Populations dynamics

Math 392 - Mathematical Models in Biology

April, 2014
Exponential growth models

B_n - the size of the population at the sampling time $n = 0, 1, 2, ...$

We expect to have

$$B_{n+1} = rB_n,$$

Here b is the intrinsic growth rate. Taking the limit $h \to 0$, gives

$$\frac{dP}{dt} = bP(t).$$
Exponential growth models

B_n - the size of the population at the sampling time $n = 0, 1, 2, \ldots$.

We expect to have

$$B_{n+1} = rB_n,$$

Take small sampling intervals h, and let $r = 1 + bh$.

Let $B_n = P(nh)$, where P is a continuous function. Then $B_{n+1} = rB_n$ leads to

$$P(t + h) = rP(t) = (1 + bh)P(t)$$
Exponential growth models

B_n - the size of the population at the sampling time $n = 0, 1, 2, \ldots$

We expect to have

$$B_{n+1} = rB_n,$$

Take small sampling intervals h, and let $r = 1 + bh$.

Let $B_n = P(nh)$, where P is a continuous function. Then $B_{n+1} = rB_n$ leads to

$$P(t + h) = rP(t) = (1 + bh)P(t)$$

$$\frac{P(t + h) - P(t)}{h} = bP(t)$$

Here b is the intrinsic growth rate. Taking the limit $h \to 0$, gives

$$\frac{dP}{dt} = bP(t)$$
Doubling time

\[
\frac{dP}{dt} = bP(t)
\]

For the doubling time \(t = T \), we have

\[P(T) = 2P(0) = e^{bt}P(0) \]

\[e^{bT} = 2 \Rightarrow T = \frac{\log 2}{b} \]

\[P(nh) = B_n = r^nB_0 = r^nP(0) \Rightarrow r^n = e^{b\cdot nh} \]

\[T = nh \log \frac{2}{\log r} \]

\(r \) can be estimated from observed data as

\[r \approx \frac{B_1}{B_0} \]
Doubling time

\[
\frac{dP}{dt} = bP(t)
\]

\[
P(t) = P(0)e^{bt}
\]

For the doubling time \(t = T \), we have

\[
P(T) = 2P(0) = e^{bT}P(0)\]

\[\Rightarrow T = \log_2 b\]

\[
rn = \frac{B_1}{B_0} = \frac{e^{bnh}b}{1} \log_2 r\]

\[\Rightarrow T = \frac{h}{\log_2 r}\]

\(r\) can be estimated from observed data as \(r \approx \frac{B_1}{B_0} \).
Doubling time

\[
\frac{dP}{dt} = bP(t)
\]

\[P(t) = P(0)e^{bt}\]

For the doubling time \(t = T \), we have

\[P(T) = 2P(0) = e^{bt}P(0)\]

\[e^{bT} = 2 \quad \Rightarrow \quad T = \frac{\log 2}{b}.\]
Doubling time

\[\frac{dP}{dt} = bP(t) \]

\[P(t) = P(0)e^{bt} \]

For the doubling time \(t = T \), we have

\[P(T) = 2P(0) = e^{bt}P(0) \]

\[e^{bT} = 2 \quad \Rightarrow \quad T = \frac{\log 2}{b}. \]

\[P(nh) = B_n = r^nB_0 = r^nP(0) \quad \Rightarrow \quad r^n = e^{bnh} \]

\[b = \frac{1}{h} \log r \quad \Rightarrow \quad T = \frac{h \log 2}{\log r}. \]
Doubling time

\[
\frac{dP}{dt} = bP(t)
\]

\[
P(t) = P(0)e^{bt}
\]

For the doubling time \(t = T \), we have

\[
P(T) = 2P(0) = e^{bt}P(0)
\]

\[
e^{bT} = 2 \quad \Rightarrow \quad T = \frac{\log 2}{b}
\]

\[
P(nh) = B_n = r^nB_0 = r^nP(0) \quad \Rightarrow \quad r^n = e^{bNH}
\]

\[
b = \frac{1}{h} \log r \quad \Rightarrow \quad T = \frac{h \log 2}{\log r}
\]

\(r \) can be estimated from observed data as \(r \approx B_1/B_0 \).
Least Squares estimation of \(r \)
Want to fit a line \(y = ax + b \) to the data points \(\{(x_i, y_i)\}_{i=1}^N \).
Least Squares estimation of r

Want to fit a line $y = ax + b$ to the data points $\{(x_i, y_i)\}_{i=1}^N$.

