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The particle dynamics of asymmetry-induced transport are studied using a single-particle computer
simulation. For the case of a helical asymmetry with axial and azimuthal wavenumbers �k , l� and
with periodic boundary conditions, behaviors consistent with analytical theory are observed. For the
typical experimental case of a standing wave asymmetry, the code reveals dynamical behaviors not
included in the analytical theory of this transport. The resonances associated with the two
constituent helical waves typically overlap and produce a region of stochastic motion. In addition,
particles near the radius where the asymmetry frequency � matches l times the E�B rotation
frequency �R can be trapped in the potential of the applied asymmetry and confined to one end of
the device. Both behaviors are associated with large radial excursions and mainly affect particles
with low velocities, i.e., vz�2�T /k, where �T is the trapping frequency. For the case of a helical
asymmetry with specularly reflecting boundaries, large radial excursions are observed for all
velocities near the radius, where �= l�R. Minor modifications to these results are observed when the
code is run with realistic end potentials. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2424431�

I. INTRODUCTION

The Malmberg-Penning non-neutral plasma trap is espe-
cially suitable for basic studies of plasma transport due to its
excellent confinement properties. It is well established that
electric and magnetic fields that break the cylindrical sym-
metry of these traps produce radial transport. This
asymmetry-induced transport has been studied experimen-
tally for some time, both for its fundamental interest and
because suitably applied asymmetries can drive particles ra-
dially inward and produce essentially infinite confinement
times for various applications.1–9 While it is straightforward
to observe this transport in experiments, a full understanding
of the transport remains elusive. Calculations of the local
particle flux ��r� produced by the field asymmetry have been
published for both the quasilinear �plateau� regime10,11 and
the nonlinear �banana� regime,10 but a detailed comparison
of some of the predictions of these theories with experiment7

shows serious discrepancies. It seems clear that some impor-
tant physics is missing from the theory.

In this paper we report results from a simple computer
simulation developed as an aid to understanding particle dy-
namics in asymmetry-induced transport. The code employs
the fourth-order Runge-Kutta method to advance single par-
ticles in prescribed fields matching our experiment. For a
single helical asymmetry with periodic boundary conditions,
significant motion in the radial direction is restricted to those
particles near the resonant velocity. Both the location and the
width of this resonance are consistent with analytical theory.
When a standing wave asymmetry is used, however, addi-
tional dynamical behaviors are observed not included in the
current theory. Stochastic motion occurs when the resonant
regions of the two constituent counterpropagating helical
waves overlap, allowing a larger population of particles to
undergo large radial excursions. This case also produces a
class of particles with restricted axial motion in the lab

frame. We also report additional dynamical behaviors for the
case of a single helical asymmetry with reflecting boundary
conditions. Finally, we investigate the effect of more realistic
boundaries at the ends of the device and find minor modifi-
cations result.

II. MODEL

Our code is constructed to model our experimental de-
vice which is shown in Fig. 1. Low density electrons are
confined in the central region of length L between the nega-
tively biased injection gate and dump gate. In order to main-
tain an azimuthal E�B drift comparable to a higher density
plasma, a negatively biased wire is stretched along the axis
of the device. The uniform axial magnetic field B providing
radial confinement is strong enough so that the gyroradius is
much smaller than the wall radius R. The walls of the con-
finement region are divided into forty sectors �five axial di-
visions S1–S5 with eight azimuthal divisions each�, which
allow application of an asymmetric electric field. The volt-
ages applied to these sectors are typically chosen so that the
field consists primarily of a single Fourier mode. The re-
maining details of the experiment are given elsewhere.7

The code follows the dynamics of single particles in pre-
scribed fields; interparticle fields are not included. The pre-
scribed fields are set by the center wire potential, the asym-
metric potential, and, when desired, the end confinement
potentials. The center wire potential is given by

�0�r� = �cw
ln�R/r�
ln�R/a�

, �1�

where �cw is the bias of the center wire, R is the radius of the
wall, and a is the radius of the center wire. The asymmetric
potential is chosen to be either a helical wave
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�asym�r,�,z,t� = �1�r�cos�kz − l� + �t� �2�

or an axially standing wave

�asym�r,�,z,t� = �1�r�cos�kz�cos�− l� + �t� . �3�

In Eqs. �2� and �3�, k=n� /L and n is the axial wavenumber,
l is the azimuthal wavenumber, � is the asymmetry fre-
quency, and z is measured from one end of the confinement
region. The amplitude �1�r� is taken to be of the form
�10�r /R�l, where �10 is a constant. This form closely ap-
proximates the exact vacuum solution.

