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A single-particle code with collisional effects is used to study how asymmetry-induced radial trans-

port in a non-neutral plasma depends on collision frequency. For asymmetries of the form

/1ðrÞ cosðkzÞ cosðxt� lhÞ, two sources for the transport have been identified: resonant particles

and axially trapped particles. The simulation shows that this latter type, which occurs near the

radius where x matches the azimuthal rotation frequency xR, is usually dominant at low collision

frequency � but becomes negligible at higher �. This behavior can be understood by noting that

axially trapped particles have a lower trapping frequency than resonant particles. In the low �
(banana) regime, the radial oscillations have amplitude Dr� vr/xT, so axially trapped particles

dominate, and the transport may even exceed the resonant particle plateau regime level. As �
increases, collisions start to interrupt the slower axially trapped particle oscillations, while the

resonant particles are still in the banana regime, so the axially trapped particle contribution to the

transport decreases. At the largest � values, axially trapped particle transport is negligible and

the observed diffusion coefficient matches that given by plateau regime resonant particle theory.

Heuristic models based on these considerations give reasonable agreement with the observed

scaling laws for the value of the collision frequency where axially trapped particle transport starts

to decrease and for the enhancement of the diffusion coefficient produced by axially trapped

particles. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891661]

I. INTRODUCTION

The cylindrical Malmberg-Penning non-neutral plasma

trap is especially suited for basic studies of plasma transport

since its excellent confinement can be perturbed and the

resulting transport studied in a controlled manner. There

have been many such experiments1–11 that use non-

axisymmetric electric or magnetic fields as the perturbation,

but it has been difficult to explain the resulting asymmetry-

induced transport theoretically. Early attempts to model this

transport resulted in resonant particle (RP) transport

theory,12 but comparisons between this theory and experi-

ments7 do not show agreement. To determine the missing

physics, we have previously studied13,14 this asymmetry-

induced transport using a single-particle computer code,

including collisional effects. We found that for asymmetries

of the form /1ðrÞ cosðkzÞ cosðxt� lhÞ, there are, in general,

two sources for the transport: the previously mentioned reso-

nant particles and another class of particles that are axially

trapped in the asymmetry potential. These axially trapped

particles (ATPs) often produced transport that was greatly

enhanced over the level predicted by resonant particle

theory. By varying the parameters of the code, we were able

to find scaling laws characterizing this enhanced transport.

In this paper, we investigate the dependence of the

enhanced transport on collision frequency. Interestingly, we

find that the enhancement vanishes for large collision frequen-

cies and the resulting transport is then given by the plateau re-

gime of resonant particle transport theory. We show that this

property, as well as one of the previously mentioned scaling

laws, is rooted in the fact that the axially-trapped particles

have a lower trapping frequency than the resonant particles.

II. SIMULATION METHODS

Complete details of our simulation methods are given in

our previous paper13 but are summarized here for conven-

ience. Our code is constructed to model our experimental de-

vice which is shown in Fig. 1. Low density electrons are

confined in the central region of length L between the nega-

tively biased injection gate and dump gate. In order to main-

tain an azimuthal E�B drift comparable with a higher

density plasma, a negatively biased wire is stretched along

the axis of the device. The uniform axial magnetic field B
providing radial confinement is strong enough so that the

gyroradius is much smaller than the wall radius R. The walls

of the confinement region are divided into 40 sectors (five

axial divisions S1–S5 with eight azimuthal divisions each)

which allows application of an asymmetric electric field. The

voltages applied to these sectors are typically chosen so that

the field consists primarily of a single Fourier mode. The

remaining details of the experiment are given elsewhere.7

The code follows the dynamics of single particles in pre-

scribed fields; inter-particle fields are not included. The pre-

scribed fields are set by the center wire potential and the

asymmetric potential. The center wire potential is given by

FIG. 1. Schematic of the Occidental College trap. The usual plasma column

is replaced by a biased wire to produce the basic dynamical motions in low

density electrons injected from an off-axis gun.

