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Laplace’s equation is solved for the confining potentials at the ends of a coaxial form of the
Malmberg–Penning charged particle trap. The solution gives insight into the confinement and
dynamics of the trapped particles. The solution employs several mathematical methods that are often
studied in isolation. The connections between these methods are illustrated by solving the problem
in different ways. This process also produces several new integral and series identities. © 2010
American Association of Physics Teachers.
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I. INTRODUCTION

The solution of Laplace’s equation for various boundary
conditions is a staple of intermediate and advanced courses
in electrodynamics. The methods employed for these solu-
tions have many applications in physics and engineering be-
cause it is common to specify potentials �rather than charge
distributions� on conducting boundaries to produce the de-
sired electric fields.

The problem addressed in this paper is motivated by the
Malmberg–Penning charged particle trap, which is used for
fundamental studies in various fields.1 These traps usually
employ a cylindrical geometry and use electric fields to pro-
vide axial confinement and a uniform axial magnetic field to
provide radial confinement. The simplest device involves
three conducting cylinders of equal radii placed in a line with
a common axis. The middle cylinder is grounded, and the
two end cylinders are held at a constant potential of the same
sign as the trapped particles. The particles are trapped in the
middle cylinder. The magnetic field is typically strong
enough that the cyclotron radius is much smaller than any
other length scale in the trap. Electric fields perpendicular to
the magnetic field cause the center of the cyclotron orbit to
drift with a velocity �E� �B� � /B2.2,3 In a cylindrically symmet-
ric system, there are no azimuthal electric fields, and radial
electric fields cause an azimuthal drift, which does not affect
confinement.

Although particle confinement in these traps is good, it is
not as good as expected.4,5 It is believed that loss of confine-
ment is due to azimuthal electric fields or magnetic field
gradients associated with construction imperfections, and ex-
periments with such fields have verified that they do produce
radial transport.6–8 However, a detailed understanding of this
transport is still lacking, and there are serious discrepancies
between experiment and theory.9 It may be fruitful at this
point to reconsider the particle dynamics to uncover the
missing physics in the theory. Particle reflections at the ends
of the trap, for example, are often modeled with an infinite
potential at a fixed axial position �that is, specular reflection�.
Reality is more complicated but requires a detailed knowl-
edge of the confining potentials at the end of the trap.

The problem addressed in this paper involves a modified
version of the trap that adds a biased coaxial conductor.5 The

bias on this conductor produces a radial electric field that
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simulates the field produced by a column of plasma. Low
density particles injected into this trap will have the same
basic dynamics as in a plasma column, but the lowered den-
sity eliminates complex plasma phenomena �for example,
plasma waves� that make it difficult to calculate the asym-
metric fields in the plasma and the expected transport. The
central conductor also provides improved experimental con-
trol by making it easy to adjust the radial electric field. How-
ever, the presence of this central conductor complicates the
calculation of the confining end potentials. The goal of this
paper is to find the potential inside the cylinders given the
potential on the cylinders and the coaxial conductor. The
trapped charged particle density is low enough so that the
self-field of the particles is negligible compared to the field
produced by the applied potentials, and thus Laplace’s equa-
tion is applicable. The resulting solution employs several
mathematical techniques, making it of pedagogical as well as
practical interest.

We start by showing how the problem can be simplified by
exploiting the axial symmetries. The symmetric part is
solved by direct integration. The asymmetric part is ap-
proached using separation of variables, which requires the
choice of a separation constant. In typical textbook presen-
tations, an apparently arbitrary choice is made for the sign of
this separation constant, and the solution involves develop-
ing the techniques necessary to solve the resulting ordinary
differential equations. The consequences of making the op-
posite choice for the sign of the separation constant are not
usually explored. We show that depending on the choice of
the sign of the separation constant, we obtain either an inte-
gral or a series solution, each involving different techniques.
We connect these two solutions by showing that the series
solution can be obtained from the integral solution by using
contour integration. In the process we discover several new
integral and series identities.

