
Introduction to Plasma Research at Occidental College

I. INTRODUCTION

Plasma transport, and neoclassical transport in particular, are topics of great interest in

plasma physics, but these topics are difficult to study in a fundamental way. Non-neutral

plasma traps are well suited to this task because the intrinsic transport is low and induced

transport can thus be studied in a controlled manner. The work at Occidental College is a

primarily experimental program of research on radial transport of electrons in a non-neutral

plasma trap. In particular, we have studied transport produced by applied asymmetric

fields.

The experiments were performed on a modified Malmberg-Penning trap at Occidental

College. This device has unique features which allow us to avoid complications we have

previously encountered in such research. Specifically, the plasma density has been lowered

by a factor of 100 so as to minimize collective contributions to the applied asymmetric field.

The azimuthal E×B drift normally produced by the plasma self-field is provided by a biased

wire running axially down the center of the trap. Previous confinement experiments on this

trap show the same parameter scaling as observed in higher density plasmas, thus validating

our approach. Forty wall sectors are used to create the asymmetric field, thus reducing the

number of Fourier modes applied to the plasma and simplifying comparisons to theory.

II. SCIENTIFIC BACKGROUND

The research performed at Occidental College is closely related to current and previous

work on the confinement of non-neutral plasmas. Some of this research is reviewed here in

order to provide a background for our work. The logic and methods of our work are best

understood in light of previous work on radial transport in these systems.

A. Non-neutral Plasmas.

Non-neutral plasmas have unique and interesting properties which make them especially

suitable for basic plasma physics research and for various applications. Typically these
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FIG. 1: Schematic of simple non-neutral plasma trap (from Ref. [3])

plasmas are contained in cylindrical geometry, with an axial magnetic field providing ra-

dial confinement and applied end potentials providing axial confinement – the so-called

Malmberg-Penning Trap [1, 2]. The conducting wall is divided into three (or more) sections,

with the plasma normally residing in the grounded central section (see Fig. 1). For electron

traps, the end sections are biased sufficiently negatively that axial confinement of the elec-

tron plasma is assured. Typical parameters for electron plasmas are: density n0 = 107 cm−3,

electron thermal energy kT = 1 eV, and magnetic field B = several hundred gauss (for non-

superconducting coils). The plasma is rotating, since the radial electric field due to space

charge gives an E × B drift in the θ direction. The plasma is typically both stable and

reproducible.

B. General Transport Issues.

Theoretically, the radial transport of such a plasma is constrained by conservation of the

total canonical angular momentum [4]:

Pθ =
∑

j

[mvθjrj + (qj/c)Aθ(rj)rj] . (1)

Here, (r, θ, z) are cylindrical coordinates, and the vector potential is given by Aθ(r) = Br/2,

neglecting the diamagnetic field which is small compared to B for the low densities and

low electron velocities considered here. The confinement is easiest to understand for the

case where B is sufficiently large that we may ignore the first term. In this case we have

Pθ ≈ (qB/2c)
∑

r2
j . Thus, in the absence of external torques, the plasma cannot change its

mean square radius and there can be no bulk radial expansion of the plasma.

Of course, in actual containment devices there are always effects which can change the

angular momentum of the plasma, causing plasma expansion, heating, and loss. Two im-
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portant examples of such effects are electron-neutral collisions and electric or magnetic fields

that are not cylindrically symmetric. Transport due to electron-neutral collisions has been

previously studied [2] and was found to agree in detail with theoretical predictions [5] for

neutral pressures above 10−7 Torr. More recent work [6] on transport due to electron-neutral

collisions is also consistent with classical theory. As the neutral pressure is lowered below

10−7 Torr, however, it was found [7] that the confinement of long plasmas was much worse

than that expected from electron-neutral collisions. This anomalous loss is believed to be

caused by small electric and magnetic field asymmetries due to construction imperfections.

Experiments by Driscoll, Malmberg, and Fine [8, 9] established that this anomalous loss

depends strongly on the length L of the plasma column and on the axial magnetic field

(scaling as L2B−2).