1070-664X/2014/21(7)/072318/6/$30.00 VC 2014 AIP Publishing LLC21, 072318-1

PHYSICS OF PLASMAS 21, 072318 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.69.60.168 On: Thu, 31 Jul 2014 16:55:08

http://dx.doi.org/10.1063/1.4891661
http://dx.doi.org/10.1063/1.4891661
http://dx.doi.org/10.1063/1.4891661
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4891661&domain=pdf&date_stamp=2014-07-31


/0 rð Þ ¼ /cw

ln R=rð Þ
ln R=að Þ ; (1)

where /cw is the bias of the center wire, R is the radius of the

wall, and a is the radius of the center wire. The asymmetric

potential is chosen to be either a helical wave

/helðr; h; z; tÞ ¼ /1ðrÞ cosðkz� lhþ xtÞ (2)

or an axially standing wave

/swðr; h; z; tÞ ¼ 2/1ðrÞ cosðkzÞ cosð�lhþ xtÞ: (3)

In Eqs. (2) and (3), k¼ np/L and n is the axial wavenumber, l
is the azimuthal wavenumber, x is the asymmetry frequency,

and z is the measured from one end of the confinement

region. The amplitude /1ðrÞ is taken to be of the form

/10ðr=RÞl, where /10 is a constant. This form closely

approximates the exact vacuum solution.

The particle motions in the code are governed by

dr

dt
¼ vr; r

dh
dt
¼ vh;

dz

dt
¼ vz;

dvz

dt
¼ qEz

m
� �vz; (4)

where � is the electron-electron collision frequency. For typ-

ical experimental conditions, the gyroradius is much smaller

than the wall radius R and the cyclotron frequency is much

larger than all other dynamical frequencies. We thus ignore

the cyclotron motion and follow the motion of the guiding

center. In this drift approximation, vr and vh are given by

vr ¼
Eh

B
; vh ¼ �

Er

B
: (5)

The electric fields are obtained from the prescribed potentials:

Er ¼ � @/
@r ; Eh ¼ � 1

r
@/
@h, and Ez ¼ � @/

@z . The zeroth order var-

iation of Er defines the azimuthal rotation frequency xR

xR ¼ �
Er0

rB
¼ �/cw

r2Bln R=að Þ ; (6)

where in the last step, we have used Eq. (1). Since /cw is typ-

ically negative, xR is positive.

Equations (4) and (5) are solved using a fourth-order

Runge-Kutta method.15 In addition to the collisional drag

term, �vz in Eq. (4), a random velocity step is added to vz af-

ter each time increment, in accordance with the Langevin

prescription.13,16,17 Parameters are chosen to match our typi-

cal experimental conditions and unless otherwise specified

are B¼ 364 G, L¼ 76.8 cm, R¼ 3.87 cm, a¼ 0.007 in,

kT¼ 4 eV, /10 ¼ 0:1 V, and n¼ l¼ 1. Initially, all particles

are placed at the same radius but are distributed in z, h, and

vz. To account for the variation in particle density in a

Maxwellian velocity distribution, the particles are assigned a

weighting factor Wi ¼ exp½�ðvzi=vthÞ2�, where vth is the ther-

mal velocity and i is the particle number index. Particles

reaching the ends of the trap are treated by applying one of

two options, periodic boundaries or specular reflection. The

simulation is run long enough to insure that transient behav-

ior has settled, typically �T� 1, where T is the total run

time.

The transport is characterized by calculating the diffu-

sion coefficient. This is given by

D ¼ 1

2

d

dt
½h Drð Þ2i � hDri2�; (7)

where

hDri � 1

W

XM

i¼1

Wi ri tð Þ � ri 0ð Þ
� �

(8)

and

h Drð Þ2i � 1

W

XM

i¼1

Wi ri tð Þ � ri 0ð Þ
� �2

: (9)

Here, M is the total number of particles (typically 64 k) and

W ¼
P

Wi is the sum over weighting factors.

III. THEORETICAL BACKGROUND

One approach to modeling asymmetry-induced transport

is to use resonant particle theory.12 In this approach, the

asymmetric potential /1ðr; h; z; tÞ is decomposed into

Fourier modes of amplitude /nlxðrÞ and characterized by

axial mode n, azimuthal mode l, and angular frequency x:

/1 r; h; z; tð Þ ¼
X
n;l;x

/nlx rð Þ � exp i
np
L

zþ lh� xt

� �� �
: (10)

The transport is then calculated for each mode and the total

flux found by summing these contributions. The theory

shows that the transport for each mode is dominated by par-

ticles with velocities that cause them to move in resonance

with the mode. This resonant velocity is given by

vres ¼
L

np
x� lxRð Þ: (11)

In our previous paper,13 we found that our simulation

results agreed with resonant particle theory for a simple

helical asymmetry of the form found in Eq. (2), but for the

more experimentally relevant case of the standing wave

asymmetry (Eq. (3)), the results are more nuanced. Such an

asymmetry can be written as the sum of two counter-

propagating helical asymmetries with oppositely signed n
values:

