Mechanisms of control in Cardiovascular circulation

Math 392 - Mathematical Models in Biology

January, 2014
Analysis of equations

\[Q = K_L P_{pv} \]
\[Q = K_R P_{sv} \]

\[V_{sa} = C_{sa} P_{sa} \]
\[V_{sv} = C_{sv} P_{sv} \]
\[V_{pa} = C_{pa} P_{pa} \]
\[V_{pv} = C_{pv} P_{pv} \]

\[Q = \frac{1}{R_s} (P_{sa} - P_{sv}) \]
\[Q = \frac{1}{R_p} (P_{pa} - P_{pv}) \]

\[V_{sa} + V_{sv} + V_{pa} + V_{pv} = V_0. \]
Cardiac output equilibrium

Q: What makes $Q_R = Q_L$?
Cardiac output equilibrium

Q: What makes $Q_R = Q_L$?

$$Q \approx 5.6 \text{ L/m}$$

$$V_s \approx 4.5 \text{ L, } V_p \approx 0.5 \text{ L.}$$
Cardiac output equilibrium

Q: What makes $Q_R = Q_L$?

$$Q \approx 5.6 \text{ L/m}$$

$$V_s \approx 4.5 \text{ L}, \quad V_p \approx 0.5 \text{ L}.$$

Even a small drop in Q_R compared to Q_L can lead to emptying of the pulmonary system.
Cardiac output equilibrium

Q: What makes $Q_R = Q_L$?

$$Q \approx 5.6 \text{ L/m}$$
$$V_s \approx 4.5 \text{ L}, \quad V_p \approx 0.5 \text{ L}.$$

Even a small drop in Q_R compared to Q_L can lead to emptying of the pulmonary system.

If K_R is reduced, then the following happens:

- $Q_R < Q_L$
- P_s increases, P_p decreases
- Q_R increases, while Q_L decreases, leading to a balance with new volume proportion
Cardiac output equilibrium

Q: What makes $Q_R = Q_L$?

$Q \approx 5.6 \text{ L/m}$

$V_s \approx 4.5 \text{ L, } V_p \approx 0.5 \text{ L.}$

Even a small drop in Q_R compared to Q_L can lead to emptying of the pulmonary system.

If K_R is reduced, then the following happens

- $Q_R < Q_L$
- P_s increases, P_p decreases
- Q_R increases, while Q_L decreases, leading to a balance with new volume proportion

$$\frac{V_p}{V_s} = \frac{T_{pv} + T_{pa}}{T_{sa} + T_{sv}} = \frac{C_{pa}/K_L + C_{pa}R_p + C_{pv}/K_L}{C_{sa}/K_R + C_{sa}R_s + C_{sv}/K_R}$$
Dependence of flow on pressure

The previous regulatory mechanism relies on the dependence of Q on P. Suppose Q does not depend on P, and is thus, a parameter in the equations. The two pump equations are eliminated, leaving 8 unknowns, (V_i, P_i) and 6 equations (4 compliance, 2 resistance). Introduce new parameters, V_s, V_p:

$$V_s a + V_s v = V_s, \quad V_p a + V_p v = V_p.$$

This leads to 8 equations with 8 unknowns, but no mechanism guaranteeing a reasonable relationship between V_s and V_p. So the relationship of Q and P is crucial for a controlled partitioning of blood into the pulmonary and systemic circulations.
Dependence of flow on pressure

The previous regulatory mechanism relies on the dependence of Q on P. Suppose Q does not depend on P, and is thus, a parameter in the equations. The two pump equations are eliminated, leaving 8 unknowns, (V_i, P_i) and 6 equations (4 compliance, 2 resistance).
Dependence of flow on pressure

The previous regulatory mechanism relies on the dependence of Q on P.

Suppose Q does not depend on P, and is thus, a parameter in the equations. The two pump equations are eliminated, leaving 8 unknowns, (V_i, P_i) and 6 equations (4 compliance, 2 resistance).

Introduce new parameters, V_s, V_p:

\[
\begin{align*}
V_{sa} + V_{sv} &= V_s \\
V_{pa} + V_{pv} &= V_p.
\end{align*}
\]
The previous regulatory mechanism relies on the dependence of Q on P. Suppose Q does not depend on P, and is thus, a parameter in the equations. The two pump equations are eliminated, leaving 8 unknowns, (V_i, P_i) and 6 equations (4 compliance, 2 resistance).

