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A single-particle computer code with collisional effects is used to study asymmetry-induced radial

transport of a non-neutral plasma in a coaxial Malmberg-Penning trap. Following the time

variation of the mean change and mean square change in radial position allows for the calculation

of the radial drift velocity vD and the diffusion coefficient D as defined by the radial flux equation

C ¼ �D dn0

dr þ n0vD. For asymmetries of the form /1ðrÞcosðkzþ xt� lhÞ and periodic boundary

conditions, the transport coefficients obtained match those predicted by resonant particle transport

theory where the transport is produced by particles with velocities near 6ðlxR � xÞ=k, with xR

being the azimuthal rotation frequency. For asymmetries of the form /1ðrÞcosðkzÞcosðxt� lhÞ and

low collision frequency, there is a second contribution to the transport produced by low velocity

particles axially trapped in the asymmetry potential. These produce a stronger variation of D with

x with a peak at x ¼ xR. The width of the peak Dx increases with center conductor bias and

decreases with radius, while the height shows the opposite behavior. The transport due to axially

trapped particles is typically comparable to or larger than that from resonant particles. This second

contribution to the transport may explain the discrepancies between experiments and resonant

particle theory. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4707395]

I. INTRODUCTION

The Malmberg-Penning non-neutral plasma trap has

been used for some time for basic studies of plasma trans-

port. Once the base pressure is low enough to minimize

electron-neutral transport, the confinement is limited by elec-

tric and magnetic fields that break the cylindrical symmetry

of the trap and produce radial drifts. This asymmetry-

induced transport has been studied experimentally by a num-

ber of people,1–9 but detailed comparisons of the predictions

of resonant particle transport theory10 with experiment7

show serious discrepancies. It seems clear that some impor-

tant physics is missing from the theory.

In a previous paper,11 we examined the dynamics of par-

ticles in a coaxial Malmberg-Penning trap with prescribed

asymmetric electric fields using a simple single-particle com-

puter simulation. We found that, for a single helical asymme-

try with periodic boundary conditions, significant motion in

the radial direction was restricted to those particles near the

resonant velocity, and that both the location and the width of

this resonance were consistent with analytical theory. When a

standing wave asymmetry was used, however, additional dy-

namical behaviors were observed not included in the theory.

The most striking of these was the existence of a low-

velocity population of particles with large radial excursions

and restricted axial motion in the lab frame. In addition, a

larger region of stochastic motion occurred where the reso-

nant regions of the two constituent counter-propagating heli-

cal waves overlapped.

Although these results were suggestive, the transport

coefficients resulting from the new dynamical motions could

not be determined. To find these coefficients, we have now

added collisions to our code. By following the time variation

of the mean change and mean square change in radial posi-

tion, we can obtain, respectively, the drift velocity vD and the

diffusion coefficient D as defined by the radial flux equation

C ¼ �D dn0

dr þ n0vD, where n0 is the particle density. As

expected from the dynamical studies, vD and D generally

match resonant particle transport theory for the simplest heli-

cal asymmetry with periodic boundary conditions. For the

more realistic standing wave asymmetries, however, there are

two contributions to the transport at low collision frequen-

cies. The first is that given by resonant particle transport

theory and is produced by particles with velocity near

6ðlxR � xÞ=k, where xR is the azimuthal rotation fre-

quency, x is the asymmetry frequency, and k is the axial

wavenumber. The second contribution is produced by the

low velocity particles that are axially trapped in the asymme-

try potential. These produce a stronger variation of D with x
with a peak near x ¼ xR. The width of the peak Dx
increases with center wire bias and decreases with radius,

while the height shows the opposite behavior. The transport

due to these axially trapped particles is typically comparable

to or larger than that from resonant particles. We also find

that the relationship between vD and D given by the Einstein

relation fails for this contribution to the transport.