To do this minimize the square-error

$$L(a, b) = \sum_{i=1}^N [y_i - (ax_i + b)]^2.$$
Least Squares estimation of r

Want to fit a line $y = ax + b$ to the data points $\{(x_i, y_i)\}_{i=1}^N$.

To do this minimize the square-error

$$L(a, b) = \sum_{i=1}^{N} [y_i - (ax_i + b)]^2.$$

$$\frac{\partial L}{\partial a} = \sum_{i=1}^{N} 2[y_i - ax_i - b] \cdot (-x_i) = 0$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{N} 2[y_i - ax_i - b] \cdot (-1) = 0$$
Least Squares estimation of r

Want to fit a line $y = ax + b$ to the data points $\{(x_i, y_i)\}_{i=1}^{N}$.

To do this minimize the square-error

$$L(a, b) = \sum_{i=1}^{N} [y_i - (ax_i + b)]^2.$$

$$\frac{\partial L}{\partial a} = \sum_{i=1}^{N} 2[y_i - ax_i - b] \cdot (-x_i) = 0$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{N} 2[y_i - ax_i - b] \cdot (-1) = 0$$

Using the notation $\langle q \rangle = \frac{1}{N} \sum_{i=1}^{N} q_i$, the solution will be

$$a = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}, \quad b = \frac{\langle x^2 \rangle \langle y \rangle - \langle x \rangle \langle xy \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$
Least Squares estimation of r

The dependence $B(n)$ is nonlinear (exponential), so least-squares does not apply directly.
Least Squares estimation of r

The dependence $B(n)$ is nonlinear (exponential), so least-squares does not apply directly.

Taking the log of $B_n = r^n B_0$ gives

$$\log B_n = (\log r)n + \log B_0.$$
Least Squares estimation of r

The dependence $B(n)$ is nonlinear (exponential), so least-squares does not apply directly.

Taking the log of $B_n = r^n B_0$ gives

$$\log B_n = (\log r)n + \log B_0.$$

Then $(\log r)$ can be found by the least-square fitting of the above line to the data

$$\{(n, \log B_n)\}_{n=0}^{N}.$$
Fibonacci bacteria

Bacteria with a lethal marker:
- a cell with 0 marks divides into a cell with 0 marks and another cell with 1 mark
- a cell with 1 mark divides into a cell with 0 marks and another cell with 2 marks
- a cell with 2 marks is unable to reproduce
Fibonacci bacteria

Bacteria with a lethal marker:
- a cell with 0 marks divides into a cell with 0 marks and another cell with 1 mark
- a cell with 1 mark divides into a cell with 0 marks and another cell with 2 marks
- a cell with 2 marks is unable to reproduce

B^0_n - the population of *clean* cells, B^1_n - the population of cells with 1 mark.

<table>
<thead>
<tr>
<th>n</th>
<th>B^0_n</th>
<th>B^1_n</th>
<th>B^2_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

$B^0_n = B^0_{n-1} + B^1_{n-1}$

$B^1_{n-1} = B^0_{n-2}$

$B^0_n = B^0_{n-1} + B^0_{n-2}$

1, 1, 3, 5, 8, 13, 21, ...
Fibonacci bacteria
Want to fit $B_n = r^n B_0$ to $B_n = B_{n-1} + B_{n-2}$
Fibonacci bacteria

Want to fit $B_n = r^n B_0$ to $B_n = B_{n-1} + B_{n-2}$

$$r^n = r^{n-1} + r^{n-2}$$
Fibonacci bacteria

Want to fit $B_n = r^n B_0$ to $B_n = B_{n-1} + B_{n-2}$

$$r^n = r^{n-1} + r^{n-2}$$

$$r^2 - r - 1 = 0 \implies r_{1,2} = \frac{1 \pm \sqrt{5}}{2}.$$
Fibonacci bacteria