/sw r; h; z; tð Þ ¼ /1 rð Þ cos
np
L

z� lhþ xt

� ��

þ cos
�np

L
z� lhþ xt

� ��
:

(12)

From Eq. (11), we see that these two terms have resonant

velocities of equal magnitude but opposite signs. As long as

these two velocities are well separated, the simulation and

resonant particle theory agree. However, at radii where the

asymmetry frequency x matches lxR, both resonant veloc-

ities are zero. In this case, the mode resonance structures

overlap and resonant particle theory is no longer valid. For
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lower values of collisionality, the simulation here typically

gives a level of transport that is much larger than predicted

by resonant particle theory. Here, the transport is dominated

by particles with velocities low enough to be axially trapped

at one end of the machine by the asymmetry potential. These

particles have larger radial excursions than the resonant par-

ticles and thus produce an enhancement of the transport.

To characterize this enhancement, it is useful to com-

pare the diffusion coefficient Dsw obtained when running the

simulation using a standing wave asymmetry with the value

2Dhel, where Dhel is the diffusion coefficient obtained when

running the simulation using a single helical asymmetry. The

factor of two is appropriate since each of the constituent heli-

cal waves in a standing wave produces the same value of D.

Thus, 2Dhel represents the value we expect from the simula-

tion if resonant particle theory is correct.

IV. RESULTS

Since our focus here is characterizing how the enhanced

transport depends on collision frequency, we set the asym-

metry frequency to the value x1�xR that gives the maxi-

mum value of D for the standing wave asymmetry. In Fig. 2,

we show how this diffusion coefficient varies with collision

frequency � for three representative sets of parameters that

give varying levels of enhancement. In Fig. 2(a) we choose a

scaled radius r/R¼ 0.9 and a center wire bias /cw ¼ �20 V.

In accordance with the parameter scaling found in Ref. 13

and discussed in Sec. V, these parameters give a large

enhancement. In Fig. 2(b), we keep r/R the same and change

/cw to �80 V, yielding a smaller enhancement. Finally, in

Fig. 2(c), we hold /cw at �80 V and decrease r/R to 0.5. This

gives the smallest enhancement, again in line with expecta-

tion from the parameter scaling. The solid circles in the fig-

ure give the values obtained for a standing wave asymmetry

while the open circles show the result of doubling the values

obtained for a helical asymmetry. In each case, the standing

wave asymmetry gives, for the lower values of the collision

frequency, a diffusion coefficient Dsw that is larger than the

value 2Dhel expected if resonant particle theory was applica-

ble. As � is increased, however, this enhancement vanishes

and we obtain Dsw¼ 2Dhel. The lines in the plots show the

predictions of resonant particle theory12 for the banana and

plateau regimes and show that these predictions track the

simulation values 2Dhel. The roughly factor of two difference

between 2Dhel and 2DBan we ascribe to the heuristic nature

of the banana regime theory.

Several features of these graphs are worth noting.

Firstly, note that the amount of transport enhancement at low

values of � is different for each case shown. Indeed, the de-

pendence of the enhancement on radius and center wire bias

was shown in our previous work13 to follow an empirical

scaling Dnet=2Dhel ¼ 750ðr=RÞ3:86=j/cwj0:87
, where /cw is in

volts and Dnet¼Dsw � 2Dhel is the amount of enhancement.

Secondly, note that, at low values of �, both Dsw and 2Dhel

increase with the first power of �, which is typical of banana

regime transport models. Thirdly, note that, when the

enhancement is large (cf. Figs. 2(a) and 2(b)), Dsw may

exceed the level given by resonant particle plateau regime

theory but then decreases with higher values of �. In all

cases, Dsw becomes equal to 2Dhel at the highest values of �.

Lastly, the value of � at which Dnet starts to decrease also

differs for each case shown. In Fig. 3, we plot this breakpoint

collision frequency �bp (estimated by examining plots of

Dnet versus � for various parameters) versus the trapping

frequency for axially trapped particles xATP
T (defined in

Sec. V). The trend line indicates a simple relationship

between these quantities.

