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Previous work on asymmetry-induced transport in a modified Malmberg–Penning trap showed that
the radial particle flux was empirically constrained to be of the form ����=−�B0 /B�1.33D�����n0

+ f����, where �=�− l�R, �R�r�=v� /r is the column rotation frequency, � and l are the asymmetry
frequency and azimuthal mode number, �n0 is the radial density gradient, B is the magnetic field,
B0 is an empirical constant, and D��� and f��� are unknown functions. In this paper, it is shown that
further constraints can be placed upon D��� and f��� by comparing data near the �=0 points to a first
order expansion of ����. It is shown that dD /d��0��0, in contradiction to resonant particle theory,
and that f��� can only be a fraction of the size predicted by that theory. Finally, it is shown that
dD /d��0� exhibits a power-law scaling with radius, magnetic field, and the bias of the center
conductor of the trap. © 2010 American Institute of Physics. �doi:10.1063/1.3381069�

I. INTRODUCTION

Asymmetry-induced radial particle transport in cylindri-
cal Malmberg–Penning non-neutral plasma traps has been
studied for over 25 years by several research groups.1–8

Despite the simplicity of these traps, a full understanding of
the transport remains elusive, and there is little agreement
between experiments and theory. Indeed, our previous work
in a modified version9 of these traps designed specifically to
test resonant particle transport theory10 revealed serious dis-
crepancies between experiments and this theory.11 In particu-
lar, the experimental dependence of the transport on asym-
metry frequency � was both quantitatively and qualitatively
different than the predictions of theory. However, it was not
clear from these experiments which part�s� of the theory
were in error.

In a previous paper,12 we presented a new approach to
the study of asymmetry-induced transport based on the hy-
pothesis that the asymmetry frequency � and the plasma
rotation frequency �R always enter the physics in the com-
bination �− l�R, where l is the azimuthal mode number of
the asymmetry. This hypothesis was suggested by the appear-
ance of this combination in theories for various phenomena
in non-neutral plasmas. In order to simplify the data analysis,
it proved useful to focus on data points where this combina-
tion was zero. From our typical measurements of the radial
particle flux � versus radius r, we selected the flux �sel at the
radius where �− l�R=0. By independently varying �, �R,
and the magnetic field B, we showed that �sel, for a fixed
asymmetry amplitude, satisfied the equation

�sel = − �B0/B�1.33D0��n0 + f0� , �1�

where �n0 is the radial density gradient, and B0=233 G,
D0=1.00 cm2 s−1, and f0=−1.01�105 cm−4 are empirical
constants. Although this equation only gave the flux for
points where �− l�R=0, we also deduced the form of the
general flux equation. Our data analysis revealed that the
expression for the general flux � must be a function of the
combination �− l�R. In addition, the general flux expression
had to reduce to the equation for �sel when �− l�R=0. With-

out further information, we thus allowed both D0 and f0 to
become functions of ���− l�R, obtaining

���� = − �B0/B�1.33D�����n0 + f���� , �2�

where D��� and f��� are unknown functions and D��=0�
�D0 and f��=0�� f0.

While Eq. �2� appears as a slight modification of Eq. �1�,
the consideration of nonzero � opens the possibility for ad-
ditional parametric dependences that do not appear in Eq. �1�
if these parameters appear in a product or quotient with �.
For example, if � is scaled to the cyclotron frequency �c

�i.e., if it appears as � /�c�, this would introduce an additional
dependence on B not captured in the B−1.33 scaling of Eq. �1�.
Similarly, if � appears scaled to �R, then our initial hypoth-
esis about the rotation frequency only appearing in the com-
bination �− l�R will have to be modified.