II. SIMULATION DETAILS

Our code is constructed to model our experimental de-

vice, which is shown in Fig. 1. Low density electrons are

confined in the central region of length L between the nega-

tively biased injection gate and dump gate. In order to main-

tain an azimuthal E� B drift comparable to a higher density

plasma, a negatively biased wire is stretched along the axis

of the device. The uniform axial magnetic field B providing

radial confinement is strong enough that the gyroradius is

much smaller than the wall radius R. The walls of the con-

finement region are divided into forty sectors (five axial divi-

sions S1-S5 with eight azimuthal divisions each), which
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allows application of an asymmetric electric field. The vol-

tages applied to these sectors are typically chosen so that the

field consists primarily of a single Fourier mode. The

remaining details of the experiment are given elsewhere.7

The code follows the dynamics of single particles in pre-

scribed fields; inter-particle fields are not included. The pre-

scribed fields are set by the center wire potential and the

asymmetric potential. The center wire potential is given by

/0ðrÞ ¼ /cw

ln ðR=rÞ
ln ðR=aÞ ; (1)

where /cw is the bias of the center wire, R is the radius of the

wall, and a is the radius of the center wire. The asymmetric

potential is chosen to be either a helical wave

/helðr; h; z; tÞ ¼ /1ðrÞcosðkz� lhþ xtÞ (2)

or an axially standing wave

/swðr; h; z; tÞ ¼ 2/1ðrÞcosðkzÞcosð�lhþ xtÞ: (3)

In Eqs. (2) and (3), k ¼ np=L and n is the axial wavenumber,

l is the azimuthal wavenumber, x is the asymmetry fre-

quency, and z is measured from one end of the confinement

region. The amplitude /1ðrÞ is taken to be of the form

/10ðr=RÞl where /10 is a constant. This form closely approx-

imates the exact vacuum solution.

The particle motions in the code are governed by

dr

dt
¼ vr r

dh
dt
¼ vh

dz

dt
¼ vz

dvz

dt
¼ qEz

m
� �vz; (4)

where � is the electron-electron collision frequency. For typ-

ical experimental conditions, the gyroradius is much smaller

than the wall radius R and the cyclotron frequency is much

larger than all other dynamical frequencies. We thus ignore

the cyclotron motion and follow the motion of the guiding

center. In this drift approximation, vr and vh are given by

vr ¼
Eh

B
vh ¼ �

Er

B
: (5)

The electric fields are obtained from the prescribed poten-

tials: Er ¼ � @/
@r ;Eh ¼ � 1

r
@/
@h, and Ez ¼ � @/

@z . For compari-

sons with analytic theory, we note that the zeroth order

variation of Er defines the rotation frequency xR

xR ¼ �
Er0

rB
¼ �/cw

r2B ln ðR=aÞ (6)

where in the last step, we have used Eq. (1). Since /cw is typ-

ically negative, xR is positive.

Collisions are included according to the Langevin pre-

scription.13,14 This prescription has two parts. First, a drag

term ��vz is included in the equation of motion for vz in

Eq. (4). Second, after each time step Dt, a velocity Dv is added

to vz. The value of Dv is generated with a random number rou-

tine that gives values uniformly distributed over the range

�v0 � Dv � v0, where v0 is related to the electron tempera-

ture T and the collision frequency � by (see Appendix A)

v2
0 ¼

6kT

m
�Dt: (7)

Initially, all particles are placed at the same radius, but

are distributed in z, h, and vz. We typically use 64 512 par-

ticles (32 z-values� 16 h-values� 126 vz-values). To account

for the variation in particle density in a Maxwellian velocity

distribution, the particles are assigned a weighting factor

Wi ¼ exp½�ðvzi=vthÞ2�, where vth is the thermal velocity and i
is the particle number index.

