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ABSTRACT

A series of experiments at UCSD on pure electron plasmas is described.
The apparatus and methods of measurement are discussed. Results are
given on various wave experiments including the dispersion of electron
plasma waves, feedback growth and damping of the { =1 diocotron wave,
and the unstable growth of diocotron waves on plasmas with hollow radial
profiles. The nonlinear saturation of diocotron waves, subsequent vortex
merging and the decay of the resulting two-dimensional turbulence are
“observed. Transport processes resulting from both the single particle and
collective response of the plasma to externally imposed field asymmetries
have been studied: Evolution of the confined plasma to thermal equilibrium
has been observed and scaling of .the rate of this evolution with magnetic
field has been measured. The relaxation rate of an anisotropic velocity
distribution has been measured in both the usual parameter regime and the
cryogenic regime where the rate is greatly reduced due to the existence of a
many particle adiabatic invariant.

I. INTRODUCTION

In recent years the plasma group at UCSD has been studying the
properties of plasmas for which all particles have the same sign of charge,
specifically plasmas composed entirely of electrons. These plasmas are
unusually simple both experimentally and theoretically but they nevertheless
exhibit a wide range of collective and statistical mechanical effects. In this
lecture I will describe some of the experiments we have performed with this
system. Since a number of the other groups interested in the field will
present papers at this symposium I will restrict my presentation to the
UCSD work, and it should not be inferred that this is intended as a
scholarly review of the field. Instead this paper is tutorial in nature and on
the work of a single group. Since Tom O’Neil has just given a survey of the
theory I will confine most of my discussion to the experiments.

*Present address: Physics Dept., Océidental College, Los Angeles, CA 90041
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Our interest is plasma physics; and it is primarily that interest, not
differences in containment geometry, that distinguishes the UCSD work from
the large body of elegant research on small numbers of particles in traps.
The long-term goal of our research is to obtain a deep and detailed
understanding of various plasma phenomena in the simplest cases that we
are able to devise. We hope that this research will produce a set of
paradigms which will be useful for understanding the more complex behavior
typical of most laboratory and naturally occurring plasmas.

The series of experiments at UCSD has shown how to make and contain
nonneutral electron plasmas by simple methods, and has permitted precision
measurements of their wave and transport properties. The magnetized
column of electron gas is a plasma by the criterion that the Debye length is
small compared to the radius of the column. Except for a slow rotation, the
plasma is at rest in the laboratory frame of reference. This fact
_distinguishes these plasmas from those obtained in electron beam
experiments; for experiments this distinction is crucial. Wall interactions
"and collisions with impurity or background neutrals are negligible effects in
the pure electron plasma, so the dynamical evolution is governed by plasma

physics and is not complicated by atomic and surface physics.

Nonneutral plasmas.are.unique in that conservation of total. canomcal

angular momentum provides a constraint on the allowed radial positions of

the particles: if no external torques act on the plasma, the plasma cannot
expand to the walls. Internal interactions among the particles will then
drive the plasma towards a confined thermal equilibrium state. The
existence of magnetically confined thermal equilibrium states is a unique and
important property of nonneutral plasmas. Eventually, effects which break
cylindrical symmetry slowly transfer angular momentum to the plasma, and
the particles are slowly lost to the wall.

Another property of pure electron plasmas is that recombination cannot
occur even if the temperature is lowered towards absolute zero, since there
are essentially no ions in the containment volume. As the plasma
temperature is reduced, electron-electron correlations become strong. This
puts the plasma into a previously unexplored parameter range. At
sufficiently low temperatures and sufficiently high densities, theory predicts
that the electron gas will liquify, and that at still more extreme conditions,
it will freeze into a crystal.

A major thrust of our research is to use the pure electron plasma with
conventional parameters as a model system to study transport. The electron
plasma displays in some form many of the transport effects thought to be
important in neutralized plasmas, but it is a substantially simpler system.
The low-noise, repeatable pure electron plasma is also excellent for various
wave experiments.

The pure electron plasma can be mampulated by a number of
experimental techniques. These include axial compression and stacking,
radial compression by magnetic field ramping, and heating by voltages
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applied to the axial containment electrodes. These techniques are used -

routinely in our devices and may be useful to others in manipulating plasma
particles in their traps. ’

In this lecture, I will describe the apparatus and measurement

techniques and then turn to some of our experimental results on waves and
transport. '

II. EXPERIMENTAL DEVICES AND TECHNIQUES

The electron plasma is contained in cylindrical geometry, with an axial
magnetic field providing radial confinement, and applied potentials
providing axial confinement. The containment apparatus is shown
schematically in Figure (1). The entire apparatus is immersed in 2 uniform
static axial magnetic field. The boundary conditions on the electrostatic
field are determined by a conducting wall; the wall consists of a series of
electrically isolated cylinders of various lengths [for simplicity, only three are
shown in Figure (1)]. Any of these cylinders can be biased sufficiently
negative to contain the plasma axially. Some wall cylinders are divided into
angular sectors which can be used to launch or detect waves having
azimuthal dependence e*. : A '

The source of the electrons is a directly heated spiral of tungsten wire.
The center of this spiral is biased negatively with respect to ground. The
space charge potential of the plasma closely matches the filament
potential.!™* The overall filament bias voltage then determines the line
density of electrons N (number/cm length), while the ohmic potential drop
across the filament determines the number density n (number/em®). These
potentials are chosen to obtain the desired experimental parameters. The
approximately parabolic radial potential across the filament due to the
ohmic potential drop is the boundary condition that allows us to inject a
plasma, i.e. a collection of charges with radial size large compared to the
Debye length.