The magnetic field dependence of Eq. �2� does not match
that given by resonant particle transport theory in either the
plateau or banana regimes. The rest of the equation, however,
is compatible with that theory. In particular, the theory gives,
for either regime,

f��� =
n0

T

dT

dr
� �2

2k2v̄2 −
1

2
� +

rn0�c�

lv̄2 , �3�

while D���= D̃ exp�−�2 /2k2v̄2�, where k is the axial wave-
number of the asymmetry, v̄ is the thermal velocity, �c is the

cyclotron frequency, and D̃ depends on the regime.
In this paper, we show that further empirical constraints

can be placed on D��� and f��� by examining data points
adjacent to the �=0 points and comparing them to a first
order expansion of ����. In particular, we show that
dD /d��0��0, which excludes D��� of the form given by
resonant particle theory. Further, we show that Eq. �3� is also
incompatible with the data unless it is reduced in magnitude.
Finally, we show that dD /d��0� has power-law dependences
on r, B, and the center wire bias �cw.
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II. LINEARIZATION

We start by performing an expansion of Eq. �2� for small
values of �. The expansions for D��� and f��� are

D��� = D�0� + �
dD

d�
�0� +

�2

2

d2D

d�2 �0� + ¯ �4�

and

f��� = f�0� + �
df

d�
�0� +

�2

2

d2f

d�2 �0� + ¯ . �5�

Using these in Eq. �2�, we obtain, to first order in �,

� = − �B0

B
�1.33�D0��n0 + f0�

+ �	��n0 + f0�
dD

d�
�0� + D0

df

d�
�0�
� , �6�

where we have used the equivalent notations D��=0�=D0

and f��=0�= f0. Any variation in parameters � multiplying �
will be higher order in � since d����=�d�+�d�. Noting
that the zeroth-order term in the expansion is �sel, as given
by Eq. �1�, we move this term to the left hand side. Taking
the derivative with respect to � we obtain

d�� − �sel�
d�

= − �B0

B
�1.33	��n0 + f0�

dD

d�
�0� + D0

df

d�
�0�
 .

�7�

From this result, we can see that since �n0, D0, and f0 are
known, we may be able to obtain information about
�dD /d���0� and �df /d���0� by examining the experimental
values of �d��−�sel�� /d� for small �.

III. EXPERIMENTAL APPARATUS

Our transport studies are performed in the modified
Malmberg–Penning trap shown in shown in Fig. 1. As in the
standard trap design, a uniform axial magnetic field B pro-
vides radial confinement of injected electrons, while nega-
tively biased end cylinders �the injection gate and dump
gate� provide axial confinement. Our device also operates in
the standard inject-hold-dump cycle. A cycle begins by
grounding the injection gate which allows electrons from the
gun to flow into the central region. This injection gate is then
returned to a negative bias which traps the electrons. After a
chosen period of time, the dump gate is grounded and the

electrons leave the trap and hit a positively biased phosphor
screen. Analysis of the images on this screen provides the
primary diagnostic.

The principal modification in our device is replacing the
usual plasma column with a biased wire running along the
axis of the trap. The wire provides a radial electric field to
replace the field normally produced by the plasma column
and allows the injected low density electrons to have the
same zeroth-order dynamical motions �axial bounce and azi-
muthal E�B drift motions� as in a standard trap. The lower
density �105 cm−3� and high temperature �4 eV� of the elec-
trons give a Debye length larger than the trap radius. Under
these conditions, potentials in the plasma are essentially the
vacuum potentials and previously encountered2 complica-
tions due to collective effects are minimized.11 Our design
also allows the drift rotation frequency �R�r� to be easily
adjusted by varying the center wire bias �cw since

�R =
− �cw

r2B ln�R/a�
, �8�

where R and a are the radii of the wall and the center wire,
respectively. Despite these changes, the unperturbed confine-
ment time has similar magnitude and shows9 the same
�L /B�2 scaling found in higher density experiments, thus
supporting the idea that the radial transport is primarily a
single particle process and confirming the relevance of our
experiments to standard trap physics.