The particle motions in the code are governed by

dr

dt
= vr, r

d�

dt
= v�,

dz

dt
= vz,

dvz

dt
=

qEz

m
. �4�

For typical experimental conditions, the gyroradius is much
smaller than the wall radius R and the cyclotron frequency is
much larger that all other dynamical frequencies. We thus
ignore the cyclotron motion and follow the motion of the
guiding center. In this drift approximation, vr and v� are
given by

vr =
E�

B
, v� = −

Er

B
. �5�

The electric fields are obtained from the prescribed poten-
tials: Er=−�� /�r, E�=−�1/r���� /���, and Ez=−�� /�z.

The code incorporates three options for the ends of the
trap: periodic boundaries, specular reflection, or realistic
ends. For periodic boundaries, the axial position of the par-
ticle can range from z=−L to z=L. Particles reaching z=L
are shifted to z=−L and vice versa. For specular reflection,
the axial position ranges from z=0 to z=L. At the ends, the
particle simply reverses axial direction as if bouncing off of
an infinite potential. For realistic boundaries, the actual po-
tentials produced by the negatively biased gates are added to
the prescribed fields. In this case, the axial extent of the
particle’s motion is a function of radius and particle energy,
and the azimuthal E�B rotation frequency �R is a function
of r and z.

Equations �4� and �5� are solved using a fourth-order
Runge-Kutta method.12 To maintain precision, the velocities
are scaled to 106 cm/s, the asymmetry frequency � is
scaled to 106 rad/s, and time t is scaled to 10−6 s. Parameters
are chosen to match our typical experimental conditions:
B=364 G, L=76.8 cm, R=3.87 cm, a=0.178 mm,
�cw=−80 V, �10=0.1 V, and n= l=1.

III. ANALYTICAL RESULTS FOR A HELICAL
ASYMMETRY IN A PERIODIC PLASMA

As a touchstone for the simulation, we present some
results of an analytical treatment. We consider a plasma with
periodic boundary conditions of period 2L and a helical
asymmetry. The total potential is given by

��r,�,z,t� = �0�r� + �1�r�cos�kz − l� + �t� , �6�

where �0�r� is given by Eq. �1�. In the drift approximation,
we then have

dr

dt
= −

l��r�
rB

sin � , �7�

d�

dt
=

v�

r
= �R�r� +

1

rB

d�1�r�
dr

cos � , �8�

and

dvz

dt
= −

ek

m
�1�r�sin � , �9�

where �=kv− l�+�t and �R�r�= �1/rB��d�0 /dr� is the
azimuthal E�B rotation frequency.

We first note that changes in r and vz are simply related.
From Eqs. �7� and �9� we obtain

rB

l

dr

dt
=

m

ek

dvz

dt
. �10�

Integrating this between any two times, we find

k�c

2l
�r2�t2� − r2�t1�� = vz�t2� − vz�t1� , �11�

where �c=eB /m is the electron cyclotron frequency.
Next, we treat the behavior of particles trapped in the

asymmetric potential. Guided by the standard treatment of
particle trapping, we consider oscillations in the quantity �.
Forming d2� /dt2 and using Eqs. �8� and �9� we obtain

d2�

dt2 = �−
ek2

m
�1 +

l2

rB
�1

d�R

dr
+

l2

rB
�1 cos �

d

dr
� 1

rB

d�1

dr
�

+
l

rB

d�1

dr
�kvz − l

d�

dt
− ���sin � . �12�

The third term in Eq. �12� is second order in the perturbing
potential �1, and thus may be ignored. The phase of the
asymmetric potential will be constant in a frame moving
with velocity

vres =
l�R − �

k
, �13�

and in this frame the fourth term of Eq. �12� is zero to first
order. We thus are left with

d2�

dt2 = − �T
2 sin � , �14�

where

FIG. 1. Schematic of the Occidental College Trap. The usual plasma column
is replaced by a biased wire to produce the basic dynamical motions in low
density electrons injected from an off-axis gun.
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�T
2 = � e

m
k2 −

l2

rB

d�R

dr
��1. �15�

Equation �14� is the well-known pendulum equation with �T

being the small angle oscillation frequency. In this context,
this is the oscillation frequency of particles moving with the
asymmetry and trapped in its potential.