Want to fit $B_n = r^n B_0$ to $B_n = B_{n-1} + B_{n-2}$

$$r^n = r^{n-1} + r^{n-2}$$

$$r^2 - r - 1 = 0 \quad \Rightarrow \quad r_{1,2} = \frac{1 \pm \sqrt{5}}{2}.$$

So a better fit will be

$$B_n = ar_1^n + br_2^n.$$

To find a, b, use $B_0 = 1$, $B_1 = 1$:

$$a = \frac{1 + \sqrt{5}}{2\sqrt{5}}, \quad b = \frac{\sqrt{5} - 1}{2\sqrt{5}}.$$
Fibonacci bacteria

Want to fit $B_n = r^n B_0$ to $B_n = B_{n-1} + B_{n-2}$

$$r^n = r^{n-1} + r^{n-2}$$

$$r^2 - r - 1 = 0 \quad \Rightarrow \quad r_{1,2} = \frac{1 \pm \sqrt{5}}{2}.$$

So a better fit will be

$$B_n = ar_1^n + br_2^n.$$

To find a, b, use $B_0 = 1$, $B_1 = 1$:

$$a = \frac{1 + \sqrt{5}}{2\sqrt{5}}, \quad b = \frac{\sqrt{5} - 1}{2\sqrt{5}}.$$

- B_n is always an integer
- $B_n / B_{n-1} \rightarrow r_1 = \frac{1 + \sqrt{5}}{2} \approx 1.618$ as $n \rightarrow \infty.$
Euler’s renewal theory

Divide the population into age classes that are census interval long. B_n is the number of female births in the n^{th} census interval.
Euler’s renewal theory

Divide the population into age classes that are census interval long. B_n is the number of female births in the n^{th} census interval.

- survival rate through k census intervals is λ_k
- fertility rate of those in their k^{th} census interval is b_k
Euler’s renewal theory

Divide the population into age classes that are census interval long. B_n is the number of female births in the n^{th} census interval.

- survival rate through k census intervals is λ_k
- fertility rate of those in their k^{th} census interval is b_k

The renewal equation is

$$B_n = h_n + b_1 \lambda_1 B_{n-1} + b_2 \lambda_2 B_{n-2} + \cdots + b_n \lambda_n B_0.$$

where h_n is the births in the n^{th} interval to those born before the first census.
Euler’s renewal theory

Divide the population into age classes that are census interval long. B_n is the number of female births in the n^{th} census interval.

- survival rate through k census intervals is λ_k
- fertility rate of those in their k^{th} census interval is b_k

The renewal equation is

$$B_n = h_n + b_1 \lambda_1 B_{n-1} + b_2 \lambda_2 B_{n-2} + \cdots + b_n \lambda_n B_0.$$

where h_n is the births in the n^{th} interval to those born before the first census.

Fibonacci’s is a particular case, with

$$\lambda_1 b_1 = \lambda_2 b_2 = 1, \text{ and } \lambda_j b_j = 0 \text{ for all } j \geq 3; \quad h_n \equiv 0.$$
Renewal theorem
Assume fertility age of M census intervals, i.e. $b_k = 0$ for $k > M$.
Renewal theorem

Assume fertility age of M census intervals, i.e. $b_k = 0$ for $k > M$.

Then for $n > M$

$$B_n = b_1 \lambda_1 B_{n-1} + b_2 \lambda_2 B_{n-2} + \cdots + b_M \lambda_M B_{n-M}.$$
Renewal theorem
Assume fertility age of M census intervals, i.e. $b_k = 0$ for $k > M$.
Then for $n > M$

$$B_n = b_1 \lambda_1 B_{n-1} + b_2 \lambda_2 B_{n-2} + \cdots + b_M \lambda_M B_{n-M}.$$

Fitting the exponential model $B_n \approx r^n$ to this equation results in the characteristic equation

$$r^n = b_1 \lambda_1 r^{n-1} + b_2 \lambda_2 r^{n-2} + \cdots + b_M \lambda_M.$$
Renewal theorem

Assume fertility age of M census intervals, i.e. $b_k = 0$ for $k > M$.