Equations (4) and (5) are solved using a fourth-order

Runge-Kutta method.12 To maintain precision, the velocities

are scaled to 106 cm/s, the asymmetry frequency x is scaled

to 106 rad/s, and time t is scaled to 10�6 s. Parameters are

chosen to match our typical experimental conditions

and unless otherwise specified are B ¼ 364 G; L ¼ 76:8 cm;
R ¼ 3:87 cm; a ¼ 0:007 in; /cw ¼ �80 V; /10 ¼ 0:1 V, and

n¼ l¼ 1.

The code has two options for the ends of the trap: peri-

odic boundaries or specular reflection. For periodic bounda-

ries, the axial position of the particle can range from z¼� L
to z¼ L. Particles reaching z¼L are shifted to z¼�L and

vice versa. For specular reflection, the axial position ranges

from z¼ 0 to z¼L. At the ends, the particle simply reverses

axial direction as if bouncing off of an infinite potential.

The transport coefficients are determined by following

two quantities:

hDri � 1

W

XM

i¼1

Wi½riðtÞ � rið0Þ� (8)

and

hðDrÞ2i � 1

W

XM

i¼1

Wi½riðtÞ � rið0Þ�2: (9)

Here, M is the total number of particles and W ¼
P

Wi is

the sum over weighting factors. Assuming a radial particle

flux C of the form

C ¼ �D
dn0

dr
þ n0vD; (10)

the drift velocity vD is given by

vD ¼
d

dt
hDri (11)

and the diffusion coefficient D by

FIG. 1. Schematic of the Occidental College Trap. The usual plasma col-

umn is replaced by a biased wire to produce the basic dynamical motions in

low density electrons injected from an off-axis gun.
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D ¼ 1

2

d

dt
hðDrÞ2i � hDri2
h i

: (12)

We find that the quantities hDri and hðDrÞ2i defined by

Eqs. (8) and (9) vary with time. Typical behavior is shown in

Fig. 2. Since our desired transport coefficients vD and D
depend on these quantities, we must decide how long to run

the simulation and when to evaluate Eqs. (11) and (12). The

initial oscillations shown in Fig. 2 can be attributed to the ra-

dial motions of trapped particles, since their frequency

matches the trapped particle oscillation frequency xT defined

in Sec. III. These oscillations damp out in time either due to

phase mixing or collisional scattering. On the other hand, for

long run times, some particles will move significantly away

from their initial position and their subsequent motion may

not be consistent with a local approximation. For the param-

eters of these studies, the phase mixing is complete by

xTT � 10, where T is the run time. The collisional scattering

of trapped particles requires �effT � 1 while the scattering of

bulk particles requires �T � 1. For the smaller values of �,

this last requirement gives the largest value of T, so we use it

to set the run time. For the largest values of �, xTT � 10 is

used to set T.

III. SUMMARY OF RESONANT PARTICLE TRANSPORT
THEORY

In Sec. IV, we will compare the simulation to resonant

particle transport theory, which is summarized here. A more

complete presentation of the theory is given in Ref. 10. The

theory assumes a cylindrical geometry with an axial mag-

netic field B. Under the strong magnetic field conditions typi-

cal of most non-neutral plasmas, the basic equations are

Poisson’s equation and the drift kinetic equation with a colli-

sion operator, and the boundary conditions on the conducting

walls. A plasma of length L with flat ends is assumed and

end effects are ignored. This allows for the linearization of

the potential as /ðr; h; z; tÞ ¼ /0ðrÞ þ /1ðr; h; z; tÞ, where

/1ðr; h; z; tÞ ¼
X
n;l;x

/nlxðrÞ � exp i
np
L

zþ lh� xt
� �h i

(13)

is the asymmetry potential decomposed into Fourier modes

of amplitude /nlxðrÞ and characterized by axial mode n, azi-

muthal mode l, and angular frequency x. The triple sum

includes both negative and positive values of n, l, and x. The

Fourier amplitudes can be computed from a given asymme-

try potential from the equation

/nlxðrÞ ¼
ðL

�L

dz

2L

ð2p

0

dh
2p

ðs

0

dt

s
exp i

np
L

zþ lh� xt
� �h i

� /1ðr; h; z; tÞ: (14)

The resulting radial particle flux can be written in the form

C ¼ �
X
n;l;x

Dnlx
dn0

dr
þ n0Vnlx

� �
: (15)

For simplicity, we have assumed here that the temperature T
is constant with radius, as it is in the simulation. Some

details in the evaluation of Eq. (15) are given in Appendix B.