C. Transport Due to Applied Asymmetries.

Efforts to understand this anomalous transport have involved measuring the net change in

the radial density profile produced by applied field asymmetries. These asymmetric fields can

be produced, for example, by applying various voltages to azimuthally divided conducting

walls of the non-neutral plasma trap. The asymmetric potential produces an Eθ and thus a

radial E × B drift which leads to a net expansion of the plasma. It is easy to produce and

measure this transport, and several experimenters have worked on this problem [10–18], but

a solid connection between experiment and theory is lacking.

Conceptually, it is useful to divide the asymmetry-induced transport problem into two

parts: 1) determine the asymmetric field in the plasma and 2) determine the transport

produced by these fields. The key features of the Occidental trap are motivated by our

previous work showing that part 1) can be quite complex and can interfere with attempts

to understand the transport.

1. Determining Asymmetric Fields: Previously Encountered Problems.

While it is easy to apply asymmetric potentials to the walls of a non-neutral plasma trap,

our previous work [3, 10, 19] has shown that it is not always easy to determine the plasma’s

response to these wall potentials. These potentials cannot be directly measured with probes
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since anything inserted into the plasma would degrade its confinement. Thus we are faced

with calculating the potentials using plasma theory. There are two issues here: the number

of spatial Fourier modes produced by a localized wall potential and the plasma’s response

to these modes. We consider each of these in turn.

Determining the plasma’s response to wall potentials involves solving Poisson’s equation.

As usual in plasma theory, the equation is linearized to make it tractable, and the equation is

solved for a Fourier mode having the form φ(r) exp[i(ωt− kz− lθ)] where ω is the frequency

of the field asymmetry and l and k are the azimuthal and axial Fourier wavenumbers of

the asymmetry. In order to apply the boundary conditions at the wall, the wall potential

must also be broken up into Fourier modes. Since the wall potentials are localized, many

Fourier modes are produced. While this involves much algebra, the process is straightfor-

ward. However, there are two reasons to minimize the number of these modes. First, in a

quasilinear transport theory each of these modes will produce a term in the flux equation:

Γtheory = Γ1 +Γ2 +Γ3 + ..., whereas in the experiment, the flux is a single number. Since the

combination of theoretical terms Γi producing a given flux value is not unique, the cleanest

comparison between experiment and theory would involve a single Fourier mode. This fact

led us to increase the number of wall sectors in our device so as to decrease the number of

modes.

A second reason to increase the number of sectors is to ensure that the wall potentials

do not get too big. When, as in previous experiments, the potentials are applied with a

single cylinder of length Ls , the amplitude of the Fourier modes will be proportional to

(Ls/L)φW , where L is the length of the entire plasma and φW is the wall potential. Thus,

the smaller Ls/L is, the larger the wall potential will have to be to produce a mode of

given amplitude and thus a given amount of transport. However, the amplitude of the wall

potential is not unrestricted. Linear theory assumes the trajectories of the electrons do not

differ radically from the unperturbed case. Since the potentials in the vicinity of the wall

sector are on the order of the wall potential, theory requires eφW << kTe. Thus, in order to

satisfy theoretical assumptions while producing an observable amount of transport, many

wall sectors are useful.

Now let us turn to the second issue: determining the plasma’s response to the applied wall

potentials. This, of course, is necessary because it is the field strength in the plasma that

determines the transport. Again, the procedure is straightforward, if tedious: having found
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the Fourier components of the wall potential (i.e. the boundary conditions), we numerically

integrate Poisson’s equation for each set of (k, l, ω). Our previous studies have shown,

however, that this step at best involves some subtleties and at worst may be impossible.

The subtleties are due to the variable plasma response to the various Fourier components of

the wall potential. Certain values of (k, l, ω) will produce a potential that falls off rapidly

inside the plasma (Debye shielding limit), others values will drive plasma modes, and others

will produce a response somewhere in between (for details see reference [20]) When a mode

is driven, the collectively enhanced potentials produce enhanced transport [3, 10, 13]. Such

enhancements at mode frequencies make it difficult to observe any frequency dependence

in the transport part of the problem. The situation is further complicated by the fact

that applied field asymmetries can also couple to additional plasma modes nonlinearly, e.g.

through three-wave processes and induced scattering [19, 21].