Introduce new parameters, V_s, V_p:

$$V_{sa} + V_{sv} = V_s$$
$$V_{pa} + V_{pv} = V_p.$$

This leads to 8 equations with 8 unknowns, but no mechanism guaranteeing a reasonable relationship between V_s and V_p. So the relationship of Q and P is crucial for a controlled partitioning of blood into the pulmonary and systemic circulations.
Need for an external control

During an exercise, the following is observed:

Arterioles dialate $\rightarrow R_s$ falls $\rightarrow Q_L$ rises $\rightarrow P_{sa}$ is maintained

Here the increase in Q_L comes from an increase in the heart rate with stroke volume = const.
Need for an external control

During an exercise, the following is observed:

\[\text{Arterioles dialate} \rightarrow R_s \text{ falls} \rightarrow Q_L \text{ rises} \rightarrow P_{sa} \text{ is maintained} \]

Here the increase in \(Q_L \) comes from an increase in the heart rate with stroke volume = const.

Q: What are the effects of a drop in \(R_s \)?
Need for an external control

During an exercise, the following is observed:

Arterioles dilate \rightarrow R_s falls \rightarrow Q_L rises \rightarrow P_{sa} is maintained

Here the increase in Q_L comes from an increase in the heart rate with stroke volume = const.

Q: What are the effects of a drop in R_s?

$$Q = \frac{V_0}{T_{sa} + T_{sv} + T_{pa} + T_{pv}}, \quad P_{sa} = \frac{V_0}{C_{sa}} \frac{T_{sa}}{T_{sa} + T_{sv} + T_{pa} + T_{pv}}$$
Need for an external control

During an exercise, the following is observed:

\[
\text{Arterioles dilate} \rightarrow R_s \text{ falls} \rightarrow Q_L \text{ rises} \rightarrow P_{sa} \text{ is maintained}
\]

Here the increase in \(Q_L\) comes from an increase in the heart rate with stroke volume = const.

Q: What are the effects of a drop in \(R_s\)?

\[
Q = \frac{V_0}{T_{sa} + T_{sv} + T_{pa} + T_{pv}}, \quad P_{sa} = \frac{V_0}{C_{sa} T_{sa} + T_{sv} + T_{pa} + T_{pv}}
\]

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>(R_s \rightarrow R_s/2)</th>
<th>Change</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q)</td>
<td>5.6 L/m</td>
<td>6.2 L/m</td>
<td>+0.6 L/m</td>
<td>+11%</td>
</tr>
<tr>
<td>(P_{sa})</td>
<td>100 mmHg</td>
<td>57 mmHg</td>
<td>-43 mmHg</td>
<td>-43%</td>
</tr>
</tbody>
</table>

This is inadequate to sustain exercise of any length.
Sensitivity

Q: How sensitive are Q and P_{sa} to changes in R_s?

Let $Y = Y(X)$, define the sensitivity of Y to changes in X as

$$\sigma_{YX} = \frac{\log Y(X + \Delta X) - \log Y(X)}{\log (X + \Delta X) - \log X} \approx \frac{\Delta Y}{Y} / \frac{\Delta X}{X}.$$

σ_{YX} measures roughly the rate of relative changes. For example, $Y = aX^n = \Rightarrow \sigma_{YX} = \log a(X + \Delta X)^n - \log aX^n \log (X + \Delta X) - \log X^n = n$, so in particular $Y \sim X \Rightarrow \sigma_{YX} = 1$, and if $Y \sim 1/X \Rightarrow \sigma_{YX} = -1$.

From the changes in Q and P_{sa}, while $R_s \rightarrow R_s/2$, $\sigma_{QR} = \log 6/2 - \log 5/6 \log (1/2) \approx -0.15$, $\sigma_{P_{sa}R} = \log 100 - \log 57 \log (1/2) \approx +0.81$.

Observe that $-\sigma_{QR} + \sigma_{P_{sa}R} \approx 1$, which follows from $P_{sa} \approx QR$.

Sensitivity

Q: How sensitive are Q and P_{sa} to changes in R_s?

Let $Y = Y(X)$, define the sensitivity of Y to changes in X as

$$
\sigma_{YX} = \frac{\Delta \log Y}{\Delta \log X} = \frac{\log Y(X + \Delta X) - \log Y(X)}{\log(X + \Delta X) - \log X} = \frac{\log(Y'/Y)}{\log(X'/X)} \approx \frac{\Delta Y}{Y} / \frac{\Delta X}{X}.
$$
Sensitivity

Q: How sensitive are Q and P_{sa} to changes in R_s?