The form of the diffusion coefficients Dnlx and drift

velocities Vnlx depends on the relative size of an effective

collision frequency �eff and the oscillation frequency xT of

particles trapped in the moving frame of the asymmetry

potential. Here, �3
eff � � np�v

L

� �2
and

x2
T ¼

e

m

np
L

� �2

� cl2

rB

dxR

dr

� �
/nlxðrÞ; (16)

where xR is the azimuthal E� B rotation frequency of the

plasma column. When �eff 	 xT , frequent collisions interrupt

the trapped particle orbits and the basic radial step is the radial

E� B velocity multiplied by the time between collisions.

Deviations from unperturbed orbits are small, and a perturba-

tion approach is appropriate. This is called the plateau regime.

When �eff < xT , a trapped particle can complete at least one

oscillation before a collision knocks it out of resonance. Now,

the basic radial step is the radial extent of the drift during a

trapping oscillation, and the orbits are fully nonlinear. A heu-

ristic derivation of the resulting radial flux is often employed

for this “banana” regime. For the plateau regime,

Dnlx ¼
1ffiffiffiffiffiffiffiffiffiffi

2p�v2
p L

jnj
cl/nlxðrÞ

rB

				
				
2

e�x2

(17)

while for the banana regime

Dnlx ¼
1ffiffiffiffiffiffi
2p
p

�
L

np


 �2 l�v

rxc


 �2 e/nlxðrÞ
T


 �1=2

1� lL

np


 �2
1

rxc

dxR

dr

" #3=2
e�x2

: (18)

The variable x is equal to vres=
ffiffiffi
2
p

�v, where

vres ¼
L

np
ðx� lxRÞ (19)

is the resonant velocity for the asymmetry mode n; l;x. The

symbols n0;�v;xc, and � denote the electron density, thermal
FIG. 2. Initial time variation of the scaled mean square change in radial

position showing trapped particle oscillations.
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velocity, cyclotron frequency, and the electron-electron col-

lision frequency, respectively. In both regimes, the drift ve-

locity Vnlx is given by

Vnlx ¼
rxc

l�v2
ðx� lxRÞDnlx: (20)

For the static case (x ¼ 0), Eq. (20) reduces to the Einstein

relation.

IV. RESULTS

A. Helical asymmetry with periodic boundary
conditions

We begin by examining the case of a helical asymmetry

as given by Eq. (2), subject to periodic boundary conditions.

In our previous work, we found that the particle dynamics

for this case were consistent with expectations from resonant

particle transport theory, namely, that the particles having

the largest radial excursions had velocities in the range

vres62LxT=np. We thus expect the transport coefficients

will agree with resonant particle transport theory. We test

this expectation by examining the absolute magnitude of the

diffusion coefficient D, its dependence on collision fre-

quency � and asymmetry frequency x, and by comparing the

magnitude and x-dependence of the drift velocity vD found

via Eq. (11) with that predicted by Eq. (20).

In Fig. 3, the filled circles show the value of D obtained

from the simulation as a function of collision frequency. For

this example, we used r/R¼ 0.5 and x ¼ 0. The dashed lines

show the predictions of resonant particle transport theory for

the plateau and banana regimes (Eqs. (17) and (18), respec-

tively). The comparison is absolute and there are no adjusta-

ble parameters. There is good agreement between simulation

and theory in terms of the absolute value of D, its depend-

ence on �, and the predicted division between plateau and

banana regimes.