A unique feature of our device is that the entire confine-
ment region is sectored �five cylinders, labeled S1 through
S5 in Fig. 1, with eight azimuthal divisions each�. This al-
lows us to apply a simple, known asymmetry by selecting the
amplitude and phase of the voltages applied to each sector to
produce a helical standing wave of the form

��r,�,z,t� = �W� r

R
�l

cos�n�z

L
�cos�l� − �t� , �9�

where �W is the asymmetry potential at the wall �typically
0.2 V�, R is the wall radius �3.82 cm�, L is the length of the
confinement region �76.8 cm�, n and l are the axial and azi-
muthal Fourier mode numbers, respectively, and here z is
measured from one end of the confinement region. For these
experiments n= l=1 and the relative phases of the applied
voltages are adjusted so that the asymmetry rotates in the
same direction as the zeroth-order azimuthal E�B drift. For
these experiments, the higher order harmonics of the applied
asymmetry have amplitudes less than 10% of the fundamen-
tal. Since the transport typically scales like the square of the
asymmetry amplitude,13 the effect of these harmonics can be
ignored.

Data acquisition for these transport studies can be sum-
marized as follows; details have been given elsewhere.11,13

Electrons injected into the trap from an off-axis gun are
quickly dispersed into an annular distribution. At a chosen
time �here, 1600 ms after injection�, the asymmetries are
switched on for a period of time 	t �here, 100 ms� and then
switched off. At the end of the experiment cycle, the elec-
trons are dumped axially onto a phosphor screen and the
resulting image is digitized using a 512�512 pixel charge-

S5 S4 S3 S2 S1
Center Wire

Electron Gun Injection Gate Dump Gate

Phosphor Screen

L = 76.8 cm

FIG. 1. Schematic of the Occidental College Trap. The usual plasma column
is replaced by a biased wire to produce the basic dynamical motions in low
density electrons injected from an off-axis gun. The low density and high
temperature of the injected electrons largely eliminate collective modifica-
tions of the vacuum asymmetry potential. The five cylinders �labeled S1–S5�
are divided azimuthally into eight sectors each.
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coupled device camera. A radial cut through this image gives
the density profile n0�r� of the electrons. A typical profile is
shown in Fig. 2. Shot-to-shot variation in the number of
injected electrons is less than 1% and the data is very repro-
ducible. Calibration is provided by a measurement of the
total charge being dumped. Profiles are taken both with the
asymmetry on and off, and the resulting change in density
	n0�r� is obtained. The background transport is typically
small compared to the induced transport and is subtracted
off. If the asymmetry amplitude is small enough and the
asymmetry pulse length 	t short enough, then 	n0�r� will
increase linearly in time.13 We may then approximate
dn0 /dt�	n0�r� /	t and calculate the radial particle flux ��r�
�assuming ��r=a�=0�:

��r� = −
1

r



a

r

r�dr� ·
dn0

dt
�r�� . �10�

Here a is the radius of the central wire �0.178 mm�. The
entire experiment is then repeated for a series of asymmetry
frequencies � and the resulting flux versus radius and fre-
quency data saved for analysis.

IV. RESULTS

In order to compare our data with Eq. �7�, we need to
transform our flux data from the usual � versus r form to
�−�sel versus �. The procedure has several steps but is
straightforward and is illustrated in Fig. 3. We first obtain a
set of flux versus radius data for a number of asymmetry
frequencies � �typically 26� as discussed in Sec. III. Typical
� versus r plots are shown in Fig. 3�a� for three of these
frequencies. For this illustrative data B=364 G and
�cw=−100 V. For each plot there is one radial point where
the asymmetry frequency matches the rotation frequency,
i.e., �= l�R. The value of � at this point is used to construct
the �sel curve. When this process is repeated for the full set
of asymmetry frequencies, the �sel versus r curve shown by
the dotted line is obtained. It is worth noting that the data for
the three curves vary smoothly through the �=0 point where
they cross the �sel curve. This insures that the derivative with
respect to � taken at the end of the data analysis will not give

a peculiar result. Now the �−�sel curves shown in Fig. 3�b�
can be constructed by subtracting �sel�r� from each of the
��r� curves. Finally, we use Eq. �8� to map the radii in Fig.
3�b� to the corresponding values of �− l�R, again doing this

FIG. 2. A typical density profile taken 1600 ms after injection.