II. INTEGRAL SOLUTION

An idealized version of one end of the trap is represented
in Fig. 1. Two semi-infinite conducting cylinders of radius b
are joined at z=0. The cylinder on the left is at the potential
�b, while the cylinder on the right is grounded. There is also
an infinitely long conductor of radius a coaxial with the cyl-
inders and held at the potential �a. We seek the potential

��r ,z� for all z and for a�r�b.
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Our approach is to break the problem into its symmetric
and antisymmetric parts in z, solve each part individually,
and then reassemble the parts to describe the actual device.
The symmetric part consists of an inner conductor at poten-
tial �a and both halves of the outer conductor at �b /2, and
the antisymmetric part has the inner conductor grounded and
the outer conductor at ��b /2�sgn�z�, where sgn�z�=1 for
z�0 and sgn�z�=−1 for z�0. If �1 is the solution to the
symmetric part and �2 is the solution to the antisymmetric
part, then �1−�2 is the solution to the original problem.

We start with Laplace’s equation in cylindrical coordinates
for azimuthal symmetry

1

r

�

�r
�r

��

�r
� +

�2�

�z2 = 0. �1�

The symmetric part of the problem has no z-dependence, and
thus for this part we have d /dr�r�d�1 /dr��=0, which can be
integrated to give �1�r�=A0+B0 ln�r�. The application of the
boundary conditions �1�a�=�a and �1�b�=�b /2 allows us to
determine A0 and B0. After some algebra we obtain

�1�r� =
�b

2

ln�r/a�
ln�b/a�

+ �a
ln�b/r�
ln�b/a�

. �2�

For the antisymmetric part of the problem, we seek a so-
lution of the form �2�r ,z�=R�r�Z�z�. Equation �1� becomes

1

R
�d2R

dr2 +
1

r

dR

dr
� = −

1

Z

d2Z

dz2 . �3�

For a positive separation constant k2, the equation for R�r� is
the modified Bessel equation of order zero

r2d2R

dr2 + r
dR

dr
− k2r2R = 0, �4�

with the solution

R�r� = ��k�I0�kr� + ��k�K0�kr� . �5�

The solution for Z�z� is

Z�z� = ��k�eikz + 	�k�e−ikz. �6�

Here I0 and K0 are modified Bessel functions of order zero,
and �, �, �, and 	 are k-dependent constants. Because of the
antisymmetry of the boundary conditions, we know that
Z�z�=−Z�−z�. We apply this condition to Eq. �6� and find that
�=−	, which allows us to combine the complex exponentials

ikz −ikz

φa

φb

z

r

a
b

Fig. 1. Schematic of the potentials at one end of the trap. The outer cylinder
at radius b is split into two halves, the left half at potential �b and the right
half grounded. The central coaxial conductor of radius a is held at potential
�a.
using the relation e −e =2i sin�kz�. Because there are no
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boundaries in the z-direction, the general solution takes the
form of a Fourier transform10,11 rather than a series. After
combining some of the constants, we obtain

�2�r,z� = 	
0




�A�k�I0�kr� + B�k�K0�kr��sin�kz�dk , �7�

where A�k� and B�k� are constants to be determined. Note
that using the Eq. �5� solution for k=0 is not problematic
because the small argument limits for I0 and K0 reproduce
the logarithmic solution of Eq. �4� for k=0.

We now apply the boundary conditions. First, the potential
on the center conductor for this part of the problem is zero.
Because there is no z-dependence, it must be that

A�k�I0�ka� + B�k�K0�ka� = 0 �8�

for all k, and thus

B�k� = − A�k�I0�ka�/K0�ka� . �9�

The general solution can thus be reduced to the form

�2�r,z� = 	
0




A�k�F0�kr�sin�kz�dk , �10�

where we have defined

F0�kr� = I0�kr�K0�ka� − I0�ka�K0�kr� �11�

and have absorbed a factor of 1 /K0�ka� into the constant
A�k�.

The boundary condition at r=b gives

	
0




A�k�F0�kb�sin�kz�dk =
�b

2
sgn�z� . �12�

We now write sgn�z� as a Fourier transform12 and then as a
sine transform

sgn�z� =
1

�
	

−



 1

ik
eikzdk =

1

�
	

0


 1

ik
�eikz − e−ikz�dk

= 	
0


 2

�k
sin�kz�dk . �13�

We employ this last result in Eq. �12� and obtain

A�k� =
�b

�kF0�kb�
�14�

and thus

�2�r,z� =
�b

�
	

0


 F0�kr�
kF0�kb�

sin�kz�dk . �15�

A contour plot of the solution using representative values
of the parameters �a /b=0.3 and �a /�b=0.25� is shown in
Fig. 2. The numerical integration was done using
MATHEMATICA.13 Figure 2�a� shows contours of �2 /�b; the
full solution ��1−�2� /�b is shown in Fig. 2�b�. The radial
and axial coordinates have been scaled by the wall radius b.