Figure 4(a) shows the dependence of D on asymmetry

frequency x for r/R¼ 0.5 and two values of the collision fre-

quency, one in the plateau regime and one in the banana re-

gime. The open and closed circles show the simulation

results. The solid lines show the predicted expð�x2Þ depend-

ence (see Eqs. (17) and (18)) with the peak value fit to the

simulation results. Agreement is good.

The symbols in Fig. 4(b) show the values of vD obtained

from the simulation for the same two values of �, again as a

function of x. Here, the solid lines show the prediction for

vD obtained by using Eq. (20) and the values of D from Fig.

4(a). Again, we see good agreement between simulation and

theory.

B. Standing wave asymmetry

We now turn to consider the transport produced by a

standing wave asymmetry of the form given by Eq. (3), with

specular reflection at the ends. This asymmetry is the sim-

plest case of the type more representative of experiments

where the z-variation does not appear in combination with

the h and t variations. It is for this case that we previously

observed particle dynamics not included in resonant particle

theory. Here, we find that this does indeed affect D and vD.

It is easy to show that a standing wave asymmetry of the

form in Eq. (3) can be written as two helical asymmetries of

the form in Eq. (2) with oppositely signed n values. Chang-

ing the sign of n, however, does not change either the

FIG. 3. Diffusion coefficient D vs. collision frequency � for a helical asym-

metry. The filled circles show the value obtained from the simulation. The

dashed lines show the predictions of resonant particle transport theory for

the plateau and banana regimes.

FIG. 4. The dependence of the transport coefficients on asymmetry fre-

quency x for a helical asymmetry. The open and closed circles show the

simulation results for two values of the collision frequency �. (a) The diffu-

sion coefficient D. The solid lines show the predicted expð�x2Þ dependence.

(b) Drift velocity vD vs. asymmetry frequency x. The solid lines show the

prediction of the Einstein relation Eq. (20).
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diffusion coefficient or drift velocity in resonant particle

theory. Thus, theory predicts that our standing wave asym-

metry will simply produce twice the transport of a single hel-

ical asymmetry. Consistent with this, the frequency

dependence of the transport coefficients resembles Fig. 4,

with the important exception shown in Fig. 5. Here, we plot

the simulation results for the transport coefficients versus the

asymmetry frequency for parameter choices r/R¼ 0.5 and

� ¼ 0:001 MHz. Note the change of horizontal scale on this

plot compared with Fig. 4. The solid symbols are the results

for the standing wave asymmetry while the open symbols

give the values obtained by doubling the result for a single

helical asymmetry, thus giving the prediction of resonant

particle theory. Clearly, for this range of frequencies, D is

significantly larger than expected from resonant particle

theory and has a stronger variation with frequency.

The results for vD also disagree with theory, as shown in

Fig. 5(b). Here, the discrepancy between simulation and

theory is even more pronounced, with vD from the simulation

10-50 times larger than predicted. In addition, the solid line

shows the prediction for vD obtained by using Eq. (20) and

the standing wave values of D from Fig. 5(a). This also dis-

agrees with the simulation, showing the breakdown of our

Einstein relation for this case.

It is interesting to note that the observed enhancement in

D and vD occurs only for small collision frequencies. When

we repeat the simulation runs with � ¼ 0:1 MHz, the

enhancement vanishes and the transport coefficients for the

standing wave asymmetry match those for a helical asymme-

try doubled.

The data displayed in Figs. 5(a) and 5(b) show that, for

the standing wave asymmetry and low collision frequency,

there is “extra” transport above what is expected from reso-

nant particle theory and that this extra transport occurs only

for a range of frequencies. Exploring the parameter space of

our simulation, we find that the characteristics of the extra

transport vary with radius and center wire bias. To quantify

this variation, we have defined parameters as shown in Fig.