From here the analysis follows that for the standard
plane wave. Oscillations in the asymmetry potential form
resonance islands and these islands have half-width in the
vz -� plane of

	vz = 2
�T

k
. �16�

For a helical potential, the trapping oscillations also move
the particle in radius, in accordance with Eq. �11�. The top
half of such an island is shown in Fig. 2.

IV. SIMULATION RESULTS

A. Helical asymmetry with periodic boundary
conditions

We start with the simplest case of a helical asymmetry
with periodic boundary conditions and show that the code
produces results consistent with analytical theory. We set the
initial values of r, vz, z, and � and run the code for a chosen
asymmetry frequency � and length of time tmax. Here we set
the initial z=0.05L and �=0 to maximize the interaction with
the asymmetry and choose tmax to be long compared to a
trapping period 2� /�T, where �T is given by Eq. �15�. We
run the code for a grid of 50�50 initial vz and r values. For
each initial condition, the code keeps track of the maximum
and minimum values of r, vz, and z. In Fig. 3 we show a
contour plot of the scaled radial excursion �rmax−rmin� /R
versus the initial vz and r /R for the representative frequency
�=0.5. The plot shows that certain initial conditions produce
large radial excursions reflecting the resonant interaction
with the asymmetry. Superimposed on the plot are lines cor-
responding to Eqs. �13� and �16� showing that the location
and width of the resonant interaction are as expected. Par-
ticles starting just inside the resonance island have the largest
radial excursions as they execute trapping oscillations. Addi-

FIG. 2. Top half of the resonance island for a helical asymmetry with
projections on the three backplanes. The scaling for vz and r is given by Eqs.
�16� and �11�.

FIG. 3. Contours of scaled radial excursion �rmax−rmin� /R versus initial
axial velocity vz and scaled radius r /R for a helical asymmetry with periodic
boundary conditions and a representative asymmetry frequency �=0.5. The
solid line shows the resonant velocity vres and the dotted lines the analytical
boundaries of the resonance island given by Eq. �16�. The white dot is the
starting point for Fig. 4. Stair steps in the contours are an artifact of the
square array of initial conditions.

FIG. 4. Trajectory plot of vz and r /R versus time t with projections on the
three backplanes. The initial condition is vz=25 and r /R=0.6 as shown by
the white dot in Fig. 3. The regular oscillatory motion characteristic of
trapped particles is consistent with expectations.
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tional runs with different asymmetry frequencies show
that the entire resonance structure shifts up or down accord-
ing to Eqs. �13�. A contour plot of the velocity excursion
vmax−vmin has a similar appearance due to the simple rela-
tionship given in Eq. �11�.

The regularity of the particle dynamics in this case is
illustrated in Fig. 4. We set the initial conditions to be
vz=25 and r /R=0.6, as shown by the white dot in Fig. 3.
Since this is inside the resonance island, we observe the
periodic oscillations of a trapped particle. Motions in vz and
r are correlated, as expected from Eq. �11�.

B. Standing wave asymmetry

We next consider the case of a standing wave asymmetry
of the form of Eq. �3�. For this case, the results are the same
for either periodic or specularly reflecting boundary condi-
tions. Figure 5 shows contour plots of the scaled radial ex-
cursion versus initial condition for three representative asym-
metry frequencies. Since the standing wave asymmetry
consists of two counterpropagating helical waves, it is no
surprise to see two resonance structures with velocities of
opposite sign. When the two resonances overlap, however,
the regular motion of the helical asymmetry is lost. Appar-
ently, all initial conditions in the overlap region now produce
large radial excursions, not just those at the boundaries of the
resonance islands.

The particle motion in the overlap regions is stochastic.13

The regular particle dynamics for a single helical wave were
characterized by periodic motion at a single frequency and
correlation between vz and r. For the standing wave, the
same initial conditions produce nonperiodic, multiple fre-
quency motion with no correlation between vz and r, as
shown in Fig. 6. Furthermore, the particle evolution exhibits
sensitive dependence on initial conditions, as shown in
Fig. 7.