Several experimental apparatuses have been built. For one class of
machines the containment electrodes are at room temperature. We are
presently operating two of these apparatuses, denoted V' and EV. The
peutral pressure is <1071% Torr with B <700G. Typically the plasma
density is 107 cm® and the plasma temperature is 1 eV. These apparatuses
are mainly used to study waves and transport processes. The cryogenic
apparatus (CV) is based on a superconducting magnet, to obtain fields of 80
kG and pressures in the 10~!* Torr range, with the containment portion of

the apparatus at 4.2° K. Typically the plasma density is <4 X10' cm® and |

the temperature is 6 "K <7 <2X107 °K. On the cryogenic apparatus, the
filament has been moved axially into a lower magnetic field region, giving
substantially different injection characteristics.® This apparatus is designed
to study plasma properties in the rather unusual regime of high field and
- low temperatures, including the correlated liquid state.®7” :
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The systems normally operate in an inject, hold, dump/measure cycle.
During injection, all wall cylinders are grounded except for a dump gate {e.g.
#2 in Figure 1) which is biased negatively, giving a column of electrons
between the filament and this gate. A portion of this plasma column is
trapped by gating a second cylinder (e.g. #1) negative. This gives a trapped
plasma column. The length of the column is variable since in the real
apparatus there are many tylinders and thus many choices for the injection
and dump gates. Since the axial containment is energetically assured, the
electrons can be lost only by radial transport across the magnetic field to the
cylinder walls. The plasma column is rotating, since the radial electric field
due to space charge gives an E XB drift in the & direction. The electron
plasma contains a negligible number of positive ioms, since ions are not
confined longitudinally. :

After a variable containment time, the dump gate is pulsed to ground
potential, allowing the remaining electrons to stream out axially along the
field lines for collection and analysis. The injection/hold/dump cycle may
"be repeated up to 60 times per second with nearly identical injection
conditions, allowing the time evolution of the plasma to be constructed from
many separate measurements with differing containment times.

The collection electrodes include end plates in various geometries for
collecting the remaining electrons, and may include a small movable collector
for measuring the electrons remaining on the feld line at a particular (r,6).
We also analyze the electrons as they are dumped to obtain the thermal
energies Tyand T, characterizing the plasma. Tjis obtained by measuring
the number of electrons which are energetic enough to escape axially as the
containment voltage on the dump gate, V., is slowly made less negative.
For a Maxwellian particle distribution, the first charge collected varies
approximately as Q ~exp(aeV,/T ), where @=1. We have developed this
method thoroughly, including the effects of space-charge and plasma
expansion during the analysis process.®? To obtain T, a beam of exiting
electrons is allowed to pass through a small hole in the end plate. An
electrostatic velocity analyzer measures the change in the parallel energy of
these electrons caused by a secondary magnetic field. 3%t Since the
magnetic moment for each electron is conserved, the average parallel energy
changes by AE =—(6B/B)T|. With this method, we routinely obtain T
at all radii to a few percent accuracy.

Techniques for longitudinal compression and ‘‘stacking” of nonneutral
piasmas have been developed.® The containment cylinders are electrically
divided into many sections, so it is possible to slowly or abruptly change the
applied potential on part of the wall, thereby compressing or expanding the
plasma longitudinally. With proper sequencing of wall potentials, we can
“stack” plasmas by repeatedly trapping new batches of electrons in a
cylinder near the injector and then adding them to the main plasma in a
different section. These techniques allow us to easily manipulate the plasma
density, and to heat or cool the plasma. The plasma density and radius can
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also be modified by magnetic field “ramping” -- i.e., increasing or decreasing
the magnetic field after the plasma has been captured. Of course, magnetic
manipulations necessarily proceed slower because the inductive time scale
ranges from tenths of seconds on V! and EV to hundreds of seconds on CV.

III. WAVES

E ]EC}-"QI] Elaqm'z \/Vaygq -

Nonneutral plasmas exhibit many of the same collective phenomena as
neutral plasmas. The dispersion relation for electron plasma waves in an
infinitely long nonneutral plasma is the same as it is in a neutral plasma,
except for the Doppler shift due to the EXB rotation of the nonneutral
plasma.l'#1%1314 These waves can be launched and detected by electrically
Jisolated sections of the cylindrical wall (sector probes), which give a signal
due to image charge fluctuations.’® Electron plasma waves exhibit essentially
'100% reflection at the ends of the plasma column. Thus as a transmitter is
swept there is a series of resonances at frequencies which produce standing
waves. The sectors at various angles can be connected to transmit and
receive only | =odd or [ =even waves. A typical transmission spectrum for
| =odd plasma waves is given in Figure 2.

An experimentally measured dispersion relation for the ! =0 electron
plasma wave is shown in Figure 3. The dots are experimental points and
the line is the theorv. This dispersion relation is already well known {rom
neutral plasma experiments. The wave frequency decreases at longer wave

lengths because of fnite size effects.’®!” Similar, but doppler shifted, -

dispersion relations are obtained for angularly dependent modes with [ =41.
It should be noted that the ! =:1 angular directions are not physically
identical since the plasma is spinning. Prasad and O'Neil'® make 2
corresponding distinction between the “‘plasma” and “diocotron” branches
of the dispersion relation. . '

In one sense, waves are well understood in these trapped plasmas, but in
another sense they are not. Typically, we find excellent agreement with
theory for the real part of the frequencies, and for growth and damping
rates which are determined by fluid theory. However, effects such as Landau
damping, which depend on the details of the velocity distribution at a
wave-particle resonance are not usually in agreement with simple models.
The plasma is trapped, and 2 mode can act over a long time to produce a
plateau {or trapped particle distribution) in the resonant velocity region.
The electrons are confined and have a comparatively low collision rate.
Under these circumstances it is comparatively easy for wave phenomena to
produce substantial nonlinear distortions in the distribution function of the
electrons, thereby confusing efforts to make linear measurements. :
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Diocotron Waves

We have also measured properties of those diocotron waves which have

k, ==0'219-22 and an angular dependence e?’. The waves arise because an
essentially two-dimensional perturbation of the plasma density results in an
electric field, which causes an E X B drift of the plasma, which in turns self-
consistently generates the density perturbation. Waves with angular
dependence [ =1,2,3 have been unambiguously identified and studied.
-~ If the plasma density is monotone decreasing in r and the wall is a
perfect conductor, the diocotron waves are stable. Typically, for [ >2
electrons at some radius are drifting around the axis in resonance with the
wave and the modes are heavily damped by a Landau-like process.?” The
[ =1 mode is undamped because only electrons right at the wall would be
resonant with the wave and there are no particles at that radius.
Experimentally, we observe essentially no change in the /=1 wave
amplitude over a time of several seconds (i.e. ~10° cycles).

