due to the fact

that these initial conditions are near the elliptical fixed point

(x¼xR) and the associated axially trapped, oscillatory motion

which limits the divergence of neighboring initial conditions.

IV. CONCLUSIONS

We have characterized the motion of particles in our

cylindrical Malmberg-Penning trap using some of the tools of

chaos theory. The problem was re-conceptualized as describ-

ing motion on a three-dimensional hypersurface in a four-

dimensional space with one constant of the motion. Fixed point

analysis reveals elliptical, hyperbolic, and mixed behaviors.

We used the technique of Benettin et al. to calculate Lyapunov

exponents which show that both regular and chaotic motion

occur in our system, and this was illustrated with example

Poincar�e sections. The chaotic cases were shown to be associ-

ated with the overlap of resonance islands formed by the

applied asymmetry. It is hoped that these studies of particle

dynamics will aid the development of the correct local theory

for asymmetry-induced transport.
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