These complications can be more than annoying. When a plasma mode is driven, the

distribution function at the phase velocity of the mode will determine its amplitude. But

this is the same part of the distribution producing the radial transport. Thus, the problem

can be inherently nonlinear: the transport depends on the asymmetric potentials in the

plasma, but the amplitude of these potentials is sensitively dependent on any modification

in the distribution of the resonant particles (i.e. it is dependent on the transport). Clearly,

the “easy” part of this problem (determining the fields that lead to transport) is not easy

at all. While the physics of these phenomena is interesting, we do not believe it is essential

to understanding the transport, and this belief is supported by our results to date. Thus, in

our trap we have lowered the density by a factor of 100 to minimize collective contributions

to the asymmetric field.

2. Determining the Transport: Resonant Particle Transport Theory.

The second part of the transport problem is to calculate the radial particle flux produced

by a known asymmetric field in the plasma. We have adapted [20] the theory of asymmetry-

induced transport originally developed to describe non-ambipolar radial losses in tandem

mirrors [22, 23] to Malmberg-Penning traps. The basic idea of the resulting resonant particle

transport theory is that the radial flux is largely associated with particles that experience a

resonance with the asymmetric field. The resonance condition is ω− lωR−kvz = 0, where ω
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is the frequency of the field asymmetry (for static fields ω = 0), ωR is the azimuthal E ×B

drift frequency of the plasma column, vz is the axial velocity, and l and k are the azimuthal

and axial Fourier wavenumbers of the asymmetry. The resulting radial particle flux can be

written in the form

Γ = −
∑

n,l,ω

[

Dnlω
dn0

dr
+ n0Vnlω

]

(2)

where Dnlω and Vnlω are related by a generalization of the Einstein relation

Vnlω =
rωc

lv2 (ω − lωR)Dnlω =
√

2
nπ

L

rωc

lv
xDnlω. (3)

The function Dnlω assumes various forms depending on the strength and nature of the

resonance, the vicinity of additional resonances, and the relative importance of collisions.

The simplest of these corresponds to the case of an asymmetry which is sufficiently weak that

the trapping frequency is small compared to the effective collision frequency (the plateau

regime):

Dnlω =
1√
2πv2

L

|n|

∣

∣

∣

∣

clφnlω(r)

rB

∣

∣

∣

∣

2

e−x2

. (4)

This function is modified when the strength of the interaction is such that the trapping

frequency is larger than the effective collision frequency (banana regime). We then obtain

Dnlω =
1√
2π

ν
(

L
nπ

)2
(

lv
rωc

)2 (

eφnlω(r)
T

)1/2

[

1 −
(

lL
nπ

)2 1
rωc

dωR

dr

]3/2
e−x2

. (5)

For simplicity, we have assumed here that the temperature T is constant with radius. The

variable x is equal to vres/
√

2 v, where vres = L(ω − lωR)/nπ is the resonant velocity for

the asymmetry mode n, l, ω (n is the axial mode number kL/π). The symbols n0, v, ωc,

and νee denote the electron density, thermal velocity, cyclotron frequency, and the electron-

electron collision frequency, respectively. φn,l,ω is the Fourier mode amplitude associated

with asymmetry mode (n, l, ω) and includes any collective response of the plasma to the wall

voltages. The remaining quantities have been previously defined or are standard notation.

Note that, as we claimed earlier, the flux involves a sum over all Fourier modes present.

Also, the dominance of the transport by resonant particles is reflected in the e−x2

term,

which is the Maxwellian distribution function evaluated at the resonant velocity. A third

regime occurs when neighboring resonances overlap and the transport becomes independent

of collisions (stochastic regime).
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It is important to note that, since the trapping frequency depends on the amplitude

of the field asymmetry in the plasma, one must know this amplitude to determine which

transport regime describes the experiment. This is yet another reason to minimize collective

contributions to the asymmetric field.

It is clear that collective processes can play an important role in these experiments. The

linear and nonlinear processes observed experimentally [10, 19] can change the magnitude

of the transport by significant amounts. However, it is not clear that collective processes

play an essential role in determining the nature of the transport. If our two-part division

of the transport problem is correct, then the main role of collective effects is to alter the

amplitude of asymmetric fields in the plasma. In this case their presence only complicates

the experiment and may well mask other fundamental processes.