FIG. 3. Procedure for analyzing the data. �a� Radial flux � vs scaled radius
r /R for three representative asymmetry frequencies. Each of the 26 frequen-
cies contributes one point to the �sel curve. For this data, B=364 G and
�cw=−100 V. �b� The difference �−�sel vs r /R for the same three repre-
sentative frequencies. �c� The radius values in �b� are mapped to the corre-
sponding values of �− l�R to produce this plot. The slope of these curves at
the origin is used to obtain the left hand side of Eq. �7�.
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separately for each asymmetry frequency. For our represen-
tative cases this yields the �−�sel versus �− l�R curves
shown in Fig. 3�c�. We then find the slope of these curves at
the point where they pass through the origin to obtain d��
−�sel� /d� for small �. These values are then plotted versus
the radius at which �=0. Repeating this process for all the
asymmetry frequencies produces the black dots in Fig. 4.

To estimate the uncertainty in d��−�sel� /d�, we have
obtained this quantity in two ways. First, we simply take
one data point on either side of �=0 and approximate
d��−�sel� /d��
��−�sel� /
�. Second, we take three data
points on either side of �=0, fit a second order polynomial to
the data, and use the linear coefficient for d��−�sel� /d�. We
used the result of this latter procedure for the data points and
the difference between the two procedures for the uncer-
tainty.

Given the form of Eq. �7�, it is instructive to compare the
data points in Fig. 4 with the data for −��n0+ f0�, and this
latter quantity is shown by the solid line. Note that both the
black dots and the solid line have a zero-crossing at essen-
tially the same radius. Since most quantities that enter the
physics do not change sign with radius, this suggests that the
first term in Eq. �7� is dominant, at least in the vicinity of the
zero-crossing radius. This conclusion is supported when the
experimental parameters are varied. Varying the magnetic
field B and the center wire bias �cw, we obtain results similar
to Fig. 4 and shifts in the zero-crossing of −��n0+ f0� �due to
the variation in parameters� are tracked by the zero-crossing
of d��−�sel� /d�. This correlation is shown in Fig. 5
where the ordinate gives the scaled radius r /R where
d��−�sel� /d� changes sign and the abscissa gives the scaled
radius where −��n0+ f0� changes sign. The uncertainties
stem from the uncertainties in the data plots such as that of
Fig. 4. Data are given for three values of the center wire bias
�cw for each of four magnetic fields B, with the higher ab-
solute values of �cw giving zero-crossings at larger r /R as
indicated by the arrow.

The observed correlation allows us to restrict the form of
the unknown function D���. Referring to Eq. �7�, we see that
the correlation requires that dD /d��0��0. This is notewor-

thy since it excludes D��� of the form found in resonant
particle transport theory.11 In this theory, D���
�exp�−�2 /2k2v̄2� and thus dD /d��0�=0. Here k=n� /L is
the axial mode number.

The correlation between zero-crossings also shows that
the form of f��� given by resonant particle theory is incor-
rect. According to the theory, for either the plateau or banana
regimes, f��� is given by Eq. �3� and thus

df

d�
�0� =

rn0�c

lv̄2 . �11�

The effect of including such a term is shown in Fig. 6. Using
experimental values in Eq. �11� we obtain the curve for
D0�df /d���0� shown in Fig. 6�a�. Since we do not know
�df /d���0�, we move D0�df /d���0� to the left hand side of
Eq. �7�:

� B

B0
�1.33d�� − �sel�

d�
+ D0

df

d�
�0� = − ��n0 + f0�

dD

d�
�0� .

�12�

Figure 6�b� shows the effect of including the D0�df /d���0�
term. The lower line shows the same data plotted as dots in
Fig. 4 multiplied by the constant �B /B0�1.33. We have inter-
polated the data between the points to allow for easy addition
of the D0�df /d���0� data which includes 256 radial values.
The upper line shows the effect of this addition. In this case,
the curve is shifted upward enough so that there is no longer
a zero-crossing. Since we know that the right side of Eq. �12�
crosses zero at roughly r /R=0.4, we have a contradiction.
Thus, D0�df /d���0� cannot be given by Eq. �11�.