Let $Y = Y(X)$, define the sensitivity of Y to changes in X as

$$
\sigma_{YX} = \frac{\Delta \log Y}{\Delta \log X} = \frac{\log Y(X + \Delta X) - \log Y(X)}{\log(X + \Delta X) - \log X} = \frac{\log(Y'/Y)}{\log(X'/X)} \approx \frac{\Delta Y}{Y} / \frac{\Delta X}{X}.
$$

σ_{YX} measures roughly the rate of relative changes. For example,

$$
Y = aX^n \implies \sigma_{YX} = \frac{\log a(X + \Delta X)^n - \log aX^n}{\log(X + \Delta X) - \log X^n} = n,
$$

so in particular

$$
Y \sim X \implies \sigma_{YX} = 1, \quad \text{and if} \quad Y \sim 1/X \implies \sigma_{YX} = -1.
$$
Sensitivity

Q: How sensitive are Q and P_{sa} to changes in R_s?

Let $Y = Y(X)$, define the sensitivity of Y to changes in X as

$$
\sigma_{YX} = \frac{\Delta \log Y}{\Delta \log X} = \frac{\log Y(X + \Delta X) - \log Y(X)}{\log(X + \Delta X) - \log X} = \frac{\log(Y'/Y)}{\log(X'/X)} \approx \frac{\Delta Y}{Y} / \frac{\Delta X}{X}.
$$

σ_{YX} measures roughly the rate of relative changes. For example,

$$
Y = aX^n \implies \sigma_{YX} = \frac{\log a(X + \Delta X)^n - \log aX^n}{\log(X + \Delta X) - \log X^n} = n,
$$

so in particular

$$
Y \sim X \implies \sigma_{YX} = 1, \quad \text{and if} \quad Y \sim 1/X \implies \sigma_{YX} = -1.
$$

From the changes in Q and P_{sa}, while $R_s \rightarrow R_s/2$,

$$
\sigma_{QR_s} = \frac{\log 6.2 - \log 5.6}{\log(1/2)} \approx -0.15, \quad \sigma_{P_{sa}R_s} = \frac{\log 100 - \log 57}{\log(1/2)} \approx +0.81.
$$
Sensitivity

Q: How sensitive are Q and P_{sa} to changes in R_s? Let $Y = Y(X)$, define the sensitivity of Y to changes in X as

$$
\sigma_{YX} = \frac{\Delta \log Y}{\Delta \log X} = \frac{\log Y(X + \Delta X) - \log Y(X)}{\log(X + \Delta X) - \log X} = \frac{\log(Y'/Y)}{\log(X'/X)} \approx \frac{\Delta Y}{Y} / \frac{\Delta X}{X}.
$$

σ_{YX} measures roughly the rate of relative changes. For example,

$$
Y = aX^n \implies \sigma_{YX} = \frac{\log a(X + \Delta X)^n - \log aX^n}{\log(X + \Delta X) - \log X^n} = n,
$$

so in particular

$$
Y \sim X \implies \sigma_{YX} = 1, \quad \text{and if} \quad Y \sim 1/X \implies \sigma_{YX} = -1.
$$

From the changes in Q and P_{sa}, while $R_s \to R_s/2$,

$$
\sigma_{QR_s} = \frac{\log 6.2 - \log 5.6}{\log(1/2)} \approx -0.15, \quad \sigma_{P_{sa}R_s} = \frac{\log 100 - \log 57}{\log(1/2)} \approx +0.81.
$$

Observe that $-\sigma_{QR_s} + \sigma_{P_{sa}R_s} \approx 1$, which follows from $P_{sa} \approx QR_s$.
Neural control: Baroreceptor loop

Need a mechanism to hold P_{sa} constant and to guarantee blood flow to nonexercising tissue, i.e.

$$\sigma_{P_{sa}R_s} = 0 \quad \text{and} \quad \sigma_{QR_s} = -1$$
Neural control: Baroreceptor loop

Need a mechanism to hold P_{sa} constant and to guarantee blood flow to nonexercising tissue, i.e.

$$\sigma_{P_{sa}R_s} = 0 \quad \text{and} \quad \sigma_{QR_s} = -1$$

This is achieved by the baroreceptor loop:
Neural control: Baroreceptor loop

Need a mechanism to hold P_{sa} constant and to guarantee blood flow to nonexercising tissue, i.e.

$$\sigma_{P_{sa}R_s} = 0 \quad \text{and} \quad \sigma_{QR_s} = -1$$

This is achieved by the baroreceptor loop:

The loop adjusts the heart rate F to keep $P_{sa} = P^*$ constant.
Effect of the baroreceptor loop
In this adjusted model F becomes a variable, while $P_{sa} = P^*$ is a parameter.
Effect of the baroreceptor loop