Then for $n > M$

$$B_n = b_1 \lambda_1 B_{n-1} + b_2 \lambda_2 B_{n-2} + \cdots + b_M \lambda_M B_{n-M}. $$

Fitting the exponential model $B_n \approx r^n$ to this equation results in the characteristic equation

$$r^n = b_1 \lambda_1 r^{n-1} + b_2 \lambda_2 r^{n-2} + \cdots + b_M \lambda_M. $$

This has M roots, r_1, r_2, \ldots, r_M, and a better model is

$$B_n = A_1 r_1^n + A_2 r_2^n + \cdots + A_M r_M^n. $$
Renewal theorem
Assume fertility age of M census intervals, i.e. $b_k = 0$ for $k > M$.
Then for $n > M$

$$B_n = b_1 \lambda_1 B_{n-1} + b_2 \lambda_2 B_{n-2} + \cdots + b_M \lambda_M B_{n-M}.$$

Fitting the exponential model $B_n \approx r^n$ to this equation results in the characteristic equation

$$r^n = b_1 \lambda_1 r^{n-1} + b_2 \lambda_2 r^{n-2} + \cdots + b_M \lambda_M.$$

This has M roots, r_1, r_2, \ldots, r_M, and a better model is

$$B_n = A_1 r_1^n + A_2 r_2^n + \cdots + A_M r_M^n.$$

Theorem
Let $p = \sum_{k=1}^{M} b_k \lambda_k$ be the maternity parameter, then

- If $p < 1$, then $B_n \to 0$ as $n \to \infty$, i.e. the population dies out if each mother less than replaces herself.

- If $p \geq 1$, then there is a unique root $r = r^*$ of the characteristic equation, such that all other roots satisfy $|r| < r^*$ and $B_n \approx C(r^*)^n$ as $n \to \infty$.

$\dot{P} = bP$.

What if $b = b(S)$ depends on the substrate S?

$$b(S) = \frac{V S}{K + S}$$

V - max uptake rate ($\lim_{S \to \infty} b = V$)

K - saturation constant ($\text{when } S = K, \text{uptake rate } = \frac{V}{2}$)

Y - yield (measure by how much the population grows for each unit of S)

$$d\left(\frac{YS + P}{P(0) + YS(0)}\right) = 0 \implies P = -YS + (P(0) + YS(0)).$$
Microbial biology

\[\dot{P} = bP. \]

What if \(b = b(S) \) depends on the substrate \(S \)?
Microbial biology

\[\dot{P} = bP. \]

What if \(b = b(S) \) depends on the substrate \(S \)?

\[b(S) = \frac{VS}{K+S} \]

\[
\begin{cases}
\dot{P} & = \frac{VS}{K+S} P \\
\dot{S} & = -\frac{VS}{K+S} \frac{P}{Y}
\end{cases}
\]

- \(V \) - max uptake rate (\(\lim \ b = V \) as \(S \to \infty \))
- \(K \) - saturation constant (when \(S = K \), uptake rate = \(V/2 \))
- \(Y \) - yield (measure by how much the population grows for each unit of \(S \))
Microbial biology

\[\dot{P} = bP. \]

What if \(b = b(S) \) depends on the substrate \(S \)?

\[b(S) = \frac{VS}{K+S} \]

\[
\begin{cases}
\dot{P} &= \frac{VS}{K+S} P \\
\dot{S} &= -\frac{VS}{K+S} \frac{P}{Y}
\end{cases}
\]

- \(V \) - max uptake rate (\(\lim b = V \) as \(S \to \infty \))
- \(K \) - saturation constant (when \(S = K \), uptake rate = \(V/2 \))
- \(Y \) - yield (measure by how much the population grows for each unit of \(S \))

\[\frac{d}{dt}(YS + P) = 0 \quad \Rightarrow \quad P = -YS + (P(0) + YS(0)). \]
Microbial biology

\[P = -YS + (P(0) + YS(0)) \]

\[\dot{P} \approx \frac{VS(0)}{K + S(0)} P, \quad \dot{S} \approx -\frac{V[P(0) + YS(0)]}{KY} S \]
Let $C = P(0) + YS(0)$, then

$$S = \frac{C - P}{Y}, \quad \text{and} \quad \dot{P} = \frac{V(C - P)}{KY + C - P}P$$
Let $C = P(0) + YS(0)$, then

$$S = \frac{C - P}{Y}, \quad \text{and} \quad \dot{P} = \frac{V(C - P)}{KY + C - P}P$$