It is tempting at this point to conclude that
D0�df /d���0� is zero, but there are several reasons to resist
this conclusion. The data from previous experiments11 on the
frequency dependence of the flux at the point where �n0

=0 require that there be a second term in the flux equation
that is a function of frequency. Also, the theoretical origin10

of this term seems fairly robust and reflects a mobility con-
tribution to the transport. Finally, the efficacy of the rotating-

FIG. 4. The black dots in this figure show d��−�sel� /d� vs the scaled radius
r /R. The scale for this data is on the left. The solid line shows −��n0+ f0� vs
r /R for comparison. The scale for this data is on the right. Note that both
data sets cross the zero axis at r /R�0.4.

FIG. 5. Correlation in zero crossing of d��−�sel� /d� and ��n0+ f0� with
magnetic field B and center wire bias �cw as parameters. The solid line
shows where the data would lie if the correlation were perfect.
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wall technique4,7 requires a term in the transport equation
that can change sign with frequency �i.e., which is an odd
power of ��.

It is interesting to note that if we introduce an ad hoc
multiplicative factor �
1 to the D0�df /d���0� term, the
zero-crossing correlation can be maintained and actually im-
proved. This can be understood from Fig. 6. If we add a

fraction of D0�df /d���0� to the original data, the upper curve
in Fig. 6�b� will be shifted up by a lesser amount, with the
result that the zero-crossing point will be shifted to the left to
lower values of r /R. Referring to Fig. 5, we see that such an
adjustment will move the data points down and improve the
correlation for some of the data. Of course, if � is too large
that the shift will make the correlation worse. We find that
�=0.15 produces the best result with the standard deviation
from a perfect correlation improving from �r/R=0.024 �for
�=0� to 0.017. Values of � greater than 0.31 degrade the
correlation, producing �r/R values greater than 0.024.

So far we have drawn our conclusions solely from the
correlation in the zero-crossings of the two sides of Eq. �12�.
We now examine the full set of d��−�sel� /d� versus r /R
data and find parameter scalings in �dD /d���0�. When data
was taken for various values of the center wire bias �cw and
magnetic field B, the data points in Fig. 4 increased in mag-
nitude with B and decreased with �cw. It also is apparent
from this figure that the solid line data will have to be mul-
tiplied by an increasing function of radius to match the dot
data. To quantify these scalings, we have assumed a power
law dependence on r, B, and �cw, i.e.,

dD

d�
�0� = C� r

R
�a� B

B0
�b

/��cw

�0
�c

, �13�

and adjusted the exponents a, b, and c and the multiplicative
factor � through multiple regression to achieve the best cor-
relation between the two sides of the equation

� B

B0
�1.33d�� − �sel�

d�
+ �D0

df

d�
�0� = − ��n0 + f0�

dD

d�
�0� .

�14�

In Eq. �13�, C is a constant to be determined and
�0�−140 V. For the regression, we use the correlation co-
efficient rxy as the figure of merit with rxy =1 corresponding
to perfect correlation.14 The results of the regression for vari-
ous cases are shown in Table I. The first case �“all free”�
gives the result when all four parameters ��, a, b, and c�
were adjusted to give the largest value of rxy. The next two
columns give the result of fixing the value of � and adjusting
a, b, and c. The final four columns give the results when all
four parameters are fixed. In addition to rxy, the table also

FIG. 6. �a� D0�df /d���0� as given by resonant particle theory �Eq. �11�� vs
scaled radius r /R. �b� The effect of adding D0�df /d���0� to �B /B0�1.33d��
−�sel� /d�. The lower line shows the data of Fig. 4, Y = �B /B0�1.33d��
−�sel� /d�. The data has been interpolated to match to 256 radial positions of
the D0�df /d���0� data. The upper line shows the same data with
D0�df /d���0� added. In this case the former zero-crossing point at r /R
�0.4 no longer occurs.

TABLE I. Results of regression analysis. In the first column, all four parameters ��, a, b, and c� were allowed
to vary to maximize the correlation coefficient rxy. The next two columns fix � and allow a, b, and c to vary.
The last four columns show the results for certain fixed values of the parameters to give an indication of the
sensitivity of rxy to changes in the parameters.