In this adjusted model F becomes a variable, while $P_{sa} = P^*$ is a parameter.

$$Q_R = FC_R P_{sv}$$

$$Q_L = FC_L P_{pv}$$
Effect of the baroreceptor loop

In this adjusted model F becomes a variable, while $P_{sa} = P^*$ is a parameter.

$$Q_R = F C_R P_{sv}$$
$$Q_L = F C_L P_{pv}$$

To solve, ignore P_{sv} in the systemic resistance equation (2% error),

$$Q R_s = P^*$$

ignore the volume of pulmonary blood in the total volume equation (10% error)

$$V_{sa} + V_{sv} = V_0.$$
Effect of the baroreceptor loop

In this adjusted model F becomes a variable, while $P_{sa} = P^*$ is a parameter.

\[
Q_R = FC_R P_{sv} \\
Q_L = FC_L P_{pv}
\]

To solve, ignore P_{sv} in the systemic resistance equation (2% error),

\[
QR_s = P^*
\]

ignore the volume of pulmonary blood in the total volume equation (10% error)

\[
V_{sa} + V_{sv} = V_0.
\]

\[
Q = \frac{P^*}{R_s}.
\]

\[
C_{sa} P^* + C_{sv} P_{sv} = V_0 \quad \Rightarrow \quad P_{sv} = \frac{V_0 = C_{sa} P^*}{C_{sv}}.
\]

\[
F = \frac{Q}{C_R P_{sv}} = \frac{P^* C_{sv}}{R_s C_R(V_0 - C_{sa} P^*)}.
\]
Effect of the baroreceptor loop

\[Q = \frac{P^*}{R_s}, \quad P_{sa} = P^*, \quad F = \frac{P^* C_{sv}}{R_s C_R(V_0 - C_{sa} P^*)}. \]
Effect of the baroreceptor loop

\[Q = \frac{P^*}{R_s}, \quad P_{sa} = P^*, \quad F = \frac{P^* C_{sv}}{R_s C_R (V_0 - C_{sa} P^*)}. \]

\[\sigma_{QR_s} = -1, \quad \sigma_{P_{sa} R_s} = 0 \]

Blood loss leads to increased heart rate \((F)\), which compensates for decrease in the stroke volume. \(F\) breaks down when \(V_0 = C_{sa} P^*\), i.e. when \(V_0 = V_{sa}\), and \(V_{sv} = 0\).
Effect of the baroreceptor loop

\[Q = \frac{P^*}{R_s}, \quad P_{sa} = P^*, \quad F = \frac{P^* C_{sv}}{R_s C_R (V_0 - C_{sa} P^*)}. \]

\[\sigma_{QR_s} = -1, \quad \sigma_{P_{sa}R_s} = 0 \]

In the new model, \(Q = Q(P^*, R_s) \)

In particular, \(\sigma_{QV_0} = 0 \), while in the old model \(\sigma_{QV_0} = 1 \).
Effect of the baroreceptor loop

\[Q = \frac{P^*}{R_s}, \quad P_{sa} = P^*, \quad F = \frac{P^* C_{sv}}{R_s C_R (V_0 - C_{sa} P^*)}. \]

\[\sigma_{QR_s} = -1, \quad \sigma_{P_{sa}R_s} = 0 \]

In the new model, \(Q = Q(P^*, R_s) \)
In particular, \(\sigma_{QV_0} = 0 \), while in the old model \(\sigma_{QV_0} = 1 \).

Blood loss leads to increased heart rate (\(F \)), which compensates for decrease in the stroke volume.
Effect of the baroreceptor loop

\[Q = \frac{P^*}{R_s}, \quad P_{sa} = P^*, \quad F = \frac{P^* C_{sv}}{R_s C_R (V_0 - C_{sa} P^*)}. \]

\[\sigma_{QR_s} = -1, \quad \sigma_{P_{sa}R_s} = 0 \]

In the new model, \(Q = Q(P^*, R_s) \)

In particular, \(\sigma_{QV_0} = 0 \), while in the old model \(\sigma_{QV_0} = 1 \).

Blood loss leads to increased heart rate (\(F \)), which compensates for decrease in the stroke volume.

\(F \) breaks down when \(V_0 = C_{sa} P^* \), i.e. when \(V_0 = V_{sa} \), and \(V_{sv} = 0 \).
Autoregulation

Q: What controls R_s on the local level?

There is a range of pressures, for which Q is insensitive to ΔP.

When $\Delta P = \text{const}$, Q depends on the rate of O_2 consumption.