FIG. 2. Diffusion coefficient D obtained from the simulation versus collision

frequency � for three representative sets of parameters giving varying levels

of enhancement. The solid circles show the results when a standing wave

asymmetry is used. The open circles show the diffusion coefficient for a hel-

ical asymmetry doubled which should be equivalent to the standing wave

case according to resonant particle theory. The dotted and dashed lines show

the analytical results of resonant particle theory for the banana and plateau

regimes, respectively. (a) Results for scaled radius r/R¼ 0.9 and center wire

bias /cw ¼ �20 V. (b) Results for r/R¼ 0.9 and /cw ¼ �80 V. (c) Results

for r/R¼ 0.5 and /cw ¼ �80 V.
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V. DISCUSSION

The noted features of these graphs can be understood

through the following considerations. In the absence of colli-

sions, RPs in a helical asymmetry undergo trapped particle

oscillations at angular frequency12

xRP
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

m
k2 � l2

rB

dxR

dr

� �
/1

s
; (13)

whereas for ATPs in a standing wave asymmetry, the fre-

quency is (see Appendix)

xATP
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� l2

rB

dxR

dr
2/1

r
: (14)

For the parameters of our simulation, the first term in Eq.

(13) dominates the second for all but small radii, so typically

xRP
T > xATP

T . For both types of trapped particles, the radial

excursion during oscillation is Dr� vr/xT, where vr is the ra-

dial E�B drift due to the asymmetry (see Eq. (5)) and xT is

the relevant trapping frequency. Since xRP
T > xATP

T , the ra-

dial steps for axially trapped particles are larger than those

for resonant particles and, other things being equal,

Dsw> 2Dhel. This gives a qualitative explanation for the

enhanced transport observed for a standing wave asymmetry

at low values of �.

The relative size of xRP
T and xATP

T also explains the gen-

eral shape of the curves in Fig. 2. Generally, the banana trans-

port regime ends when the collision frequency is high enough

to interrupt the trapping oscillations. Since xATP
T < xRP

T , the

enhanced transport should end at a value of the collision fre-

quency less than the one where the resonant particle banana

regime transitions to the plateau regime (where the dotted and

dashed lines in Fig. 2 intersect). This prediction is consistent

with the simulation results shown in Fig. 2.

These models can be made more quantitative by noting

that the relevant collision frequency is not our simulation pa-

rameter � but a higher value �eff. This reflects the fact that

only a relatively small velocity scattering is required to

move a particle from trapped to passing populations, whereas

� is the 90� scattering frequency. Here, we employ the

usual12 heuristic estimate �ef f � �ð�v=DvÞ2, where �v is the

thermal velocity and Dv is the velocity change required to

move the particle from trapped to passing. Our model is that

the transport due to axially trapped particles will start to

decrease when these effective collisions interrupt the trap-

ping oscillations. We express this as xATP
T s � p, where

s ¼ 1=�ATP
ef f . Using the heuristic expression for �ATP

ef f and esti-

mating 1
2

mðDvATPÞ2 ¼ 2q/1 as the energy needed to change

an axially trapped particle to a passing particle, we obtain

FIG. 3. Breakpoint collision frequency �bp versus the trapping frequency for

axially trapped particles xATP
T . We define �bp as the collision frequency at

which the transport enhancement Dnet¼Dsw � 2Dhel starts to decrease. The

error bars give the uncertainty in determining this value from the limited

simulation data. The line is the best fit to the data passing through the origin

and has slope 0.024.

FIG. 4. Variation of Dnet/2Dhel with scaled radius r/R and center wire bias

/cw for �¼ 10�3 MHz. Plot (a) shows the raw data and plot (b) shows the

best empirical scaling of the data. Here, the constant C¼ 750. Plot (c) shows

the result of plotting the data using the scaling obtained from our heuristic

model (cf. Eq. (17)). Here, A¼ 1350.
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�bp ¼
Dv
�v

� �2
xATP

T

2p
� 0:032 xATP

T : (15)

The scaling with xATP
T matches that found in Fig. 3 and the

agreement in the numerical factor (0.024 compared with

0.032 for our model) is acceptable considering the heuristic

nature of our model.

We can also make our model of the transport enhance-

ment more quantitative by employing the usual heuristic

expression for the radial diffusion coefficient D¼F�eff(Dr)2,

where Dr is the step size of the random walk, �eff is the rate

at which steps are taken, and F is the fraction of particles

participating. For low collision frequencies, we characterize

the amount of enhancement the standing wave asymmetry

produces by Dnet/2Dhel, where Dnet¼Dsw � 2Dhel. In our

previous paper,13 we obtained the data shown in Fig. 4(a)

and the empirical scaling shown in Fig. 4(b). We now apply

our simple model in an attempt to explain this scaling.

