Jim Whitney Economics 250

Monday, April 01, 2013

 

Linking price, marginal revenue and elasticity

1.

Demand and marginal revenue:
Derivation of MR for a firm with market power

Given: TR = P·Q, where price is a function of output: P=P(Q)
Let u and v be two functions:
    (1) u=P(Q) => du/dQ = dP/dQ
    (2) v=Q => dv/dQ = dQ/dQ = 1
MR = dTR/dQ = u·dv + v·du = P + Q·dP/dQ
                         DP
End result: MR = P + Q · --
                        
DQ
whitespace.gif (816 bytes)

 

2.

Marginal revenue and elasticity:

Recall:
    (1) MR = P + Q·dP/dQ
    (2) |e| = -dQ/dP·P/Q, since dQ/dP < 0
Rewriting (1) and (2) slightly:
    (1) => MR = P·(1 + dP/dQ·Q/P)
    (2) => dP/dQ·Q/P = -1/|e|
Substitutiting -1/|e| into equation (1) yields:
    MR = P·(1 - 1/|e|) =>
                     |e| - 1
End result: MR = P · -------
                       |e|

whitespace.gif (816 bytes)