Case → All free Fixed � Fixed � All fixed All fixed All fixed All fixed

� 0.47 0 0.15 0.15 0.15 0.15 0.15

a 2.77 3.04 2.95 2 3 3 3

b 1.54 1.62 1.59 1 1 1.5 1.5

c 0.95 1.03 1.01 1 1 1.5 1

rxy 0.929 0.916 0.923 0.877 0.900 0.902 0.922


rxy ¯ 0.013 0.006 0.052 0.029 0.027 0.007

C �10−5 cm2 / rad� 0.384 0.365 0.371 0.363 0.585 0.294 0.384

�C /C �%� 1.61 1.75 1.67 2.17 1.94 1.91 1.61

042304-5 Constraints on an empirical equation… Phys. Plasmas 17, 042304 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp



shows, for the last six cases, the change in rxy with respect to
the first column and the obtained value of the proportionality
constant C and its fractional error �C /C. In Fig. 7 we plot all
of our data �three values of �cw for each of four magnetic
fields B� using the parameter values of the all free case, with
the left side of Eq. �14� as the ordinate and the right side as
the abscissa.

While the parameter values in the first column of Table I
yield the best regression coefficient �0.932�, the value of � is
higher than the optimum value �0.15� for the zero-crossing
correlation discussed previously. The remaining columns
give an indication of the sensitivity of rxy on the four param-
eters. The dependence on � is relatively weak and fixing �
=0.15 to match the zero crossing correlation has only a mi-
nor effect on the regression coefficient. The dependence of
rxy on a, b, and c is stronger, as shown in the last four
columns. A reasonable compromise between the zero-
crossing results and the correlation results is given in the last
column: �=0.15, a=3, b=1.5, and c=1. We note that
these values are close to those that would be obtained if
�dD /d���0� was proportional to �d�R /dr�−1.

V. DISCUSSION

Our previous experiments11 on the frequency depen-
dence of the transport showed that the flux was a peaked
function of the asymmetry frequency, but the requirement
that �dD /d���0��0 excludes both the Gaussian and Lorent-
zian functions if they are centered at �=0. It does, however,
allow such functions if they are centered at another point.

For example, if D���= D̃ exp�−��−��2 /�2�, then

dD

d�
�0� =

2�

�2 D�0� . �15�

Since D�0� is nonzero, our requirement that �dD /d���0��0
is satisfied.

The observed dependence of �dD /d���0� on B, �cw, and
r seems to contradict the statement in our earlier work12 that
such dependencies have been removed by focusing on points

where �=0. However, this statement refers to D�0� and f�0�.
The results can be harmonized by examining Eq. �15�. If the
frequencies � and/or � depend on B, �cw, and/or r, then
�dD /d���0� can as well, even if D�0� does not.

The necessity of introducing the ad hoc multiplicative
factor � in the second term of Eq. �14� is puzzling. Since this
term has its origin in the radial derivative of the distribution
function,10 we speculate that this reflects the nonlinear modi-
fication of the distribution function by the applied asymme-
try. Such an effect was recently documented in studies of
electron acoustic waves in a Malmberg–Penning trap.15

Finally, we note that since our analysis is based on data
in the vicinity of �=0, our constraints on D��� and f��� may
not apply for large values of ���. This could be the case if the
physics in the vicinity of �=0 is different from that for other
values of �. Indeed, our simulation16 of the particle dynamics
in asymmetry-induced transport suggests that this may be so.
We do not know of an analytic technique that would allow
us, starting from Eq. �2�, to determine from the data the two
unknown functions D��� and f��� for all �. We have tried to
simply guess the functions that would fit the data, but with-
out success.

VI. CONCLUSION

We have shown that further constraints can be placed
upon D��� and f��� by comparing data near the �=0 points to
a first order expansion of ����. The analysis revealed that
dD /d��0��0, in contradiction to resonant particle theory,
and that f��� can only be a fraction of the size predicted by
that theory. We have also shown that dD /d��0� exhibits a
power-law scaling with radius, magnetic field, and the bias
of the center conductor of the trap. These results provide a
touchstone for future theoretical developments.
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