6. The observed variation of D with frequency has two local

peaks, and we define the frequencies at these peaks as x1

and x2. The average of these, defining the center of the over-

all variation, we call x0, and the difference in frequencies,

defining the width of the overall variation, we call Dx.

Finally, we characterize the amount of extra transport by

Dnet, the difference between D obtained for the standing

wave asymmetry and twice the D obtained for a single heli-

cal asymmetry.

Figure 7 shows how the center frequency x0 varies with

scaled radius r/R and center wire bias /cw. The filled sym-

bols are the simulation data and the lines are plots of xR

obtained from Eq. (6). The plot supports the conclusion that

x0 ¼ xR. This was expected from our work on particle dy-

namics,11 since it was for asymmetry frequencies near xR

that large radial excursions in axially trapped particles was

observed. We conclude that the extra transport has its source

in these axially trapped particles.

The variation of Dx with r/R and /cw is shown in Fig. 8.

Figure 8(a) shows that Dx decreases with radius and increases

with j/cwj. In Fig. 8(b), we show a scaled version of these

data demonstrating an empirical relation Dx ¼ Cj/cwj0:77

ðR=rÞ2:35
with C ¼ 2:70� 10�3Mrad=ðs � V0:77Þ.

Finally, we note that the amount of extra transport given

by Dnet also varies with radius and center wire bias. To facil-

itate a comparison with the transport expected from resonant

FIG. 5. The dependence of transport coefficients on asymmetry frequency

x for a standing wave asymmetry (solid circles). For comparison, twice the

diffusion coefficient for a helical asymmetry is shown by the open circles.

Here, r/R¼ 0.5 and � ¼ 0:001 MHz. Note the change in the range of x com-

pared with Fig. 4. (a) Diffusion coefficient D. (b) Drift velocity vD vs. asym-

metry frequency x. The solid line shows the prediction of the Einstein

relation Eq. (20).

FIG. 6. Parameters used to characterize the transport for the standing wave

asymmetry are shown.
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particle theory, we plot in Fig. 9 the ratio Dnet=2Dhel at fre-

quency x1 versus r/R for three center wire biases. Figure

9(a) shows the raw data, showing that the ratio increases

with radius and decreases with j/cwj. We have also plotted a

dashed line where the ratio is one to show that for most radii,

the extra transport is comparable to or larger than the trans-

port expected from resonant particle theory. We also display

an empirical scaling of this data in Fig. 9(b) showing that, to

good approximation, Dnet=2Dhel ¼ Cðr=RÞ3:86=j/cwj0:87
with

C ¼ 750 V0:87.

V. DISCUSSION

Our results show that, in general, there are two types of

asymmetry-induced transport. The first type is described by

resonant particle transport theory. In this type of transport,

the largest radial excursions occur for particles with veloc-

ities near the phase velocities of the helical components of

the asymmetry. The second type we will call trapped particle

transport. The simulation shows that this type of transport

occurs for standing wave asymmetries near radii where

x ¼ xR. From our previous studies,11 we know that the larg-

est radial excursions occur for particles with velocities low

enough to be axially trapped by the asymmetry potential. As

Fig. 9 shows, for our experimental conditions, this type of

transport is comparable to or larger than the contribution

from resonant particle transport and typically dominates at

large radii. It is thus not surprising that our previous compar-

isons of experiment and resonant particle theory have shown

serious discrepancies.

As noted in Sec. IV B, the trapped particle transport

vanishes for higher collision frequencies. Although we do

not fully understand this result, the following explanation

seems plausible. While for collisionless conditions, the axi-

ally trapped particles have larger radial excursions than the

resonant particles, their radial oscillation frequency is signifi-

cantly lower than xT . For higher collision frequencies, it is

then possible for the resonant particles to have larger radial

excursions than the axially trapped particles, since these lat-

ter particles only execute a fraction of their radial orbit in the
FIG. 8. Variation of Dx with r/R and /cw. Plot (a) shows the raw data and

plot (b) shows an empirical scaling of the data.