III. THE OCCIDENTAL COLLEGE TRAP

The research program at Occidental College seeks to explore radial transport in the ab-

sence of collective effects. Our experimental device has been designed to avoid the difficulties

outlined in part II C so that we can focus on understanding the transport. First, in order

to minimize the number of Fourier modes we have divided our confinement region into forty

sections (five cylinders with eight azimuthal divisions each). Of course, more is better with

regard to the number of these sections, but this number can be reasonably handled and is

a great improvement over other experiments having at most eight sections. Secondly, in

order to simplify the task of determining the potentials in the plasma we have reduced the

plasma density by at least a factor of 100 and increased the plasma temperature. These

changes increase the Debye length to the point where collective effects are minimized (since

both Debye shielding and mode damping depend sensitively on the Debye length). Thus

the potentials in the plasma should be close to the vacuum potentials. The radial electric

field formerly produced by the plasma column is now provided by a negatively biased wire

running along the axis of the trap. Thus the basic dynamical motions of electrons in our

trap are the same as in any other (axial bounce motion and azimuthal drift motion). In

essence, we have constructed a trap where the electrons will act as test particles moving in

prescribed fields.

The apparatus for our experiments is shown schematically in Fig. 2. A gold-plated copper
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FIG. 2: Schematic of the Occidental College Trap. The usual plasma column is replaced by a

biased wire to produce the basic dynamical motions in low density electrons injected from an off-

axis gun. The low density and high temperature of the injected electrons largely eliminate collective

modifications of the vacuum asymmetry potential. The five cylinders (labeled S1 through S5) are

divided azimuthally into eight sectors each.

tube with 3.05 in. I.D. is divided into eight electrically isolated parts, each 6.00 in. long.

Five of these (labeled S1 - S5) are further divided azimuthally into eight equal sectors to

allow for experiments with applied electric field asymmetries. An electrically isolated 0.014

in. diameter wire runs along the axis of the device. This electrode structure is positioned

along the axis of the main vacuum chamber and the entire device is placed in a long solenoid

which provides a uniform magnetic field variable over the range 0 - 600 gauss. Cancellation

of the earth’s magnetic field and fine alignment of the electrode and solenoid axes is provided

by two sets of “bent head” rectangular magnetic field coils. The base vacuum pressure is

3.5 × 10−10 Torr and the residual gas consists mainly of hydrogen.

The experiment runs in cycles with a timing sequence as follows. Two of the electrodes

are used as injection and dump gates which are normally held at a large negative potential

(typically -140V). The remaining cylinders are grounded. The center wire is also normally

at a selected bias (-140 to +140V). To start a cycle the bias on the center wire is set to zero.

We then ground the injection gate and apply a negative pulse (1.0 to 12.0V) to an off-axis

electron gun cathode (cf. Fig. 2). After the gun is pulsed, the injection gate is returned to a

negative potential and the center wire is switched first to -140V for 100 µs and then to the

selected final bias level. The electrons are now trapped between injection and dump gates

and are held for a variable time during which transport-producing asymmetries are applied

to some or all of the forty wall sectors. Finally, the dump gate is grounded, allowing the

remaining electrons to escape axially along magnetic field lines and hit a positively-biased

phosphor-coated screen. If one wishes to change the length of the confinement region, the

role of injection gate and dump gate may be assigned to other sections of the trap.
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The phosphor screen serves two diagnostic purposes: 1) as a collection plate, it provides a

measurement of the total charge remaining in the machine at the dump time. 2) If the bias

on the screen is increased sufficiently, the phosphor will emit light. These phosphor screen

images show the spatial distribution of the electrons and thus, along with the measurement

of the total charge, allow a computation of the electron density. The image data is obtained

with a sensitive, computer controlled CCD camera with up to sixteen bits of dynamic range.

It is also possible to analyze electrons escaping from partial dumps (i.e., the dump gate made

less negative but not grounded) to obtain the axial distribution function of the electrons [24].

The electrons from the gun initially form a small-radius off-axis column with a typical

peak density of 107 cm−3. However, the strong adverse radial shear in the E × B velocity

produced by the high initial negative bias on the center wire quickly disperses the electrons.