Figure 4 shows a cartoon of an /=1 diocotron wave in cross section.
Small amplitude wave theory predicts that the /=1 diocotron wave
perturbation is a rigid displacement of the electron column off the central
axis of the containment cylinder. The electric field due to the asvmmetric
image charge on the wall makes the electron column rotate about the
containment axis at the wave frequency, while also rotating about its own
center at a higher frequency. We find experimentally that this

characterization of the density perturbation as a displacement off axis is

valid up to very large wave amplitudes. It is more instructive to call this
phenomena a dynamical equilibrium than a mode. It is the most ubiquitous
motion of the plasma and is essentially undamped. An exactly centered
plasma should be considered just a special case in the continuum of possible
offsets.

The k, =0 diocotron waves are negative energy modes and can be
destabilized by wall resistance. It is apparent from Figure 4 that as the
plasma shifts off-center, electrostatic energy decreases, so it is intuitively
obvious that this mode has negative energy. If an isolated section of the
wall is connected to the rest of the wall by a resistor as shown, then as the
column of plasma drifts about the machine axis image charges flow back and
forth through the resistor and dissipate energy. Since the mode has negative
energy, this dissipation of energy makes the mode grow.”® This effect is
shown in Figure 5. Initially there is a neutrally stable, /=1, %, =0,
diocotron mode at small amplitude. Unshorting the resistance to the wall
sector destabilizes the wave and it grows by 30 db. At 30 ms the resistor is
shorted and the large amplitude wave is again almost neutrally stable {the
“slight growth is due to a 50 ohm amplifier impedance connected to another
wall sector). The observed growth rate as a function of resistance,
distributed capacity, magnetic field and plasma density are all in good
agreement with a perturbation theory which considers the wall impedance to
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be a boundary condition on the wave.?

The damping beginning at 53 ms is the result of feedback.?* The wave
signal is received on one wall sector, amplified with proper gain and phase
shift, and fed back to a second sector. The second sector delivers power to
the wave and causes it to damp at a rate depending on amplifier gain. We
have measured the damping rates due to various gains, phases, and sector
placements, and find good agreement with theory.

" The two dimensional density perturbation n(r.0,t) associated with the
wave has been measured by dumping the plasma synchronous with the wave
phase?®, and thereby measuring the number of electrons at a particular
(r,0—wt). A typical result is shown in Figure 8 for two different wave
amplitudes. At large amplitudes the column shape becomes elliptical with
the elongation in the 6-direction. The shape distortion and amplitude
dependent shifts in frequency are in excellent agreement with a waterbag

_computer code.?> The code iterates both the frequency and plasma shape
until the plasma boundary is coincident with an effective potential contour
‘in a frame rotating at the ! =1 frequency. The wave evolution of Figure 5
thus corresponds to shifting the electron column off axis part way to the
wall, then shifting it back to the axis. To lowest order there is no change in
the radial profile induced by this process.

Diocotron Ipstabilities

If the radial density profile is hollow instead of monotone decreasing in r,
then for long plasmas a set of unstable diocotron modes which are driven by
the shear in the rotational drift velocities is observed.”® The perturbed
eigenmodes of these unstable waves are mostly on the inside of the plasma
column. They coexist with the stable modes: the perturbed density of the
stable modes peaks on the outside. The unstable modes are the nonneutral
plasma analogue of the Kelvin-Helmholtz instability: they are the “diocotron
instability” that decades ago was observed to break up hollow electron
beams.?”=?° These k, =0 instabilities are observed for a wide range of initial
density profiles, from barely non-monotonic to fully hollow shells. Using the
svnchronizing method previously described, we measure the z-averaged
density n(r.0,t) and the temperature T(r,t). From the data we can extract
both the time evolution and the eigenfunction dén;(r,t) of the various modes
in the plasma.

‘e have observed a new non-exponential instability with azimuthal
mode number [ =1 coexisting with the stable / =1 diocotron mode.?® This
new unstable mode has been overlooked by prior theory, but is predicted by
a new theory developed by Rosenbluth and his collaborators.®® It is growing
more slowly than exponentially, but it can nevertheless dominate the plasma
evolution.

We also obtain accurate growth rates for an exponentially unstable
{ =2 mode coexisting with the stable [/ =2 mode. These modes are not
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complex conjugate pairs as one would expect from simple calculations for
step-function density profiles.’® However, the real parts of frequencies agree
well with numerical calculations of dispersion relations for realistic
profiles.?8:30 For [ =2, the measured growth rates and eigenfunctions are in
“factor-of-two’’ agreement with the predictions of two dimensional drift
theory.

We have experimentally investigated the large scale cross field transport
associated with these instabilities, which is much faster than collisional
transport.3! This transport proceeds until the plasma has a monotone
decreasing radial density profile and is no longer unstable. This effect is
shown in Figure 7 which gives radial profiles taken at a series of times. At
t =0, some electrons are allowed to escape from the center of a quiet plasma
to produce the hollow profile shown. At 100 usec the profile is beginning to
exhibit increased shot-to-shot noise. Each of the horizontal lines represents
an individual measurement at that particular radius. By 200 usec the shot-
to-shot noise is very large and the hollow in the center is gone. After 2
. milliseconds, the plasma density is peaked in the center and most of the
noise is gone.

We can understand this evolution geometrically by synchronizing the
plasma -dump to the fastest growing unstable wave to produce two
dimensional plots of the plasma density at various times. An example of the
result is given in Figure 8. (This case is similar but not identical to the case
in Figure 7.) The initial plasma has a central density about 50% of the edge
density, giving an E X B drift profile with strong rotational shears. -This
plasma is quite symmetric in the & direction, except for a very small seed
wave with azimuthal mode number ! =2, which is the fastest growing mode.
At a time 1 usesc after the plasma has been hollowed, the seed wave is
barely noticeable. The seed wave grows exponentially on a time scale of 30
usec until it saturates with the formation of two nonlinear vortex structures,
seen in the plot at 110 usec. These vortices rotate about each other and
about their own centers, until they merge (160 usec) and form chaotic
density variations on smaller spatial scales. The resulting 20% noise
fluctuations decay on a time scale of several hundred microseconds, leaving a
monotonically decreasing plasma density at 1000 usec. Thus this instability
undergoes nonlinear saturation with the formation of vortices, then the
vortices decay into turbulent noise, and finally the noise decays leaving a
reasonably quiet quasi-equilibrium. The collisional transport to thermal
equilibrium then occurs on a time scale about 10* times longer. This
separation of time scales allows the study of collisional transport to thermal
equilibrium uncontaminated by instability effects.