Define:

$[O_2]_a$ - arterial oxygen concentration, in (liters of O_2)/(liters of blood)

$[O_2]_v$ - venous oxygen concentration, in (liters of O_2)/(liters of blood)

M - metabolic rate of the tissue (O_2 consumption rate), in liters/minute

Fick's principle:

$Q [O_2]_a - Q [O_2]_v = M \Rightarrow [O_2]_v = [O_2]_a - M / Q$

When $[O_2]_v = 0$, then $Q = Q^* = M / [O_2]_a$, which is the minimum blood flow to sustain the metabolic rate M.
Autoregulation

Q: What controls R_s on the local level?

1. There is a range of pressures, for which Q is insensitive to ΔP.
2. When $\Delta P = \text{const}$, Q depends on the rate of O_2 consumption.

Define:

- $[O_2]_a$ - arterial oxygen concentration, in (liters of $O_2)/(liters of blood)$
- $[O_2]_v$ - venous oxygen concentration, in (liters of $O_2)/(liters of blood)$
- M - metabolic rate of the tissue (O_2 consumption rate), in liters/minute

Fick's principle:

$$Q[O_2]_a - Q[O_2]_v = M \Rightarrow [O_2]_v = [O_2]_a - M/Q.$$ When $[O_2]_v = 0$, then $Q = Q^* = M/[O_2]_a$, which is the minimum blood flow to sustain the metabolic rate M.

Autoregulation

Q: What controls R_s on the local level?

1. There is a range of pressures, for which Q is insensitive to ΔP.
2. When $\Delta P = \text{const}$, Q depends on the rate of O_2 consumption.

Define:

$[O_2]_a$ – arterial oxygen concentration, in (liters of O_2)/(liters of blood)

$[O_2]_v$ – venous oxygen concentration, in (liters of O_2)/(liters of blood)

M – metabolic rate of the tissue (O_2 consumption rate), in liters/minute
Autoregulation

Q: What controls R_s on the local level?

1. There is a range of pressures, for which Q is insensitive to ΔP.
2. When $\Delta P = \text{const}$, Q depends on the rate of O_2 consumption.

Define:

$[O_2]_a$ – arterial oxygen concentration, in (liters of O_2)/(liters of blood)

$[O_2]_v$ – venous oxygen concentration, in (liters of O_2)/(liters of blood)

M – metabolic rate of the tissue (O_2 consumption rate), in liters/minute

Fick’s principle:

$$Q [O_2]_a - Q [O_2]_v = M \quad \Rightarrow \quad [O_2]_v = [O_2]_a - M/Q.$$
Autoregulation

Q: What controls R_s on the local level?

1. There is a range of pressures, for which Q is insensitive to ΔP.
2. When $\Delta P = \text{const}$, Q depends on the rate of O_2 consumption.

Define:

$[O_2]_a$ – arterial oxygen concentration, in $\text{liters of } O_2/\text{liters of blood}$

$[O_2]_v$ – venous oxygen concentration, in $\text{liters of } O_2/\text{liters of blood}$

M – metabolic rate of the tissue (O_2 consumption rate), in liters/minute

Fick’s principle:

$$Q[O_2]_a - Q[O_2]_v = M \Rightarrow [O_2]_v = [O_2]_a - M/Q.$$

When $[O_2]_v = 0$, then

$$Q = Q^* = M/[O_2]_a$$

which is the minimum blood flow to sustain the metabolic rate M.

Model for R_s

$[O_2]_v$ can be used as a (regulating) indicator for R_s
Model for R_s

$[O_2]_v$ can be used as a (regulating) indicator for R_s

For example, suppose

$$R = R_0 [O_2]_v,$$

where

$$R = \Delta P/Q$$
Model for R_s

$[O_2]_v$ can be used as a (regulating) indicator for R_s

For example, suppose

$$R = R_0[O_2]_v,$$ where $$R = \Delta P/Q$$

combining equations we have

$$M = Q([O_2]_a - [O_2]_v) = Q[O_2]_a - \frac{\Delta P}{R_0},$$

hence

$$Q = \frac{M}{[O_2]_a} + \frac{\Delta P}{R_0[O_2]_a} = Q^* + \frac{\Delta P}{R_0[O_2]_a}.$$
Model for R_s

- σ_{QP} is less in the new model
- $Q \geq Q^*$, min flow guaranteed
- When $\Delta P = \text{const}$, $\Delta Q = \Delta M/[O_2]_a = \Delta Q^*$.
- When $\Delta P = \text{const}$, an increase in M results in a decrease in R.
- When $[O_2]_a$ changes, Q adjusts, so that $Q[O_2]_a = \text{const}$.