1. (#5.6.1 in Strauss)

 (a) Solve as a series the equation $u_t = u_{xx}$ in $(0, 1)$ with $u_x(0, t) = 0$, $u(1, t) = 1$, and $u(x, 0) = x^2$. Compute the first two coefficients explicitly.

 (b) What is the equilibrium state (the term that does not tend to zero)?

2. (#5.6.5 in Strauss) Solve $u_{tt} = c^2 u_{xx} + e^t \sin 5x$ for $0 < x < \pi$, with $u(0, t) = u(\pi, t) = 0$ and the initial conditions $u(x, 0) = 0$, $u_t(x, 0) = \sin 3x$.

3. (#5.6.8 in Strauss) Solve $u_t = ku_{xx}$ in $(0, l)$, with $u(0, t) = 0$, $u(l, t) = At$, $u(x, 0) = 0$, where A is a constant.

4. (#5.6.9 in Strauss) Use the method of subtraction to solve $u_{tt} = 9u_{xx}$ for $0 \leq x \leq 1 = l$, with $u(0, t) = h$, $u(1, t) = k$, where h and k are given constants, and $u(x, 0) = 0$, $u_t(x, 0) = 0$.

5. Consider the Dirichlet problem for the wave equation with periodic forcing

 \[
 \begin{cases}
 u_{tt} - c^2 u_{xx} = f(x) \cos \omega t, & \text{for } 0 < x < \pi, \\
 u(x, 0) = \phi(x), & u_t(x, 0) = \psi(x), \\
 u(0, t) = u(\pi, t) = 0.
 \end{cases}
 \]

 Solve the problem in the series form, if $\omega \neq cm$ for any integer m. (Hint: Use the method of undetermined coefficients for the ODE satisfied by the Fourier coefficients of the solution.)

6. Solve the previous problem with $\omega = cm$ for some integer m, and show that one encounters resonance in this case.

7. Consider the \textit{damped} wave equation with periodic forcing, and the corresponding Dirichlet problem

 \[
 \begin{cases}
 u_{tt} - c^2 u_{xx} + ru_t = f(x) \cos \omega t, & \text{for } 0 < x < \pi, \\
 u(x, 0) = \phi(x), & u_t(x, 0) = \psi(x), \\
 u(0, t) = u(\pi, t) = 0.
 \end{cases}
 \]

 (a) Solve the problem if r is small ($0 < r < 2c$), and show that the damping prevents resonance from occurring.

 (b) Show that no matter what the initial data (ϕ, ψ) are, the solution to the above problem always converges to an asymptotic solution $U(x, t)$ as $t \to \infty$, and find this asymptotic solution.