Thé instability and merger of the vortex states may be of fundamental
interest. Since the initial conditions can be accurately controlled and the
system has low noise, the vortex dynamics can be studied precisely.
Although point vortex approximations have been studied for some time,
_ only recently has theoretical progress been made on the dynamics of
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extended vortices.3? From a theoretical point of view the 2-D E XB drift
dynamics of these plasmas is mathematically isomorphic to 2-D
incompressible inviscid flow of an ordinary fluid, so these plasmas may prove
useful as model systems for studies of such fluids.

IV. EXTERNALLY-INDUCED TRANSPORT

" The most important concept for discussing radial transport of a
nonneutral plasma is the total canonical angular momentum of the charged
particles.® The confinement is easiest to understand for the case where B is
sufficiently large that we may set Py=(¢B/2c));; r#. In the absence of
external torques, the plasma cannot increase its mean square radius. We call
rearrangements which conserve the mean square radius “internal transport”
and transport which results from external torques ‘‘externally-induced

_transport.”

There are a number of physical effects which can apply a torque on the
‘particles and cause radial transport. In the regime of high neutral pressure,
the dominant torque is due to electron collisions with neutral atoms.*3334
For lower neutral pressure, the dominant torque is very likely due to
- asvmmetric field errors.3%3° The ‘angular. momentum removed by cyclotron
radiation is tvpically negligible.3®

Nentral Collisions

The effect of neutral collisions is studied by varying the neutral gas
pressure. In Figure 9, the ordinate is the time, 7,, required for the central
density of an injected plasma to decay by a factor of 2. The abscissa is the
pressure of helium which is bled into the machine. At helium pressures
above 107° torr the plasma decay time varies inversely with neutral density.

Neutral transport due to electron-neutral collisions at a rate v is given

by

-

6 1 3 3 a giE-A _
at _ " 37- { El/an vrp T n }—0 (1)

The first term in the bracket represents diffusion, which is roughly
proportional to On /dr; and the second term represents mobility, which is
proportional to E(r). It is worth noting that if the radius of the plasma is
large compared to the Debye length then mobility, not diffusion, is the
dominant transport process.* This equation is adequate as long as the
electron distribution is adequately described by a rotating Maxwellian at
temperature T. Of course, there is also a coupled equation " describing

8(-2—-nT )/8¢t. This energy equation is generally dominated by the Joule
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heating (or cooling) which occurs when an electron moves outward {or
inward) in the radial electric fleld. A detailed theory describing the
evolution of the electron distribution function f(r,v,t) has also been given
for circumstances where electron-electron collisions are too slow to maintain
a Maxwellian distribution.®®

Detailed comparisons between theory and experiment have been made
for transport in various regimes. Similarity solutions are obtained for the
radial profile n(r,t,P) for various pressures which depend only on r and
Pt.* Analogous similarity solutions are observed for moderate variations in
the magnetic field: the observed profiles depend on r and B7%t.
Theoretically obtained radial density profiles have been compared to
experimentally measured profiles, using the profile at { =0 as the initial
condition. Profiles predicted by the model are in good agreement with
experiment.? It should be pointed out that in this case the density is fit as a
function of both time and radius, not just one or the other. This provides a
much more detailed test of theory than experiments which measure only a
decay time constant or only a spatial decay curve.

Neutral collisions are not a dominant loss mechanism for any of the
current apparatuses which operate at pressures of 1071° Torr or lower. It is
apparent from Figure 9 that at pressures below 10~7 Torr the radial
transport is essentially independent of pressure.>* We believe that the cause
of the anomalous transport at low neutral pressures is small azimuthal
magnetostatic or electrostatic asymmetries which couple angular momentum
into the plasma.

Length-Nenendent Transport -

The anomalous loss is decreased when the plasma is made axially
shorter.®> The cylindrical wall of the apparatus is actually divided into
sections of various lengths, and the plasma can be contained in any of these
sections, enabling measurements of containment time, 7,,, vs length, L. The
anomalous transport scaling is shown in Figure 10, where we plot 7, vs
L/B for all plasma lengths and magnetic fields studied on two separate
apparatuses.3” The data for each apparatus scales as (L/B)~? over more
than five decades. Both data sets in Figure 10 show approximately a decade
of wvariation around the general scaling lines. These variations are not a
result of noise in the svstem, but rather represent reproducible effects.
Different containment regions of equal length would be expected to have
different error fields and generally give somewhat different containment
times.

The newer apparatus, EV, represented by the solid points in Figure 10,
was designed and built specifically to minimize field errors, with
improvements in magnetic and electrostatic uniformity on both the long and
short spatial scales. The fact that the containment times were enhanced by

20x in all parameter regimes suggests the dominance. of a single loss .
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mechanism, but the details of this process are not yet understood. Since all
containment devices have asymmetries, we believe this transport will be
generic to all non-neutral plasma experiments in this geometry. Of course,
devices operating in different density or temperature regimes may have
substantially different loss rates, and it is not clear that the lifetime of
plasmas in the very short “Penning trap” 0eometrv will fall on the curve.

Applied Asymmetries

To unravel the underlying physics associated with the anomalous
transport, we deliberately apply asyvmmetric fields to the plasma. Since the
residual transport is very small, the transport due to deliberately applied
nonaxisymmetric fields can be made to dominate. This method allows us to
modify at will the amplitude, wavelength, and time dependence of the
perturbations and observe the resulting transport.