Using linear approximation for the rate $b = \frac{V(C - P)}{KY + C - P}$, we have the logistic equation

$$\dot{P} = b^* \left(1 - \frac{P}{K^*} \right) P,$$

where

$$b^* = \frac{VC}{KY + C}, \quad K^* = \frac{C}{YK}.$$
Quiescence

\[
\begin{align*}
\dot{S} &= -\frac{V S}{K + S} \frac{P}{Y} \\
\dot{P} &= \frac{V S}{K + S} P - \alpha(S) P + \beta(S) Q \\
\dot{Q} &= \alpha(S) - \beta(S) Q
\end{align*}
\]
Quiescence

\[
\begin{align*}
\dot{S} &= - \frac{VS}{K + SY} P \\
\dot{P} &= \frac{VS}{K + S} P - \alpha(S)P + \beta(S)Q \\
\dot{Q} &= \alpha(S) - \beta(S)Q
\end{align*}
\]

- \(S \) high \(\Rightarrow \alpha(S) \approx 0, \beta(S) > 0; Q \leftrightarrow P \)
- \(S \) low \(\Rightarrow \alpha(S) > 0, \beta(S) \approx 0; P \leftrightarrow Q \)
Quiescence

\[
\begin{align*}
\dot{S} &= -\frac{VS}{K + S} P \\
\dot{P} &= \frac{VS}{K + S} P - \alpha(S)P + \beta(S)Q \\
\dot{Q} &= \alpha(S) - \beta(S)Q
\end{align*}
\]

- \(S \) high \(\Rightarrow \) \(\alpha(S) \approx 0, \beta(S) > 0; Q \mapsto P \)
- \(S \) low \(\Rightarrow \) \(\alpha(S) > 0, \beta(S) \approx 0; P \mapsto Q \)

\[
\alpha(S) = \frac{1}{1+S} \\
\beta(S) = \frac{S}{1+S}
\]
Quiescence

\[
\begin{align*}
\dot{S} &= -\frac{VS}{K + SY} P \\
\dot{P} &= \frac{VS}{K + S}P - \alpha(S)P + \beta(S)Q \\
\dot{Q} &= \alpha(S) - \beta(S)Q
\end{align*}
\]

- S high $\Rightarrow \alpha(S) \approx 0, \, \beta(S) > 0; \, Q \leftrightarrow P$
- S low $\Rightarrow \alpha(S) > 0, \, \beta(S) \approx 0; \, P \leftrightarrow Q$

\[
\alpha(S) = \frac{1}{1+S} \\
\beta(S) = \frac{S}{1+S}
\]
Chemostat

Cells grow in a chamber with medium that is constantly renewed by the flow of media through it.

the washout rate, \(w = \frac{\text{Flow (volume/time)}}{\text{Volume}} \)
Chemostat

Cells grow in a chamber with medium that is constantly renewed by the flow of media through it.

the washout rate, \(w = \frac{\text{Flow (volume/time)}}{\text{Volume}} \)

Balance of masses then gives

\[
\begin{align*}
\dot{S} &= - \frac{VSP}{(K + S)Y} + w(S - S_0) \\
\dot{P} &= \frac{VSP}{K + S} - wP
\end{align*}
\]
Chemostat

Cells grow in a chamber with medium that is constantly renewed by the flow of media through it.

the washout rate, \(w = \frac{\text{Flow (volume/time)}}{\text{Volume}} \)

Balance of masses then gives

\[
\begin{align*}
\dot{S} &= -\frac{VSP}{(K + S)Y} + w(S - S_0) \\
\dot{P} &= \frac{VSP}{K + S} - wP
\end{align*}
\]

In this case

\[
\frac{d}{dt}(YS + P) = w(YS(0) - YS - P),
\]

so

\(YS + P \to YS(0) \quad \text{as} \ t \to \infty. \)
YS + P → YS(0) as $t \to \infty$

can happen by either

- cells washing out of the chamber, so $S \to S_0$, or
- dynamic equilibrium is reached
Chemostat

\[YS + P \rightarrow YS(0) \quad \text{as } t \rightarrow \infty \]

can happen by either
- cells washing out of the chamber, so \(S \rightarrow S_0 \), or
- dynamic equilibrium is reached

A dynamic equilibrium will be reached when

\[
\frac{\dot{P}}{P} = \frac{VS}{K + S} - w = 0, \quad \text{or} \quad (V - w)S = Kw,
\]

which is possible only if \(V > w \), i.e. the uptake velocity is greater than the washout rate.
Chemostat

\[YS + P \rightarrow YS(0) \quad \text{as } t \rightarrow \infty \]

can happen by either
- cells washing out of the chamber, so \(S \rightarrow S_0 \), or
- dynamic equilibrium is reached