Although a detailed analysis of the effect of this potential
on particle dynamics is beyond the scope of this paper, a
number of significant insights may immediately be gleaned.
By construction, all of the z-variation in the potential is in
the function �2, and from Fig. 2�a� we see that this variation

occurs in the neighborhood of z=0. Indeed, if z is large
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enough, there is no z-variation in �2 �see Sec. III�. For the
large magnetic fields employed in these traps, the variation in
the particle’s radial position associated with its cyclotron
motion is negligible, and, as noted in Sec. I, radial electric
fields do not change the radial position of a particle. If a
particle of charge q starts at position z0 with kinetic energy
K, it will reflect at position zr given by q��r ,zr�=q��r ,z0�
+K or K /q=�2�r ,z0�−�2�r ,zr�
��2. The reflection point
will thus be a function of the particle’s kinetic energy, with
higher energy particles penetrating further into the confining
potential. Also note from Fig. 2�a� that the maximum value
of ��2 /�b is a function of the radius, varying from one at
r /b=1 to zero at r /b=0.3. Therefore, there will not be
enough potential variation at small radii to confine the par-
ticles. This conclusion is consistent with the experimentally
observed radial variation of the trapped particle density.14

III. COMMENTS ON THE INTEGRAL
SOLUTION

As a check, we note that the z-dependence of �2�r ,z� oc-
curs only in sin�kz�, and thus the solution is odd in z as
required by the boundary conditions. Also the potential �2 at
z=0 is zero, independent of r.

The behavior of the solution for large values of �z� is not

Fig. 2. Contour plots of the scaled potential for a /b=0.3 and �a /�b=0.25.
�a� Contours of the asymmetric part of the solution �2 /�b. �b� Contours of
the full solution ��1−�2� /�b. The radial and axial coordinates have been
scaled by the wall radius b.
obvious, but can be obtained as follows. For all but the
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smallest values of k, the sin�kz� term in Eq. �15� oscillates
rapidly with k compared to the variations in F0�kr� /kF0�kb�.
Thus, these large k contributions will integrate to zero. For
small k, we can use the small argument approximations for
the Bessel functions15 in F0: I0�z��1 and K0�z��−ln�z�.
Then the k-dependence cancels,

F0�kr�
F0�kb�

�
− ln�ka� + ln�kr�
− ln�ka� + ln�kb�

=

ln� r

a
�

ln�b

a
� �16�

and

	
0


 F0�kr�
kF0�kb�

sin�kz�dk �
ln� r

a
�

ln�b

a
�	0


 sin�kz�
k

dk

=

ln� r

a
�

ln�b

a
��

�

2
�sgn�z� , �17�

where we have used standard integral tables16,17 to evaluate
the integral. By using this result in Eq. �15�, we obtain

�2�r,z → 
 
� = 

�b

2

ln�r/a�
ln�b/a�

. �18�

These large �z� results can be understood intuitively. We
expect the influence of the change in the r=b boundary con-
dition to diminish as we move away from z=0, and the po-
tential will thus become z-independent. As with the symmet-
ric case, Laplace’s equation can then be directly integrated to
give a solution of the form �2�r�=A0+B0 ln r. Applying the
appropriate boundary conditions at r=a and r=b gives
Eq. �18�.

IV. SERIES SOLUTION

As noted, our intuition leads us to expect that the influence
of the z-dependent boundary conditions will diminish further
from the boundary. This decrease is more easily seen when
the solution is in the form of a Fourier–Bessel series.18,19 We
now show that such an approach is possible but requires an
integral identity that has not appeared in the literature.