Most of our experiments studied transport due to applied electric fleld

- asymmetries.®4® The basic experimental sequence is as follows: After a
plasma sample is captured, a non-axisymmetric perturbation is applied by
putting a signal of frequency w on one or more azimuthal sectors, sometimes
with different phase.on different sectors. After a variable time, the
-perturbation is turned off and then the electrons are dumped longitudinally.
Electrons are collected by a radially moveable probe and the line-integrated
density is obtained. Since the shot-to-shot variation of the plasma density is
less than one percent, radial density profiles can be constructed by changing
the probe position between shots [Fig. 11]. If the perturbation is applied
onlv on alternate shots, the collected signal may be analyzed with a lock-in
amplifier and the density change dn(r) due to the perturbation is obtained
[Fig. 11]. The effect on én(r) as parameters of the plasma and the
perturbation are varied can be studied.

1t is useful to conceptually divide this transport problem into two parts.
First it is necessary to determine the collective response of the plasma to an
externally applied asymmetry, that is, to determine the asymmetric fields
which exist in the plasma. Then, it is necessary to determine the transport
produced by these fields. This second part of the problem is determined by
a transport equation. Of course, the solution to the first part of the problem
must be inserted into the transport equation. The fields in the plasma can
be very different in magnitude than the applied field. For example, under
certain conditions an applied eleciric field is shielded out of the plasma, and
under other conditions it is greatly enhanced in the plasma. The
enhancement occurs when the applied field contains wave number and
frequency components which correspond to a normal mode of the plasma.
An enhanced asvmmetric field in the plasma generally produces an enhanced
level of transport. Figure 12 shows the perturbation induced density change
at r =0 as a function of applied frequency. The peaks in this curve
.correspond to- various plasma resonances. The data demonstrate that the
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Figure 11. Plasma density profile n(r); and density change Sn(r)
induced by a non-axisymmetric perturbation.
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radial transport is enhanced up to twenty-five fold when the applied
perturbation frequency is near a normal mode frequency of the plasma
column.3® .

The enhancement may occur even for static asymmetries (w=0), since
the plasma rotates. A normal mode which propagates backward (upstream)
on the column can have zero frequency in the laboratory frame and be
driven resonantly by an applied field asymmetry. In the demonstration of
Figure 12, for experimental convenience the frequency was tuned to
derfionstrate the resonance effect, but in general to-avoid enhanced transport
it is necessary that the plasma not be inadvertently -tuned so that a
resonance occurs for w=0.

For some experimental studies there is an important advantage to
launching at a mode frequency. In general, the probes launch many modes
with various values of & and /. When the signal is applied at a2 mode
frequency, a single mode with known spatial properties dominates the
‘transport and the situation is greatly simplified.

The scaling of radial transport with the amplitude of an electrostatic
asymmetry has been studied. The amplitude of the field in the plasma is
determined by applying the perturbation at a normal mode frequency and
monitoring .the amplitude of the mode with a second wall probe. .. In. some,
but not all cases after an initial transient, the mode amplitude is linearly
proportional to the applied perturbation and the radial transport scales as
the square of this amplitude. These observations are consistent with the
predictions of resonant particle transport theory in the ‘‘plateau regime:’*!
the scaling is expected to be different in other regimes. However, these
measurements are not sufficient to conclude that detailed verification of this
part of the theory has been obtained.

Another instructive variation in the way the perturbation is applied to
the plasma is possible. Since there are sector probes at various angles in the
apparatus, the perturbing signal may be applied with a different phase at
different angles to produce an electrostatic perturbation with angular phase
velocity either faster or slower than the column rotation.’® Data are shown
in Figure 13. The ordinate is the change in density at r =0 produced by the
perturbation. The abscissa is the azimuthal phase velocity of the
perturbation. The peaks in this curve correspond to various plasma wave
resonances. The angular rotation velocity of the center of the plasma is
indicated by the arrow. It is important to note that perturbations with a
phase velocity slower than the central plasma rotation velocity produce
plasma loss at the center, whereas perturbations with rotation velocity larger
than the plasma rotation velocity produce an increase in density at the
center. In this latter case we are adding angular momentum to the plasma
and pumping the particles inward. It may be possible to use this effect for
desirable manipulations of the plasma. It should be noted :that the
analogous procedure using lasers to provide the radiation pressure in the &
direction is already well developed.®® - Coe :
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We have also studied transport produced by applied magnetic
asymmetries. The results are similar to those for the electrostatic case. If
electric and magnetic asymmetries are applied at the same time in such a
way that the E X B drifts due to the electric perturbation opposes the grad-
B drifts due to the magnetic perturbation, then the net transport is less than
that produced by either the electric or magnetic asymmetries alone. This
latter result is in harmony with the basic theoretical framework that the
transport is produced by guiding center drifts. It also supports the idea that
the experiments with electrostatic asymmetries ‘are not fundamentally
different from those with magnetic asymmetries.

e stabilities

The experimental results above demonstrate how linear collective effects
can enhance radial transport. Field asymmetries can also affect the stabelity
of a nonneutral plasma.®®424% For a rotating plasma, a static field
"asymmetry can act as a pump for various wave instabilities. Two examples

are the decay instability and the induced-scattering instability. For the
decay instability, the field asymmetry excites two unstable daughter modes.
These modes (one positive energy and one negative energy) must have
frequencies that satisfy a resonance.condition w, +w,=0. For the induced-
scattering instability, one of these modes is in effect replaced by resonant
particles. These particles have axial velocities close to the phase velocity of
the beat wave formed by the remaining mode and the pump. For this
process, only ome unstable mode is produced and, since generally a broad
range of particle velocities is present, no sharp frequency resonance condition
is required. Both types of instability allow fleld asymmetries to transfer
angular momentum to the plasma and thus are associated with enhanced
radial expansion.

Several features of the instability which has been observed identify it as
due to induced scattering: (1) Only one growing mode is observed. The
mode is a standing electron plasma wave with azimuthal and axial wave
numbers [, =0, k, =7/L. The wave becomes unstable when a threshold
condition is exceeded and eventually saturates after growing 40-30 dB. (2)
The threshold and growth rate of the instability depend on the amplitude of
static field asvmmetries. (3) The presence of the instability is associated
with an enhanced level of radial transport. This is significant since an
azimuthally svmmetric wave (I, =0) does not by itself produce a radial drift
of particles. (4) The instability occurs over a broad range of plama
parameters.

