Jim Whitney Economics 250

    III. THEORY OF THE FIRM: PRODUCTION AND COSTS

    A. PRODUCTION THEORY

    2. PRODUCTION IN THE LONG RUN

    Now all inputs can be varied--here, both K and L

    a. RESOURCE COMBINATIONS AND ISOQUANTS

    Isoquant: a curve showing all the various efficient input combinations capable of producing a specified amount of output.

The utility/production parallel:
    U = U(X,Y,...)     Q= Q(K,L,...)
U is not quantifiable, so we never compute its value Q IS quantifiable, so we do compute it
    Constant U => indiff. curves    Constant Q => isoquants
whitespace.gif (816 bytes)
Oxy headbands

    Note the difference vs. U's: we attach an actual Q-level to each isoquant.

axes.gif (4118 bytes)
whitespace.gif (816 bytes)

 

    Slope of Qo:
    Geometry:
DY/DX = DK/DL

    But what does that actually tell us about the production process?

Consider 2 points on Qo:

  L   K   Q
a 4  10  50
b 5   7  50

From a to b:
   ? DL = ?

   ? DK = ?

   ? DQ = ?

 

axes.gif (4118 bytes)
whitespace.gif (816 bytes)

    Note from the example, moving from a to b: we see that if we increase L by 1 unit, the move back to Qo (down) tells us the amount of K we can substitute for and still produce the initial Q. 

    Size of slope Ex: DK/DL = 3 means that the firm could exchange 3K for 1L without losing any output since the 1L gained is just as useful as the 3K lost.


 

This substitution rate = the...
    Marginal rate of technical substitution (MRTS): the maximum amount of input Y that a firm is able to give up for another unit of input X without losing any output.

    Don't leave the "T" out--it distinguishes inputs from outputs:
    MRS tells you how much a good is worth to a consumer
    MRTS tells you how much an input is worth to producer

Example here: mrts=3=> 1l is worth 3k.

    MRTS tells us the trade-off of labor for capital that a firm is willing to make since output is unaffected.

    Here: MRTS = 3 => the firm is able to give up 3K for 1L.

    MRTS tells you the firm's value of input X relative to Y


 

Resume day 15:

    It turns out that this ability to substitute L for K is related to the comparative productivities of the two inputs.

    MPL/MPK tells us how productive another L is compared to K

    Ex: Headband productivity: MPL = 6; MPK = 2 headbands

    MPL/MPK = 6/2=3
    1 more L is as productive as 3K.

    +1L --> DQ= +6
    - 3K -->
DQ = -3x2 = -6
    Net
DQ=0

    This suggests that MPL/MPK should determine the slope of Qo

    It does:

    DQ = MPL.DL + MPK.DK

    Along Qo, DQ = 0 =>

    -MPK.DK = MPL.DL

    Rearrange terms:
        |
-DK|      MPL
        -------- = --------  ( = MRTS)
        |
  DL|      MPK

    Lefthand side: size of slope of Qo
    Righthand sied: productivity of L compared to K.


 

    The logic:

whitespace.gif (816 bytes)  whitespace.gif (816 bytes) General case: | Example here:
MPL = output gained from an extra L | MPL = 6 q
MPK = rate output falls when giving up K | MPK = 2 q
whitespace.gif (816 bytes) |
=> MPL/MPK | 6q/(2q per K)
= total K you can give up for 1L w/o losing output | 3K for 1L
= |-DK/DL| (the size of the slope of Qo) |

    The more productive (i.e., valuable) labor is compared to capital, the more capital a firm can give up to get that labor.
    So Qo will be steep when L is valued highly compared to K, flat when L is not so highly valued compared to K.


 

    A key property of isoquants:
    Isoquants are convex to the origin, reflecting a diminishing marginal rate of technical substitution.

Consider 2 points on Qo (b with more L and less K than a):

   ? Why would you expect L to be more productive at point a than point b?

    Convexity rests on the law of diminishing marginal returns

   Convexity => L becomes progressively less effective as a substitute for K

axes.gif (4118 bytes)
whitespace.gif (816 bytes)

 

Example of diminishing MRTS:

    Q = BoKBkLBl

    MPL   Bl(BoKBkLBl-1)    Bl  K
    --- = ------------- = --- ---
    MPK   Bk(BoKBk-1LBl)    Bk  L

Example:
   Q = 8L1/2K1

   ? MRTS formula?

  L K Q MRTS
a 1 4    
b 4 2    
axes.gif (4118 bytes)
whitespace.gif (816 bytes)

 

    b. INTERPRETING ISOQUANTS

    Note: Inputs = factors of production

    (1) factor intensities

    Pertains to factor combinations in production

    Example: capital per worker (K/L)

Consider 2 points on Q1 (b with more L and less K than a):

    ? which is more k-intensive?

    Production technique a is capital intensive relative to b.

    ? Rank factor intensities a..e:  

Useful in
   --comparing industries and -
   -considering how production techniques respond changes in resource prices

 

axes.gif (4118 bytes)
whitespace.gif (816 bytes)

 

    (2) RETURNS TO SCALE

    Pertains to movements between isoquants, holding factor intensity constant.
    All inputs are changed in the same proportion => changing the scale of operations.

    3 possibilities:
    %
DQ = %DScale => CRTS
    %
DQ > %DScale => IRTS
    %
DQ < %DScale => DRTS

Example: Consider 3 input cominations:

    K   L
a  10  20
b  20  40
c  30  60

3 products:
    (1) pumpkin pies (1/2/3)
    (2) costumes (1/3/6)
    (3) jack-o-lanterns (1/1.5/1.8)

 

axes.gif (4118 bytes)
whitespace.gif (816 bytes)

    Why does this matter?
    --optimal firm size: feasibility of competition
    --resource productivity: up L productivity => up real wage
        2 sources: +K/L and E/S


 

Example: Cobb-Douglas:

See worksheet

    %DL=100 %DK=100   %DScale=100  
BL BK %DQ %DQ BL+BK %DQ RTS
1/4 3/4          
3/4 3/4          
1/4 1/4          

Next topic