Embedded in these stochastic regions is another type of
motion. This is illustrated in Fig. 8. Part �a� shows the same
data as in Fig. 5�b� with a different contour scale so that the
regions of largest radial excursion are distinguished. These

FIG. 5. Contours of scaled radial excursion versus initial axial velocity and
scaled radius for a standing wave asymmetry at three representative asym-
metry frequencies. The contour scale is the same as for Fig. 3. Resonant
structures are seen for both of the constituent counterpropagating helical
waves. When the resonances overlap, the motion becomes stochastic.

FIG. 6. Trajectory plot of vz and r /R vs t with projections on the three
backplanes. The initial condition is vz=25 and r /R=0.6, as shown by the
white dot in Fig. 5�b�. The motion is no longer periodic and the relation
between vz and r no longer follows Eq. �11�.
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appear on either side of the vres=0 point �or the �= l�R

point� and are bounded in velocity by the island width. A key
feature of these particles is that they are restricted to one end
of the device, as shown in Fig. 8�b�. This contour plot gives
the axial excursion �zmax−zmin� scaled to the length L, with
darker shades corresponding to shorter axial excursions.
These particles are trapped in the asymmetry potential in the
lab frame.

A simple model explains the features in the vicinity of
�= l�R. For a standing wave, we have

�1 = �10 cos�n�

L
z�cos�− l� + �t� �17�

and

E� =
l�10

r
cos�n�

L
z�sin�− l� + �t� . �18�

It is E� that produces radial drift. To zeroth order, −l�+�t
= ��− l�R�t, so that E�=0 at the radius where �= l�R. On
either side of this radius, however, there is a region where
−l�+�t is nonzero and is slowly varying in time. For times
short compared to this variation, these particles see approxi-
mately constant fields, as represented in Fig. 9. For either
reflecting or periodic boundaries, particles with low energies
will be trapped axially. For these particles, 	E�dz
0, pro-
ducing large radial excursions. In contrast, untrapped par-
ticles have 	E�dz=0.

C. Helical asymmetry with reflecting boundary
conditions

Returning to the case of a helical asymmetry, we now
impose reflecting boundary conditions. This change produces
several new effects, as shown in Fig. 10. Although the helical
asymmetry travels in one direction only, particles with both
positive and negative initial velocities interact resonantly
since they change directions when they reflect at the machine
ends. This explains the presence of two resonance structures

as in the standing wave case. Note that the boundaries of the
observed resonance structures lie slightly inside the lines
given by Eq. �16�. As in the other cases we have considered,
the lines assume an asymmetry amplitude of �10=0.1. The
reduction in the size of the resonance structures is presum-
ably due to the fact that the particles interact resonantly only
half the time. This on-off switching of the resonant interac-
tion may also account for the weak secondary resonance
structure on the left side of Fig. 10.

The most striking feature of Fig. 10, however, is the
band of large radial excursion around the radius where �
= l�R. Unlike the standing wave case, all velocities partici-

FIG. 7. Plot of vz vs r /R for two slightly different initial conditions. The
initial condition for the dotted line is vz=25 and r /R=0.6 and is the same as
shown in Fig. 6. The solid line starts at vz=24 and r /R=0.6 but quickly
diverges from the dotted line. This sensitivity to initial conditions is char-
acteristic of stochastic motion.

FIG. 8. �a� Replot of Fig. 5�b� with a different contour scale. Embedded in
the stochastic region is a smaller region of large radial excursion around the
radius where �=�R. �b� Contour plot of the scaled axial excursion
�zmax−zmin� /L versus initial vz and r /R for the same conditions as �a�. Note
that here darker shades indicate shorter axial excursions. This shows that the
region of large radial excursion has restricted axial excursion; i.e., the par-
ticles are trapped at one end of the machine.
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pate, not just the low velocity ones. Again, a simple model
explains this feature. For a helical wave, we have

�1 = �10 cos�n�

L
z − l� + �t� �19�

and

E� =
l�10

r
sin�n�

L
z − l� + �t� . �20�

If �=�R, then �−l�+�t�=0, so these particles see constant
fields as represented in Fig. 11. Note that, for periodic
boundaries �z=−L to L�, in first order, 	E�dz=0, whether the
particles are axially trapped or not. However, for reflecting
boundaries �0 to L�, 	E�dz
0, whether the particles are axi-
ally trapped or not. Thus, all velocities near this radius un-
dergo large radial excursions.