According to theory?®®, the time evolution of the observed mode is

governed by the equation

dAp [dt = [— [vm 14T 14, I ]Am : (2)
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where y,, is the mode damping rate in the absence of field asymmetries, 4,,
is the mode amplitude, A, is the field-asymmetry amplitude at the wall of
the device, and I' is the total beat-resonant coupling coefficient. When the
bracketed term is positive, the mode is unstable and grows expomnentially.
Assume for now that I'> 0. Since any real plasma device will have small
asymmetries due to construction imperfections, A, is always nonzero. In
the experiments these small asymmetries are sometimes large enough to
exceed the threshold condition and then the instability-appears as socon as
the plasma is captured. Such a case is shown by curve ¢ in Fig. 14. The
wave starts to grow immediately after the injection gate is closed (¢ =0).
The mode growth may be prevented in accordance with Eq. (2), by

increasing the value of .]“/m |. One way to. do this is by placing. a resistive .

load between a 360° ring probe surrounding the containment volume and
ground. Wall currents induced by the positive energy symmetric plasma
wave flow through this load and dissipate wave energy. This creates
additional mode damping beyond that produced by wave-particle effects.
" (Angularly dependent diocotron modes do not couple to a 360° probe and
are unaffected.) The stabilizing effect of such an addition is shown by curves
b and ¢ in Fig. 14. Curve b shows that the plasma remains stable until the
resistive load is removed at the time indicated by the lower arrow, after
which time the wave begins to grow. For curve ¢, the instability is
quenched by the addition of the resistive load at the time indicated by the
upper arrow.

The theoretical equation also predicts that a stable plasma will be
destabilized by an increase in the magnitude of the field asymmetry. To
demonstrate this effect the injection conditions are adjusted to create a
stable plasma. Shortly after injection (¢ =3 ms) a static field asymmetry is
applied to the plasma by placing equal and opposite voltages on opposing.
180° sectors. The !, =0 mode is then driven by applying a short (75 us)
tone burst at the mode frequency to 2 ring probe. When no asymmetry is
applied, the mode damps away after the tone burst ends. As the asymmetry
amplitude is increased, the mode becomes more lightly damped and finally
becomes unstable. The change in growth rate varies as the square of the
asvmmetry amplitude as expected from Eq. (2).

According to theory®3, a destablizing (i.e. positive) contribution to T
requires [/, wp > w,,, where w,, is the mode frequency, wp is the rotation
frequency of the center of the plasma column and {; is the angular mode
number of the applied asvmmetry. A simple phvsical explanation for this
condition is possible. In the frame of the rotating column, /,wp is the
frequency of the field asymmetry (which is static in the lab frame). The
mode frequency, w,,, is the same in both frames since [, =0. The
inequality then expresses the requirement that the pump frequency must
exceed the mode frequency in order for energy to flow from the pump to the
mode. If a given !, does not satisfy the inequality, it will make a negative
contribution to I' and thus tend to increase the mode damping.
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For our experimental parameters, the above inequality reduces to [, > 3.
When the external perturbation is launched off resonance, high angular
components from the sector probe dominate and the /! =0 mode is driven
unstable. If the perturbation frequency is selected so as to drive the [ =1,
k =0 diocotron mode resonantly, the /; =1 component of the asymmetry in
the plasma dominates and damping of the [, =0 mode increases as expected
from theory.

V. INTERNAL TRANSPORT

In a sufficiently symmetric apparatus, particle-particle interactions will
cause the plasma to evolve close to a confined thermal equilibrium before
external torques cause appreciable expansion of the plasma. Our newest
machine, EV, was designed to minimize losses due to field errors. The
resulting long containment time for the shortest plasmas has enabled
observation of transport to global thermal equilibrium.** The plasma evolves
"to a state in which the temperature is radially uniform and the density

profile is such as to give rigid drift rotation, as expected. However, the time
required for transport to equilibrium differs significantly from the predictions
of traditional like-particle transport ‘theory:**~*7 the-equilibration times are
orders of magnitude smaller, and scale approximately as B! or B? instead of
as B%,

Experimentally, we measure the number of electrons remaining on field
lines at a given radius,

Q(r,t)=A [dzn(r,zt) , (3)

—C0

where A is determined by the collimator hole area and by absolute
calibrations of the amplifier gains and capacitances.” Here, we assume that
the plasma has rotational symmetry and ignore the azimuthal variable 6.
We measure T'(r,t) with the analyzer previously discussed. Velocity-space
isotropization occurs in a few collision times (milliseconds), giving
T(r)=T(r)=

Since the plasma is short and its ends are not perfectly flat, the plasma
length is a significant function of radius. The densitv n(r.z) is obtained
from the measured z-integral Q(r) by numerically solving a 2-D Poisson
equation. Using the known boundary conditions on the cylindrical wall
allows us to solve for the self-consistent solution for n(r,z) and &(r,z).
From n, ¢, and T, we can immediately calculate the drift velocity V4(r), so
we obtain all the information needed to test the ‘‘fluid” description of the

plasma.
An example of the experimentally measured evolution towards global

thermal equilibrium is shown in Figure 15. The density profiles n(r,z =0}

and rotation profiles «w{r)=V,(r,z =0)/r at three different times are given.
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Also shown is the diamagnetic drift wp(r) at ¢t =10sec. Initially, the
density is low in the center and peaked at the edge. This short plasma is
observed to be stable even though its radial density profile is nonmonotonic.
This profile evolves towards a. shape which appears to be a thermal
equilibrium profile:* it is essentially constant out to some radius and then
falls to zero on the scale of the Debye length. Of course, the true test of the
density profile being that of equilibrium is whether the rotation profile is
uniform. As shown in Figure 15, the initially injected plasma has
substantial shear, rotating about 409 faster on the edge than in the center.
As particles and heat are transported radially, the rotation profile evolves to

essentially rigid rotation. Although not shown here, the temperature profile

also becomes uniform during this evolution.