Within 100 µs the electrons have reached a symmetric annular distribution with a peak den-

sity reduced to 105 cm−3. Details are given in reference [25]. Since the time for particle loss

to the walls is much larger than this, we can ignore the details of this initial rearrangement

and take the symmetrically filled device as our initial condition. The electron density at this

point is low enough that its contribution to the radial electric field is negligible for typical

center wire potentials. The reduced density together with increased axial temperature (typ-

ically 4 eV) gives a Debye length 4.7 cm. This is larger than our wall radius (3.87 cm) and

20 times larger than a typical pure electron plasma (density 107 cm−3, temperature 1 eV,

Debye length 0.23 cm). Although our Debye length is still small compared to the machine

length, there is no point in decreasing it further since even vacuum potentials fall off axially

with a scale length equal to the radius of the conducting wall.

In order to apply the simplest asymmetry possible we generally use all forty wall sectors

and apply to each a signal with proper amplitude and relative phase. These wall potentials

are provided by two Pragmatic 2205A arbitrary waveform generators with a common clock

generator. Each of these devices provides two channels of phase-locked, variable frequency

sine-wave (up to 10 MHz). These four channels go into power splitters which give an in-phase

and a 180-degree out-of-phase output, thus providing the eight signals for the eight azimuthal

wall divisions (for example, for an l = 1 asymmetry relative phases of 0, 45, 90, 135, 180,

225, 270, and 315 degrees are used). These signals are then attenuated as needed to provide

the axial variation in wall potentials. These potentials are gated on after the electrons are

injected and gated off just before they are dumped. On subsequent experimental cycles,
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the frequency, amplitude, or phase of the sine-waves can be adjusted as needed. The entire

experiment is computer-controlled so that parameter space can be scanned automatically.

We note that all of the significant parameters in this experiment are independently ad-

justable. These include the axial magnetic field, the radial electric field, the asymmetry

field strength, the frequency ω and Fourier mode numbers (l, k), the machine length, and

the axial electron velocity. This allows for a complete investigation of the relevant parameter

space. The azimuthal rotation frequency ωR is also easily adjustable:

ωR =
−φcw

r2B ln (R/a)
(6)

where φcw, R, and a are the center wire bias and the radii of the wall and the center wire,

respectively.

This system has several advantages. Since there are no collective effects, the asymmetric

fields may be easily calculated given the wall potentials, and the calculated fields will vary in

a known way (i.e. linearly) with the wall potentials. The drift frequency ωR and the parallel

velocity vz, which are fundamental parameters in the transport theory, are independently

variable over a large range (electron contribution to ωR is negligible). Finally, the phosphor

screen readout of particle position allows for greater spatial resolution than is practical with

particle collectors.

The reduction of density in our trap should also decrease the electron-electron collision

frequency, and it might be argued that this is a significant difference between our experiment

and higher density electron plasmas. However, our previous work suggests that this is not

the case. We have studied the scaling of confinement time in our device (with no applied

asymmetry) as a function of machine length L and axial magnetic field B. We found that

our confinement time follows the same (B/L)2 scaling found in higher density plasmas, and

that, for the same L and B, the absolute confinement time is comparable (see reference

[26]). This interesting but puzzling result indicates that the transport process is similar in

both cases and that it cannot depend critically on electron density.

IV. SELECTED RESULTS

We now review a few of our results. These results show that resonant particle transport

theory is not the correct model for asymmetry-induced transport and suggest an alternative
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model.

A. Frequency Dependence of the Transport.

As we have discussed, our unique experimental approach allows us to investigate the fre-

quency dependence of the transport while avoiding the dominating frequency dependence of

collective effects (i.e., standing waves). While our experiments on the frequency dependence

of asymmetry-induced transport[27, 28] give some superficial support to resonant particle

theory, a more detailed examination of the data reveals fundamental discrepancies. A typ-

ical experimental signature from these experiments is shown in Fig. 3a where we we plot

the measured radial flux Γ vs. asymmetry frequency f at four radial positions. The radial

density profile is shown in the inset. As the asymmetry frequency ω = 2πf is varied, the

resonant velocity vres = L
nπ

(ω− lωR) is swept through the electron distribution function and

a peak in the transport flux is expected. According to theory [see Eqs. (2) thru (5)], when

the density gradient is large, the flux should vary like e−x2

. Since x = vres/
√

2v, this is a

Gaussian curve centered where ω = lωR. This behavior is shown by the curves for r/R equal

to 0.19, 0.30, and 0.55. Note that the sign of the flux changes with the density gradient sign

and that the value where ω = lωR decreases with radius [see Eq. (6)]. At the top of the

density profile the gradient is zero, so we expect an xe−x2

behavior, and this seems to match

the r/R = 0.38 curve. We have verified that the curves shift horizontally in a qualitatively

appropriate way when the center wire bias or the magnetic field (and thus ωR) is varied.