As before we start with Laplace’s equation and now
choose the separation constant to be −k2 rather than k2. We
then obtain Bessel’s equation of order zero for the
r-dependence

r2d2R

dr2 + r
dR

dr
+ k2r2R = 0, �19�

with solutions J0�kr� and Y0�kr�, where J0 and Y0 are Bessel
functions of the first and second kind, respectively.15 The
z-dependence involves real exponentials e
kz, one of which
is discarded so that the potential remains finite for large �z�.
We also know intuitively that for z→ 

 the potential is

given by Eq. �18�. Thus the solution has the form
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�2�r,z� = 

�b

2

ln�r/a�
ln�b/a�

+ 

k

�BkJ0�kr� + CkY0�kr��e�kz,

�20�

where the sum is over all allowed k-values and Bk and Ck are
constants. Here and in the following, the upper �lower� sign
applies for z�0 �z�0�. By applying the boundary condition
��a ,z�=0, we see that BkJ0�ka�+CkY0�ka�=0 for each k. We
eliminate Ck, form a new constant Ak=Bk /Y0�ka�, and write
Eq. �20� as

��r,z� = 

�b

2

ln�r/a�
ln�b/a�

+ 

k

AkF̃0�kr�e�kz, �21�

where

F̃0�kr� = J0�kr�Y0�ka� − J0�ka�Y0�kr� . �22�

We next apply the boundary condition ��b ,z�
= ��b /2�sgn�z�. Because this condition is satisfied by the first
term in Eq. �21�, the k-values are restricted to those satisfy-

ing F̃0�kb�=0. We denote these values as km, where m
=0,1 ,2 , . . .. The solution thus becomes

�2�r,z� = 

�b

2

ln�r/a�
ln�b/a�

+ 

m=0




AmF̃0�kmr�e�kmz. �23�

It remains to determine the constants Am. To do so, we
note that the antisymmetry of the boundary conditions im-
plies that �2�r ,z=0�=0. By using this condition in Eq. �23�,
we obtain



m=0




AmF̃0�kmr� = �
�b

2

ln�r/a�
ln�b/a�

. �24�

We multiply both sides of Eq. �24� by rF̃0�knr�dr and inte-
grate from a to b. To evaluate the left-hand side, we use the
result given in Appendix A,

	
a

b

rF̃0�kmr�F̃0�knr�dr =
	nm

2
h�km,a,b� , �25�

where

h�km,a,b� = b2�F̃1�kmb��2 − a2�F̃1�kma��2, �26�

F̃1�kr� = J1�kr�Y0�ka� − J0�ka�Y1�kr� , �27�

and 	mn is the Kronecker delta. We thus obtain

Am =
��b

h�km,a,b�ln�b/a�	a

b

rF̃0�kmr�ln�r/a�dr . �28�

The integral on the right-hand side of Eq. �28� does not ap-
pear in the usual integral tables15–17 nor is recognized by
MATHEMATICA.13 In Appendix B it is shown that

	
a

b

rF̃0�kmr�ln�r/a�dr =
b

km
ln�b/a�F̃1�kmb� , �29�

where

F̃1�kmb� = J1�kmb�Y0�kma� − J0�kma�Y1�kmb� . �30�
The solution thus becomes
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�2�r,z� = 
 �b�1

2

ln�r/a�
ln�b/a�

− 

m=0



b

kmh�km,a,b�
F̃1�kmb�F̃0�kmr�e�kmz� .

�31�

Because �2�r ,0�=0, we also obtain the series identity



m=0



b

kmh�km,a,b�
F̃1�kmb�F̃0�kmr� =

1

2

ln�r/a�
ln�b/a�

. �32�

If we compare the solution in Eq. �31� with the result in Eq.
�15�, we obtain the integral identity

	
0


 F0�kr�
kF0�kb�

sin�kz�dk

= 
 ��1

2

ln�r/a�
ln�b/a�

− 

m=0



b

kmh�km,a,b�
F̃1�kmb�F̃0�kmr�e�kmz� . �33�

V. SERIES SOLUTION DERIVED FROM INTEGRAL
SOLUTION

The series solution can also be derived from the integral
solution of Sec. II. We start with Eq. �15� and first transform
the solution to complex exponential form using the relation
2i sin�kz�=eikz−e−ikz. Then

�2�r,z� = −
i�b

2�
	

−





dk
F0�kr�

kF0�kb�
eikz. �34�

We now follow through the effect of changing the sign of the
original separation constant from k2 to −k2. Thus the 
k in
the original solution becomes 
ik. We choose +ik for z�0
and −ik for z�0 so that the z-dependent exponential in Eq.
�34� does not diverge for large �z�.