FIG. 9. Variation of Dnet=2Dhel with r/R and /cw. Plot (a) shows the raw

data and plot (b) shows an empirical scaling of the data.

FIG. 7. The filled symbols show the variation of center frequency x0 with

scaled radius r/R and center wire bias /cw. The simulation data follow

closely the calculated variation of the rotation frequency xR, shown by the

solid lines.
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time ��1. Thus, the transport due to resonant particles domi-

nates at higher collision frequencies.

The empirical scalings for Dx and Dnet=2Dhel shown in

Figs. 8(b) and 9(b) are not simple enough to draw firm con-

clusions, but given that xR / j/cwj=r2, they suggest a de-

pendence on xR or it derivatives with respect to r.

Another interesting feature of this trapped particle trans-

port is the breakdown of the Einstein relation (Eq. (20)) as

shown in Fig. 5(b). We see that vD obtained from the simula-

tion is much larger (10-50 times larger) than predicted by

Eq. (20). Note, however, that the Einstein relation is derived

assuming an equilibrium velocity distribution. The existence

of axially trapped particles invalidates this assumption, so

there is no reason to expect the relation to hold.

Even more interesting is the discrepancy between the

simulation and our previous experimental work.15 As just

noted, the simulation gives vD 10-50 times larger than

expected from the Einstein relation, whereas our experiments

show vD about ten times smaller than expected. Since both

simulation and experiment presumably have similar trapped

particle distributions, it is hard to see how this discrepancy

can be explained by invoking the breakdown of the equilib-

rium velocity distribution. Instead, we suspect this discrep-

ancy is due to the breakdown of the local approximation.

The axially trapped particles in the simulation have radial

excursions large enough to be comparable to other radial

scale lengths, so the equations used to calculate D and vD

may become invalid.

VI. CONCLUSION

We have found radial particle transport coefficients for

asymmetry-induced transport via a single-particle simulation

with collisions. The results match resonant particle transport

theory for the simple case of a helical asymmetry with peri-

odic boundary conditions. For the more realistic case of a

standing wave asymmetry, we have identified a second type

of transport that often dominates the resonant particle contri-

bution. This trapped particle transport occurs near radii

where x ¼ xR and is produced by particles with low enough

velocity to be axially trapped by the asymmetry. This second

contribution to the transport may explain the discrepancies

between experiments and resonant particle theory.
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APPENDIX A: RELATING RANDOM WALK TO
COLLISION FREQUENCY

Collisions can be modeled in a single-particle code by a

combination of random steps in the velocity and the addition

of a drag term in the equation of motion. The random steps

in velocity uniformly distributed between �v0 and þv0 are

applied with each time step. As is well known, such a ran-

dom walk produces a velocity distribution that broadens in

time. To counteract this and maintain an equilibrium distri-

bution, the drag force �m�vz is added to the equation of

motion. It remains to relate the collision frequency � to the

random walk limit v0.

If the random walk has a uniform weighting w0, then the

normalization condition gives w0 ¼ ð2v0Þ�1
. The average

displacement in velocity space �v due to the random walk is

zero, while the mean square displacement after N steps is

NðDvÞ2 ¼ N

ðv0

�v0

w0ðv� �vÞ2dv ¼ N

2v0

ðv0

�v0

v2dv ¼ Nv2
0

3
:

(A1)

On the other hand, a detailed analysis of the fluctuations

modeling collisions in the Langevin equation gives14

ðDvÞ2 ¼ 2kT

m
�s; (A2)

where s is a time macroscopically small but large compared

to Dt. For our case, we take s ¼ NDt. Comparing Eqs. (A1)

and (A2), we obtain

v2
0 ¼

6kT

m
�Dt: (A3)

This gives the random step limits in terms of other chosen

parameters.