Also, if the asymmetry is made to spin opposite the direction of ωR (corresponding to a

resonant velocity further out on the tail of the distribution function), no peaks are observed

in the flux, as expected.

Thus, at first glance our experiments seem to support resonant particle theory. However,

when we make more detailed comparisons to the predictions of the theory we find serious

discrepancies. A typical case is shown in Fig. 3b. Here we have plotted the frequency

at which the flux is an extrema, fpeak, versus radius and compared with the predictions of

resonant particle theory. Note that the decrease of the frequency of the peak flux with radius

does not match that given by theory, except for flux minima around r/R = 0.4. Even more

dramatically, for most radii the predicted flux maxima should occur at negative frequencies

(i.e, backward rotation), but the experimental points are all at positive frequencies.
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FIG. 3: Frequency dependence of the transport. a) On the left we show the radial particle flux

at four selected radii as a function of asymmetry frequency for center wire bias φcw = −110V ,

magnetic field B = 364G, and Fourier mode numbers n = 1, l = 1. The shape of the flux curves is

qualitatively consistent with that expected from theory. The electron density n0 (105 cm−3) versus

scaled radius r/R is shown in the inset. b) On the right we give a comparison of experimental and

theoretical values for fpeak showing the quantitative discrepancy, and, for the flux maxima, the

failure to even get the sign right. Experimental data is shown for the case where B = 364G, φcw

= -146V, n = 1, and l = 1. Experimental density profiles are used to produce the theory curves

shown by the solid lines. The rotation frequency fR is shown by the dotted line for comparison.

A more subtle discrepancy has to do with transport at low frequencies. As shown in

Fig. 3a, the experimental flux versus frequency curves always fall to very small values as

the frequency approaches zero. This behavior is observed for a wide range of experimental

parameters. In contrast, in resonant particle theory there is nothing special about zero

frequency and the flux versus frequency curves go smoothly through ω = 0 and extend into

negative frequencies. We believe that this discrepancy is an important clue to the transport

mechanism. It is worth noting that this discovery stems from our experiment’s unique ability

to probe the frequency dependence of the transport.

The nature of these discrepancies (large qualitative differences rather than small quan-

titative differences) suggests that something fundamental is missing from the theory. The

focus of our research has thus turned from testing resonant particle transport theory to

identifying and elucidating these missing elements.
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B. A New Approach to Determining the Magnetic Field Scaling of the Transport

A key experimental signature for transport is the scaling with magnetic field. We have

developed[29, 30] a new approach to finding the magnetic field scaling of the asymmetry-

induced radial flux Γ and the results also contradict resonant particle transport theory. Our

approach is based on the observation that the magnetic field B enters the transport physics

in at least two ways. Firstly, in the zeroth order azimuthal E × B drift produced by the

radial electric field vθ = Er/B. This causes the particle guiding centers to drift around the

trap axis with angular frequency ωR = vθ/r. Secondly, the magnetic field enters in the first

order radial E × B drift produced by the applied asymmetry vr = Eθ/B. It is this drift

which is responsible for the radial transport of particles and is thus most fundamental to

our study.

Our new experimental technique removes the ωR dependence and thus isolates the re-

maining first order magnetic field dependence. The technique is based on the hypothesis

that the asymmetry frequency ω and the plasma rotation frequency ωR always enter the

transport physics in the combination ω − lωR, where l is the azimuthal mode number of

the applied asymmetry. We then select from a Γ vs r vs ω data set those points where

ω − lωR = 0, thus insuring that any function of this combination is constant. When the

selected flux Γsel is plotted versus the density gradient ∇n0, a roughly linear dependence

is observed, showing that this selected flux is diffusive. This linear dependence is roughly

independent of the bias of the center wire in our trap φcw. Since in our experiment ωR is

proportional to φcw, this latter point shows that our technique has successfully removed any

dependence on ωR and its derivatives, thus confirming our hypothesis. The slope of a least-

squares fitted line through the Γsel vs ∇n0 data then gives the diffusion coefficient D0 under

the condition ω − lωR = 0. Varying the magnetic field, we found that D0 is proportional to

B−1.33, a scaling that does not match either regime of resonant particle transport theory.