�2�r,z� = �
i�b

2�
	

−i


i
 F0�
ikr�
kF0�
ikb�

e�kzdk . �35�

We can rewrite F0�
ikr� and F0�
ikb� by noting that
I0�
ikr�=J0�kr� and K0�
ikr�= �i� /2��J0�kr�+ iY0�kr��. Us-
ing Eq. �22� we obtain

�2�r,z� = �
i�b

2�
	

−i


i
 F̃0�kr�

kF̃0�kb�
e�kzdk . �36�

To evaluate the integral in Eq. �36�, consider the closed con-
tour integral

� F̃0�kr�

kF̃0�kb�
e�kzdk �37�

around the path shown in Fig. 3. The integrand has simple

poles at k=0 and at the zeros of the equation
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F̃0�kb� = J0�kb�Y0�ka� − J0�ka�Y0�kb� = 0. �38�

Call the k values satisfying Eq. �38� km, where m
=0,1 ,2 , . . .. There are an infinite number of km, and they lie
on the positive real k-axis. Although we have drawn the con-
tour to avoid the pole at k=0, it will enclose all the km poles
if we make � small enough and let R→
. For these condi-
tions the residue theorem21 gives

� F̃0�kr�

kF̃0�kb�
e�kzdk = 2�i


m=0




lim
k→km

��k − km�
F̃0�kr�

kF̃0�kb�
e�kz� .

�39�

The evaluation of the right-hand side of Eq. �39� requires an
application of L’Hospital’s rule because both k−km and

F̃0�kb� are zero at k=km,

lim
k→km

�k − km�

F̃0�kb�
= �dF̃0�kmb�

dk
�−1

. �40�

If we perform the derivative and use the relations J0��z�
=−J1�z� and Y0��z�=−Y1�z�, we obtain

dF̃0�kmb�
dk

= a�J1�kma�Y0�kmb� − J0�kmb�Y1�kma��

+ b�J0�kma�Y1�kmb� − J1�kmb�Y0�kma��
�41a�


g�km,a,b� , �41b�

and Eq. �39� becomes

� F̃0�kr�

kF̃0�kb�
e�kzdk = 2�i


m=0



F̃0�kmr�

kmg�km,a,b�
e�kmz. �42�

It remains to relate this contour integral to the original
integral in Eq. �36�. The integral is equal to the straight line
portions of the contour integral when we take the limits
�→0 and R→
. We thus obtain the original integral by
subtracting the contributions from the curved portions of the
contour from the result of Eq. �42�. The smaller curved por-
tion of the contour can be evaluated by writing k in plane-

i�

Im(k)

R

ε

0 Re(k)

Fig. 3. Integration path for contour integral of Eq. �37�.
polar form k=�e and integrating over the angle �. Using the
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small-k limit for F̃0�kr� / F̃0�kb� given in Eq. �16� and taking
�→0 give i� ln�r /a� / ln�b /a�. Similarly, for the larger
curved portion of the contour, we use k=Rei� and take the
R→
 limit. This integral gives zero.

We combine these contributions so that the series solution
becomes

�2�r,z� = 
 �b�1

2

ln�r/a�
ln�b/a�

+ 

m=0



F̃0�kmr�

kmg�km,a,b�
e�kmz� .

�43�

Because we know that ��r ,0�=0, we also obtain the follow-
ing series identity:

− 

m=0



F̃0�kmr�

kmg�km,a,b�
=

1

2

ln�r/a�
ln�b/a�

. �44�

By employing Eq. �38� and the Wronskian relation15

J1�z�Y0�z� − J0�z�Y1�z� =
2

�z
, �45�

it can be shown that each term in the sum on the left-hand
side of Eq. �44� is the same as in Eq. �32�.

As before, we can compare the solution in Eq. �43� with
our result in Eq. �15� and obtain an alternate form of the
integral identity

	
0


 F0�kr�
kF0�kb�

sin�kz�dk

= 
 ��1

2

ln�r/a�
ln�b/a�

+ 

m=0



F̃0�kmr�

kmg�km,a,b�
e�kmz� . �46�

VI. CONCLUSION

We have solved an electrostatics problem of practical in-
terest using various approaches and a variety of mathemati-
cal techniques. For the asymmetric part of the problem, we
have explored the consequences of the choice of the sign of
the separation constant by obtaining both an integral and a
series solution. The connection between the two solutions
was made through the use of contour integration. The solu-
tions also produce several integral and series identities,
which we believe are new.
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APPENDIX A: ORTHOGONALITY RELATION