APPENDIX B: OBTAINING D AND vD FROM
RESONANT PARTICLE THEORY

Here, we include some details on evaluating the theoret-

ical expressions in Sec. III for the asymmetries used in the

simulation. Note that, for a helical asymmetry, we have

/helðr; h; z; tÞ ¼ /1ðrÞcos
n0p
L

z� l0hþ x0t


 �

¼ /1ðrÞ
2

�
exp i

n0p
L

z� l0hþ x0tÞ

 �� �

þ exp �i
n0p
L

z� l0hþ x0tÞ

 �� �


: (B1)

Then, Eq. (14) gives

/n;l;xðrÞ ¼
/1ðrÞ

2

ðL

�L

dz

2L

ð2p

0

dh
2p

ðs

0

dt

s

�
�

exp i
pz

L
ðnþ n0Þ þ ðl� l0Þh� ðx� x0Þt

� �h i

þ exp i
pz

L
ðn� n0Þ þ ðlþ l0Þh� ðxþ x0Þt

� �h i�
:

(B2)

The integrand in Eq. (B2) is separable and each of the three

integrals produces a delta-function in the corresponding

mode number. For example,

042307-7 D. L. Eggleston Phys. Plasmas 19, 042307 (2012)



ðL

�L

dz

2L
exp i

pz

L
ðnþ n0Þ

h i
¼ 2i sin½pðnþ n0Þ�

¼ 0 for nþ n0 6¼ 0

¼
ðL

�L

dz

2L

¼ 1 for nþ n0 ¼ 0

¼ dðnþ n0Þ:

Thus, Eq. (B2) becomes

/n;l;xðrÞ ¼
/1ðrÞ

2
½dðnþ n0Þdðl� l0Þdðx� x0Þ

þ dðn� n0Þdðlþ l0Þdðxþ x0Þ�: (B3)

When this result is used in Eqs. (17), (18), and (20), the triple

infinite sum in Eq. (15) produces two terms, one with

n; l;x ¼ �n0; l0;x0 and one with n; l;x ¼ n0;�l0;�x0. The

expressions for Dnlx and Vnlx, however, are unchanged when

n, l, and x all change sign, so the two terms are the same.

Thus, for a helical asymmetry of the form of Eq. (2), the pro-

cedure for calculating the diffusion coefficients D and vD

from resonant particle theory can be summarized as follows:

use Eq. (17) or Eq. (18) with n; l;x ¼ �n0; l0;x0 and

/n;l;xðrÞ ¼
/1ðrÞ

2
, and then double the result to obtain D.

Then, use this result in Eq. (20) to obtain vD.

A similar analysis is used for the case of a standing wave

asymmetry of the form of Eq. (3). For this case, we note that

/swðr; h; z; tÞ ¼ 2/1ðrÞcos
n0p
L

z


 �
cosð�lhþ xtÞ

¼ /1ðrÞ cos
n0p
L

z� l0hþ x0t


 ��

þcos
�n0p

L
z� l0hþ x0t


 ��
: (B4)

Each of the cosine terms is then analyzed as in Eq. (B2)

resulting in

/n;l;xðrÞ ¼
/1ðrÞ

2

h
dðnþ n0Þdðl� l0Þdðx� x0Þ

þ dðn� n0Þdðlþ l0Þdðxþ x0Þ
þ dðn� n0Þdðl� l0Þdðx� x0Þ

þ dðnþ n0Þdðlþ l0Þdðxþ x0Þ
i
: (B5)

The analysis then proceeds as before with the additional ob-

servation that the expressions for Dnlx and Vnlx are also

unchanged when n alone changes sign. The procedure for

calculating the diffusion coefficients for our standing wave

asymmetry can then be summarized as follows: use Eq. (17)

or Eq. (18) with n; l;x ¼ �n0; l0;x0 and /n;l;xðrÞ ¼
/1ðrÞ

2
, and

then quadruple the result to obtain D.
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