A dynamic equilibrium will be reached when

\[
\frac{\dot{P}}{P} = \frac{VS}{K + S} - w = 0, \quad \text{or} \quad (V - w)S = Kw,
\]

which is possible only if \(V > w \), i.e. the uptake velocity is greater than the washout rate.
Nonlinear reproduction curves
Consider a more general discreet model, with intrinsic growth rate \(r = r(B) \)

\[B_{n+1} = r(B_n)B_n. \]
Nonlinear reproduction curves
Consider a more general discreet model, with intrinsic growth rate \(r = r(B) \)

\[
B_{n+1} = r(B_n)B_n.
\]

Verhulst’s Model (Beverton-Holt)

\[
B_{n+1} = \frac{2}{1 + B_n/K}B_n, \quad \text{where} \quad r(B) = \frac{2}{1 + B/K}
\]

so \(r \approx 2 \) for small \(B \), and the population less than reproduces itself for large \(B \).
Nonlinear reproduction curves
Consider a more general discreet model, with intrinsic growth rate \(r = r(B) \)

\[
B_{n+1} = r(B_n) B_n.
\]

Verhulst’s Model (Beverton-Holt)

\[
B_{n+1} = \frac{2}{1 + B_n/K} B_n, \quad \text{where} \quad r(B) = \frac{2}{1 + B/K}
\]

so \(r \approx 2 \) for small \(B \), and the population less than reproduces itself for large \(B \).

Analytic iteration: denote \(R_n = \frac{1}{B_n} \), then

\[
R_{n+1} = \frac{R_n}{2} + \frac{1}{2K} = \frac{R_{n-1}}{2} + \frac{1}{2K} + \frac{1}{2K}
\]

\[
= \frac{1}{2^{n+1}} R_0 + \frac{1}{2K} \left(1 + \frac{1}{2} + \cdots + \frac{1}{2^n} \right) = \frac{1}{2^{n+1}} R_0 + \frac{1}{K} \left(1 - \frac{1}{2^{n+1}} \right).
\]
Nonlinear reproduction curves
Consider a more general discreet model, with intrinsic growth rate \(r = r(B) \)

\[B_{n+1} = r(B_n)B_n. \]

Verhulst’s Model (Beverton-Holt)

\[B_{n+1} = \frac{2}{1 + B_n/K} B_n, \quad \text{where} \quad r(B) = \frac{2}{1 + B/K} \]

so \(r \approx 2 \) for small \(B \), and the population less than reproduces itself for large \(B \).

Analytic iteration: denote \(R_n = \frac{1}{B_n} \), then

\[
R_{n+1} = \frac{R_n}{2} + \frac{1}{2K} = \frac{R_{n-1}}{2} + \frac{1}{2K} + \frac{1}{2K} = \frac{1}{2^{n+1}} R_0 + \frac{1}{2K} \left(1 + \frac{1}{2} + \cdots + \frac{1}{2^n} \right) = \frac{1}{2^{n+1}} R_0 + \frac{1}{K} \left(1 - \frac{1}{2^{n+1}} \right).
\]

We see that
- \(R_n \rightarrow \frac{1}{K} \) as \(n \rightarrow \infty \),
- \(R_n \left(\frac{1}{2^n} \right) \) is linear, can use least-squares to estimate \(K \).
Cobwebbing analysis

The dynamics can be studied geometrically from the graph of the reproduction function

\[F(B) = r(B)B = \frac{2B}{1 + B/K} \]
Cobwebbing analysis

The dynamics can be studied geometrically from the graph of the reproduction function

$$F(B) = r(B)B = \frac{2B}{1 + B/K}$$

Cobwebbing of Verhulst’s model

Verhulst’s with predation
Cobwebbing analysis

The dynamics can be studied geometrically from the graph of the reproduction function

\[F(B) = r(B)B = \frac{2B}{1 + B/K} \]

Cobwebbing of Verhulst’s model

Verhulst’s model can be modified to add predation, for example, leading to

\[F(B) = \frac{rB^2}{1 + (B/K)^2}, \]

for which the equation \(F(B) = B \) has 3 roots.