We apply tabulated integrals to obtain an orthogonality
relation applicable to the direct series solution in Sec. IV.
Integral 5.54.1 from Ref. 16 is

	 rRp��r�Sp��r�dr

=
�rRp��r�Sp−1��r� − �rRp−1��r�Sp��r�

�2 − �2 , �A1�
where Rp and Sp are solutions to Bessel’s equation of order p
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and ���. We can apply this integral to the function F̃0
because it is a solution to Bessel’s equation of order zero. By
using two of the allowed k-values for � and �, we obtain

	 rF̃0�kmr�F̃0�knr�dr

=
knrF̃0�kmr�F̃−1�knr� − kmrF̃−1�kmr�F̃0�knr�

km
2 − kn

2 , �A2�

where

F̃−1�kr� = J−1�kr�Y0�ka� − J0�ka�Y−1�kr� . �A3�

If we make the limits of our integral a and b, the right-hand

side of Eq. �A2� is zero because F̃0�kma� and F̃0�kmb� are
both zero for any km.

If the two k-values are the same, we employ integral
5.54.2 of Ref. 16 and obtain

	 r�F̃0�kmr��2dr =
r2

2
��F̃0�kmr��2 − F̃−1�kmr�F̃1�kmr�� ,

�A4�

where

F̃1�kr� = J1�kr�Y0�ka� − J0�ka�Y1�kr� . �A5�

Again, for integral limits a to b, the first term on the right-
hand side of Eq. �A4� vanishes. If we note that J−1�kr�
=−J1�kr� and Y−1�kr�=−Y1�kr�, we can write Eq. �A4� as

	
a

b

r�F̃0�kmr��2dr =
b2�F̃1�kmb��2 − a2�F̃1�kma��2

2
. �A6�

If we combine Eq. �A6� with the result for unlike k-values,
we have

	
a

b

rF̃0�kmr�F̃0�knr�dr = 	mn
b2�F̃1�kmb��2 − a2�F̃1�kma��2

2



	mn

2
h�km,a,b� , �A7�

where 	mn is the Kronecker delta.

APPENDIX B: INTEGRAL EVALUATION

In Sec. 5.1 of Ref. 20, Watson proved the relation

	 z�+1�B��z� +
2� + 1

z
B��z� + B�z��C��z�dz

= z�+1�B��z�C��z� + B�z�C�+1�z�� , �B1�

where B�z� is an arbitrary function and C��z� satisfies the
recurrence relations

C�−1�z� + C�+1�z� =
2�

z
C��z� �B2�
and
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C�−1�z� − C�+1�z� = 2C���z� . �B3�

Note that because both Bessel functions J��z� and Y��z� sat-

isfy these relations, so do the functions F̃0 and F̃1. For �
=0 Eq. �B1� becomes

	 z�B��z� +
1

z
B��z� + B�z��C0�z�dz

= z�B��z�C0�z� + B�z�C1�z�� . �B4�

If we now choose B�z�=ln��z�, Eq. �B4� reduces to

	 z ln��z�C0�z�dz = C0�z� + z ln��z�C1�z� . �B5�

We now apply Eq. �B5� to our problem. We substitute F̃ for
C and use z=kmr and obtain

	
a

b

rF̃0�kmr�ln� r

a
�dr

= 	
kma

kmb z

km
F̃0�z�ln� z

kma
� dr

km

= � 1

km
2 �F̃0�z� + z ln� z

kma
�F̃1�z���

kma

kmb

. �B6�

Finally, we note that ln�1�=0 and F0 vanishes at both limits,
and we have

	
a

b

rF̃0�kmr�ln�r/a�dr =
b

km
ln�b/a�F1�kmb� . �B7�
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Torsional Oscillator. This torsional oscillator in the demonstration collection of the University of Texas at Austin,
was made by Gurley of Troy, New York, best known for its surveying instruments. The vertical shaft is pivoted, and
the masses on the sliding cross-rod can be slid in and out to vary the moment of inertia of the oscillating system. The
spiral spring provides linear restoring torque in both angular directions. The torsion constant of the spring is deter-
mined by hanging various masses on one end of the string; the other end is wrapped around a pulley of known radius.
The period of the system can be measured as a function of the moment of inertia of the system: the square of the
period is proportional to the moment of inertia. �Photograph and Notes by Thomas B. Greenslade, Jr., Kenyon
College�
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