We have also used an extension of this technique (examining data points adjacent to the

ω − lωR = 0 point) to constrain the form of the empirical flux equation, thus providing

a touchstone for future model development[31]. One of the interesting results is that the

mobility part of the transport is much smaller than predicted by the Einstein relation Eq. (3).
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C. Single-Particle Simulations

As noted above, it appears that resonant particle transport theory does not give a correct

description of asymmetry-induced transport. As an additional investigative tool, we have

developed a single-particle computer simulation to study the dynamics of particles moving

in prescribed asymmetric fields. The results[32] were surprising and indicate that there are

important particle dynamics not included in resonant particle theory. A representative result

is shown in the contour plots of Fig. 4. The plots show the maximum radial excursion of

particles as a function of their initial velocity vz and radial position r/R. The plot on the

left is for a helical asymmetry with periodic boundary conditions in the axial direction. The

superimposed solid line shows the position of the resonant velocity vres = L(ω − lωR)/nπ

and the dashed lines show the theoretical width of the resonance, which is set by the usual

banana regime orbits of particles trapped in the moving potential of the wave. These match

the simulation perfectly. This particular example is for ω = 0.5 × 106 rad/s. For higher

(lower) frequencies, the zero-crossing of the curve would shift to the left (right).

In experiments, however, particles reflect at the ends and the usual asymmetry is a

standing wave. Under these conditions we obtain the plot on the right. Now there are two

resonances, one for each of the counter-propagating helical waves that make up the standing

wave. When the two resonances overlap, however, the particle dynamics are not just the

sum of the individual wave dynamics. Rather, the particle motion becomes stochastic with a

much larger group of particles undergoing large radial excursions. Interestingly, there is no

threshold for the appearance of this stochastic regime; it will always be present where the

two resonances cross. Furthermore, at the core of this stochastic region (around vres ≈ 0)

is a group of particles that have especially large radial excursions. Additional studies show

that these particles reflect off the asymmetry potential and are axially trapped in the lab

frame. This axially trapping is distinct from the usual banana regime trapping in the wave

frame.

It is important to note that this new process has features that are quite different from

resonant particle transport. The process occurs only near the radial location where vres = 0

or, equivalently, where ω = lωR. This might explain the anomolously low transport we

observe at low frequencies (see section IV A) since this condition cannot be satisfied for

frequencies lower than the value of lωR at the wall. Also, this process only involves low
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FIG. 4: Single particle simulation results for typical experimental conditions. The shading shows

the value of the maximum radial excursion ∆r/R as a function of initial velocity vz and radial

position r/R. Note the ∆r/R scale is different for the two plots. The left plot shows the case of

a helical asymmetry with periodic boundary conditions while the right plot is for a standing wave

with reflecting boundaries. The asymmetry frequency is ω = 0.5 × 106 rad/s and vz has units of

106 cm/s.

velocity particles, whereas resonant particle transport can occur for any velocity satisfying

the resonance condition. This feature might explain why plasma heating reduces transport

in “rotating wall” experiments[16–18].

More recently, we have added collisions to our code, thus allowing us to determine the

transport coefficients for comparison to analytical theory and experiments[33]. We were

able to show agreement between the simulation and resonant particle theory for the simplest

case, but found that, generally, both resonant particles and axially trapped particles (ATPs)

contribute to the transport, and that the latter usually dominate for typical experimental

conditions. Although there is no analytical theory for ATP transport, we have had some

success explaining the simulation results using a heuristic transport model[34].

One intriguing result from this work is that, for ATP transport, the mobility part is much

larger than predicted by the Einstein relation Eq. (3). The failure of the Einstein relation is

not surprising given the non-equilibrium nature of the ATPs. As noted above, however, the

15



experiment indicates that the mobility part is much smaller than predicted. This striking

discrepancy is not understood, but we suspect it may be resolvable by taking into account

the non-local nature of the transport produced by ATPs with large radial excursions. The

need for such a modification has previously been noted by researchers studying transport in

neutral plasmas[35–37].
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