To obtain a characteristic time, 7, for the particle transport towards
equilibrium, we calculate how “far” the density profile at any given time is
_from the final equilibrium profile. This ‘‘distance’” D(¢) is essentially the

radial integral of the difference between the rotation profile at a given time

"and the final rotation profile. As shown in Figure 16, D(¢) decreases as
e t/™ as the plasma relaxes toward equilibrium, and 7, is unambiguously
determined.

Using this method??, we have obtained characteristic times 7,, over a
range of fields B from 47 to 470 G, as shown by the solid triangles in Fig.
17. We find that 7, scales closely as B!, implying transport rates scaling as
B~L. For this series, we tried to keep the initial plasmas as alike as possible
as B was varied. For all but the lowest magnetic fields, the initial Q(r) was
uniform out to the plasma edge, after which it dropped sharply; for the
lowest fields, Q(r) was more nearly Gaussian. This monotone decreasing
Q(r) corresponds to a non-monotonic n(r) and «{r). Initial plasma
temperatures were typically uniform at about 0.8 eV.

We have previously estimated the equilibration times for substantially
different plasma profiles at slightly higher densities, using much less rigorous
techniques. These rough estimates for 7, scaled approximately as B%. The
two data sets differ most at low magnetic fields where these rough estimates
are generally least reliable. These two data sets were obtained from
substantially different initial plasmas, and it is now predicted theoretically
that the dominant transport mechanism depends on the plasma density

profile. 843

The experimental scaling of 7 aB ! for plasmas with non-monotonic
wg(r) stimulated theory development for this case. This theory™® predicts
that a new non-local *resonant rotation” transport mechanism will be
important when wg(r;)=wg(r,) for some r, and r, in the plasma, and that
transport times from this process alone should scale as B!. The transport
rates are difficult to compute for realistic plasmas, but estimates are
consistent with the experimental data. In contrast, when wg(r) is
 monotonic, theory predicts that only the local *collisional EXB drift”
transport®® should appear. Transport times would then scale approximately
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as B2,

These experiments clearly show that a new type of transport much
stronger than that predicted by traditional like-particle transport theory is
operating in these plasmas; but the experiments do not yet verify any
particular theory. The possibility of two new transport processes makes the
experiments more interesting, but makes the experimental analysis more
difficult. Detailed data which might provide a clear demonstration of these
two scalings are not yet available.

VI. ANISOTROPIC TEMPERATURE RELAXATION

The relaxation rate due to collisions of an anisotropic .temperature
distribution has been measured.® In these experiments, the parallel
temperature 7' is changed by axial compression or expansion, and then the
~ time evolution of T and T is measured as they relax to a common value.
This yields a relaxation rate which can be obtained as a function of demnsity
" and temperature. For the purposes of this experiment, long confinement
times (much longer than any other time scale of interest) are important, in

that they allow the thermal evolution experiments to be conducted at

constant energy and density.

The experimental procedure is as follows. The plasma is captured and
allowed to come to thermal equilibrium. Then time varying potentials are
applied to appropriate cylinders to axially compress or expand the plasma
on a time scale much longer than the axial bounce time yet much shorter
than the relaxation time. The compression or expansion thus preserves the
adiabatic bounce invariant J = f vy dz. The result is essentially a one-
dimensional compression or expansion with T changed by the ratio
(Lo/(Li+Ls))?% and T, unchanged, creating an -anisotropic temperature
distribution. After allowing the initial anisotropy to evolve for a time ¢, we
dump the plasma axially and measure Ty, T, and the plasma density. We
construct the time evolution of the anisotropy from a number of machine
cycles of varying evolution time ¢. This procedure relies on shot-to-shot
reproducibility, which is generally better than 1%. All of our rates are
obtained from temperatures measured on the axis.

Figure 18 shows the time evolution of T| and Ty. Initially the plasma
is captured and evolves to an isotropic temperature T =1.47 eV, and to a
density profile which is essentially constant over the area of the collimator
hole. At ¢ =0, the plasma is expanded axially. The perpendicular
temperature is unchanged but the parailel temperature drops to 0.5 eV.
Then T,(t) and T (t) are measured as they relax towards the common
equlibrium value of T,, =1.08 eV. The T curve is a better measure of the
decay rate than the T curve since the parallel temperature is measured on
the high velocity tail of the distribution function which relaxes at a slower

rate than do the thermal particles. The T decay curve is fit with the

almost exponential prediction of theory®® to give the relaxation rate.
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A theoretical description of collisional velocity scattering has been the
subject of continuing effort over the past 50 years. Small momentum
transfer collisions are thought to dominate, which has led to a Fokker-
Planck approximation to the velocity scattering process. Ichimaru and
Rosenbluth®® (IR) calculate the rate of anisotropic temperature relaxation in
a weakly magnetized one-component plasma for which the Larmor radius r;,
is much larger than the Debye shielding length \p, i.e. r; >>X\p. They
employ the “dominant term’ approximation, which neglects all terms that
do not contain the Coulomb logarithm, InA, factor in the rate. Since terms
of relative order 1/InA are neglected, the theoretical rate is calculated only
to that accuracy, which in our plasma is about 10%.

We can adapt the small magnetic field calculation of IR to our
experimental regime of r; << Ap by using a general result of Montgomery,
Joyce and Turner®! (MJT). MJT have shown that, to good approximation,
zero and small magnetic field transport theories can be applied in the
r, < \p regime if the argument of the Coulomb logarithm is changed from
‘A=X\p/b to A=r; /b, where b =e?/T is the classical distance of closest
approach. This change can be thought of as a decrease in the range over
which effective collisions can occur. The effect of the MJT approximation in
our - experimental - regime is'.to reduce. the theoretlcal rate of IR by
approximately 25%.