Applying the heuristic expression for D, we obtain

Dnet

2Dhel
¼ Dsw

2Dhel
� 1 ¼

FATP�ATP
ef f

vATP
r

xATP
T

 !2

2FRP�RP
ef f

vRP
r

xRP
T

 !2
� 1; (16)

whereas before, the superscripts ATP and RP specify quanti-

ties for axially trapped particles and resonant particles,

respectively. The two expressions for trapping frequency are

given by Eqs. (13) and (14). The ratio vATP
r =vRP

r ¼ 2. We

again use the heuristic expressions for �eff and take DvRP ¼
xRP

T =k from resonant particle theory.12 Finally, we estimate

the ratio FATP/FRP� 1/3. This stems from the fact that axi-

ally trapped particles occupy a smaller fraction of possible z
and h values than resonant particles. For the radii considered

here, the first terms in Eqs. (13) and (16) dominate the sec-

ond. Inserting parameter values, we obtain for our model

Dnet

2Dhel
� 2000

r=Rð Þ4

j/cwj
; (17)

where /cw is in volts. The scaling with r/R and /cw is close to

the best fit empirical scaling ðr=RÞ3:86=j/cwj0:87
. As shown in

Fig. 4(c), if we force the scaling of our model on the simulation

results, the fit to the data is still good, with the agreement in nu-

merical factors (1350 compared with 2000 for our model) ac-

ceptable considering the heuristic nature of the model.

VI. CONCLUSION

We have presented results from a simple particle simula-

tion of radial transport in our non-neutral plasma device. The

results show that the diffusion coefficient for a standing

wave asymmetry is larger than predicted from resonant parti-

cle theory for low values of the collision frequency but

matches the theory for high values. We have shown that

these results can be understood by noting the difference in

trapping frequency for axially trapped particles and resonant

particles. Our heuristic models for the breakpoint collision

frequency and transport enhancement give parameter scal-

ings and numerical values in reasonable agreement with the

simulation results.
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APPENDIX: TRAPPING FREQUENCY FOR AXIALLY
TRAPPED PARTICLES

We consider a total potential consisting of the potential

produced by the biased center wire plus the standing wave

asymmetry potential

/ðr; h; z; tÞ ¼ /0ðrÞ þ 2/1ðrÞ cos kz cosðxt� lhÞ; (A1)

where /0ðrÞ is given by Eq. (1). In the drift approximation,

we then have

dr

dt
¼ Eh

B
¼ � 2l/1 rð Þ

rB
cos kz sin g; (A2)

dh
dt
¼ vh

r
¼ xR rð Þ þ 2

rB

d/1 rð Þ
dr

cos kz cos g; (A3)

and

dvz

dt
¼ � 2ek

m
/1 rð Þsin kz cos g; (A4)

where g¼xt – lh and xRðrÞ ¼ 1
rB

d/0

dr is the azimuthal E�B
rotation frequency.

We are interested in the behavior of particles trapped in

the asymmetric potential. We choose to consider oscillations

in the quantity g since this will also give the oscillation fre-

quency of r and vz through Eqs. (A2) and (A4), respectively.

Forming d2g
dt2 , we obtain

d2g
dt2
¼ �l

dr

dt

dxR

dr
� 2

B

1

r2

dr

dt

d/1

dr
cos kz cos g

��

� 1

r

dr

dt

d2/1

dr2
cos kz cos gþ k

r

d/1

dr

dz

dt
sin kz cos g

þ 1

r

d/1

dr
x� l

dh
dt

� �
cos kz sin g

��
: (A5)

Using Eqs. (A2) and (A3) and dropping terms that are second

order in the perturbing potential /1, we obtain

d2g
dt2
¼ 2l

rB
l/1

dxR

dr
cos kz sin gþ d/1

dr
kvz sin kz cos g

�

þ d/1

dr
x� lxRð Þcos kz sin g

�
: (A6)

We now use the fact that we are interested in axially

trapped particles. These occur for low velocities and near the

radius where x� lxR so the second and third terms of Eq.

(A6) drop out. We are left with
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d2g
dt2
¼ �x2

T sin g; (A7)

where

x2
T ¼ �

l2

rB

dxR

dr
2/1: (A8)

Since dxR/dr is negative, xT is positive. Equation (A7) is the

well known pendulum equation with xT being the small

angle oscillation frequency. In this context, this is the oscilla-

tion frequency of particles deeply trapped in the asymmetry

potential.
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