D. Realistic ends

Finally, we consider the effect of realistic end conditions
on the simulation results. The particles still reflect at the ends
of the machine, but the reflection point is now a function of
radius and particle energy, and the length of the axial excur-
sion will no longer be the same as the asymmetry axial
wavelength. In addition, the rotation frequency �R will have
an additional contribution due to the radial component of the
confining end fields, thus making �R a function of z as well
as r.

One might conclude that all these changes would destroy
the resonant interaction we have previously observed, but
this is not the case. For gate potentials matching those in our
experiment �−140 V�, contour plots such as Fig. 5 show two
very small changes. The first is that the position of the reso-
nance structure is altered such that, for a given radius, its
center occurs at a slightly smaller velocity. This is consistent
with a slight decrease in the effective length of the plasma
�i.e., the particle axial excursion�. This decrease produces a
decrease in vres in accordance with Eq. �13�.

The second change is the appearance of a weak second-
ary resonance similar to that seen in Fig. 10. This is due to
the fact that the plasma length is no longer the same as the
asymmetry wavelength. The particle thus sees an asymmetry
that is not a pure sine wave and the higher k values in this
asymmetry produce the secondary resonance structure.

V. DISCUSSION

These results show that there are dynamical behaviors
that are not included in the current theory of asymmetry-
induced transport.10 While this work does not constitute a

new transport theory, the results appear to point in a prom-
ising direction. Furthermore, while the details of the results
shown reflect our experimental configuration �most notably,
the radial dependence of �R�, the new dynamical behaviors
do not depend on these particulars and should also be present
in other experiments.

The most experimentally relevant case is that of a stand-
ing wave asymmetry since the wall probe signals applied in
most experiments can be analyzed into one or more standing
waves. When the asymmetry frequency � matches l�R at
some radius in the plasma, the particle dynamics will be
stochastic. In the canonical studies of stochasticity due to
resonance overlap, there is a transition point when the am-
plitude of the two resonances becomes large enough to pro-
duce the overlap.13 Here, however, overlap always occurs
because the resonances cross through one another. Although
the width of the stochastic region in velocity space depends
on the amplitude of the asymmetry, there is no transition to
stochasticity at a particular asymmetry amplitude.

We have also noted the presence of a region of espe-
cially large radial excursion around the �= l�R point. These
particles are also trapped axially by the asymmetry potential.
For an n=1, l=1 asymmetry like the one used here, there

FIG. 9. Representation of standing wave fields near the point where
�= l�R.

FIG. 10. Contours of scaled radial excursion versus initial axial velocity and
scaled radius for a helical asymmetry with reflecting boundary conditions
and a representative asymmetry frequency �=1.0. The contour scale is the
same as for Fig. 3.

FIG. 11. Representation of helical fields near the point where �= l�R.
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would be a trapped particle population at each end of the
machine separated by 180° in �. This is reminiscent of recent
work on trapped particle modes.14

Note that both of these effects involve the lowest veloc-
ity particles. If heating of the plasma occurs, this population
of particles would be reduced. This may explain why the
“rotating wall” technique requires some form of cooling to
be effective.3,8 The observed “no-slip” requirement �i.e., �


 l�R� of these experiments is also consistent with our simu-
lation results.

Our results also suggest that there may be fundamental
differences between experiments that use a static asymmetry
�i.e., �=0� and those that use a nonzero frequency. Since �R

stays positive out to the wall of the device, a static asymme-
try will not produce resonances that cross. While a region of
resonance overlap may occur for this case �cf. Fig. 5�a��, it
will occur at the larger radii and, since the resonances do not
cross, may exhibit a transition to stochasticity. The same
comments apply to asymmetries that are made to spin in the
direction opposite the plasma �i.e., asymmetries with ��0�.
Such considerations might also explain why our experiments
with variable frequency asymmetries7 observe significant
transport only for nonzero, positive frequencies.

Finally, we note that for the helical case with reflecting
boundaries large radial excursions occur around the �= l�R

point for all velocities, so that heating would not reduce this
population. This suggests that a helical rotating wall could
produce improved confinement without the need for supple-
mental cooling of the plasma.

VI. CONCLUSION

We have studied the particle dynamics of asymmetry-
induced transport using a single-particle computer simula-
tion. For the case of a helical asymmetry with periodic
boundary conditions we observe behaviors consistent with
analytical theory. For reflecting boundaries with either a he-
lical or standing wave asymmetry, we observe important dy-
namical behaviors not included in the current theory of this
transport.
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