The experimental results® agree with the predictions of this theory to
within approximately 109 over a two decade range, as shown in Fig. 10.
This is an absolute comparison, since there are no adjustable parameters in
either the theory or the experimental measurements. In this data, the
density is varied between 3 X 10% and 3 X10” em™3, and the temperature is
varied between 0.7 and 8 ¢V, while the magnetic field is held constant at 280
Gauss. .The line is. the absolute prediction of the collisional relaxation
theory. ' '

We do not believe that collective instabilities: have significantly
contributed to the measured rates, since the agreement with theory is so
good. An instability driven by the temperature anisotropy could contribute
to isotropization. However, linear stability theory predicts suppression of
the Weibel or Weibel-like instabilitv in our parameter regime. Furthermore,
the agreement of measured rates from both the T|/T;<1 and T,/Ty>1
anisotropy data argues against significant isotropization due to instability.
since typically only one type of anisotropy may lead to growth.

For the experiment just described, b << r; << A\ where b, r; and Ap
are the classical distance of closest approach, the larmor.radius, and the
Debye length, respectively. If the plasma is cooled so that r; ~b& the
standard theory is inapplicable and when r;, << b the effect of a new many
particle adiabatic invariant of O'Neil and Hjorth’**® should result in a
collision rate that decreases sharply as the temperature decreases. Putting in
numbers for electrons gives T°/° “[eV] << 107" B [gauss] so even for large
magnetic fields, low temperatures are required to see these effects. An
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experiment to measure the relaxation rate in this regime will be described in
the next section. '

The Cryocenic Plasma

It is interesting to inquire what will happen if the electron plasma is
cooled to a very low temperature, by cyclotron radiation, for example. One
thing that cannot happen is recombination, since there are negligibly few
iofis in the confinement region. Rather, as the témperature is reduced, a
whole series of novel states of matter should be obtained, including liquids

and solids, with various novel collisional and quantum.mechanical effects. -

Since we expect these states of matter at a few degrees Kelvin or less, we call
them collectively the “cryogenic plasma.”

We have built an apparatus [CV] designed to make cryogenic pure
electron plasmas. The apparatus is based on an 18" long superconducting
magnet with a 2.5 inch diameter bore, giving a field up to 80 kG. In this
“bore, at LHe temperature, is a sealed wvacuum can containing the
containment electrodes. The filament is positioned in the fringing field of
the superconducting solenoid and the electrons are pushed electrostatically

..into the.strongly. converging magnetic field, in a manner similar to the.

“Brillouin flow" injection used for high current beam devices.>* The radius
of the captured plasma reflects the convergence of the field lines. This
technique gives surprisingly quiescent plasma injection at considerably higher
densities than can be obtained when the filament is in the strong field
region. Furthermore, this technique eliminates the need to ramp the
magnetic field on each shot from the low fields in which the filament can
operate to the high fields required for plasma cooling.

The temperature. evolution of .the plasma is determined by the balance

between heating and cooling rates.” The plasma heats when it expands, due
to transfer of space charge electrostatic energy into electron kinetic energy.
By measuring the temperature evolution under conditions of rapid radial
expansion, we have been able to determine that most (75%-100%) of this
energy does in fact go into heating. Normally, we operate with parameters
giving long expansion times, up to 10° sec. The plasma cools because
electrons emit cyclotron radiation which is then absorbed at the LHe-cooled
walls. A single electron radiating into free space would lose energy according
to the well-known Larmor formula, giving exponential cooling with an e-
folding 7. =(0.24 sec)(B/40 kG)™%. The measured rate of cooling is
typically with a factor of 2 of the single electron rate.

Typically, we confine a plasma of density 1.8 %10 ¢cm™3 in a fleld of
41 kG, with a characteristic expansion time of 2X10° sec. Under these
conditions, the plasma should cool to approximately 6°K, giving a
correlation parameter ['=(e2/kT )(4mn /3)/3=1, indicating that the system
should be near a locally ordered liquid.” This temperature is low enough that
the cyclotron action is quantized into the Landau levels. -
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This plasma cooling has been verified down to 50°K by direct
measurement. In Figure 20 the measured temperatures start at about
2% 10° K and cool to 50 K {or less) in 3 seconds. The two kinds of symbols
distinguish different circuits used for an electronic test which is unimportant
to the present description of the experiment. We believe that the leveling off
at about 50 K represents a limitation caused by instrument noise and does
not give the true plasma temperature. "

" This cryogenic plasma has been used to extend the measurement of
relaxation rate of an anisotropic temperature distribution into the strongly
magnetized regime.® The experimental method is modified somewhat in this
parameter range. In the cryogenic case an oscillating component is added to
the containment voltage to modulate the length of the plasma, and plasma
heating as a function of the modulation frequency is measured. If the
modulation is slow compared to the relaxation rate, the compression is
three-dimensional and reversible so there is no heating. If the modulation is
slow compared to the bounce frequency but rapid compared to the relaxation
rate, the compression is one-dimensional and reversible, and again there is
no heating. The plasma heating is a resonant effect which occurs when the
modulation frequency and relaxation rate are equal. We measure this
resonance curve as a function of plasma temperature to obtain the relaxation
rate as a function of temperature. ,

Preliminary results of this measurement® are shown in Figure 21 which
gives the modulation frequency which produces maximum heating, [ yax. as
a function of plasma temperature. The line is sketched through the points
to aid the eye: it is not theory. At low temperatures the relaxation rate, v,
increases with increasing temperature, peaks near the temperature where
r. =5 and then decreases with increasing temperature. This behavior of 1
at low temperature in the strongly magnetized regime is consistent. with the
theory of O’'Neil and Hjorth which is based on the new many-particle
adiabatic invariant.5?%3 For 7, >b our results test the dependence of v on
the Coulomb logarithm, Inr./b and determine where that approximation
fails. In the regime r, >> b the relaxation rate decreases as T3 as
expected from the IR theory.*” The expected dependence on magnetic fleld is
also observed. At this time there is a factor of two uncertainty in the
temperature scale at low temperatures and only approximate comparisons to
theory have been made. However, the general shape of the experimental
curve is not in doubt.
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VII. SUMMARY

The results already obtained provide a convincing demonstration that
the pure electron plasma can be used for a wide variety of experiments on
waves, transport, and statistical mechanics. The experiments allow a
gratifying precision and attractive simplicity unusual in plasma physics. A
great many other experiments are possible with this system and a systematic
understanding of the results from first principles is a reasonable goal.
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