Matrix algebra

The square matrix \(I = [\delta_{ij}]_{n \times n} \) is called an **identity matrix** if

\[
\delta_{ij} = \begin{cases}
1 & \text{for } i = j \\
0 & \text{for } i \neq j
\end{cases}
\]

That is, the identity matrix has the form

\[
I = [\delta_{ij}]_{n \times n} = \begin{bmatrix}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{bmatrix}.
\]

If \(A = A_{m \times n} \) and \(B = B_{n \times r} \), then

\[
AI = A \quad \text{and} \quad IB = B.
\]

Theorem: Let \(A \) be an \(n \times m \) matrix, \(e_i \) be a \(1 \times m \) standard unit vector, and \(e_j \) an \(n \times 1 \) standard unit vector. Then

(a) \(e_i A \) is the \(i \)th row of \(A \)

(b) \(Ae_j \) is the \(j \)th column of \(A \).

Matrix column representation of matrix multiplication: Let \(A_{m \times n} \) be an \(m \times n \) matrix, and \(B_{n \times r} \) be written in terms of column vectors \(B = [b_1 \ b_2 \ \ldots \ b_r]_{n \times r} \), then

\[
AB = A[b_1 \ b_2 \ \ldots \ b_r]_{n \times r} = [Ab_1 \ Ab_2 \ \ldots \ Ab_r]_{n \times r}.
\]

Matrix row representation of matrix multiplication: Let \(A_{m \times n} \) be an \(m \times n \) matrix written in terms of row vectors \(A = [A_1 \ A_2 \ \ldots \ A_m]_{m \times n} \) and \(B_{n \times r} \) be an \(n \times r \) matrix, then

\[
AB = [A_1]_{m \times n} B = [A_1 B]_{m \times r}.
\]

Column row representation of matrix multiplication: Let \(A_{m \times n} = [a_1 \ a_2 \ \ldots \ a_r]_{m \times n} \), and \(B = [B_1 \ B_2 \ \ldots \ B_n]_{n \times r} \), then

\[
AB = [a_1 \ a_2 \ \ldots \ a_r]_{m \times n} [B_1 \ B_2 \ \ldots \ B_n]_{n \times r} = a_1 B_1 + a_2 B_2 + \cdots + a_r B_n.
\]
Matrix powers

\[A^k = A \cdot A \cdots A, \quad k \text{ times.} \]

Matrix powers have the following properties

(a) \(A^r A^s = A^{r+s} \).
(b) \((A^r)^s = A^{rs} \).

Transpose of a matrix: Let \(A = [a_{ij}]_{m \times n} \) be an \(m \times n \) matrix, then its transpose, \(A^T \) is the \(n \times m \) matrix

\[A^T = [a_{ji}]_{n \times m}. \]

A square matrix is **symmetric** if \(A^T = A \). This is equivalent to \(A_{ij} = A_{ji} \) for all \(i, j \).

Properties of matrix operations: \(A, B, C \) are matrices, \(c, d, k \) are scalars, \(O \) is a zero matrix, \(I \) is an identity matrix.

Addition and scalar multiplication:

(a) \(A + B = B + A \)
(b) \((A + B) + C = A + (B + C) \)
(c) \(A + O = A \)
(d) \(A + (-A) = O \)
(e) \(c(A + B) = cA + cB \)
(f) \((c + d)A = cA + dA \)
(g) \(c(dA) = (cd)A \)
(h) \(1A = A \)

Matrix multiplication:

(a) \(A(BC) = (AB)C \)
(b) \(A(B + C) = AB + AC \)
(c) \((A + B)C = AC + BC \)
(d) \(k(AB) = (kA)B = A(kB) \)
(e) \(I_mA = A = AI_n, \text{ if } A = A_{m \times n} \)

Transpose of a matrix:

(a) \((A^T)^T = A \)
(b) \((A + B)^T = A^T + B^T \)
(c) \((kA)^T = k(A^T) \)
(d) \((AB)^T = B^T A^T \)
(e) \((A^r)^T = (A^T)^r, r \geq 0 \)

Theorem:

(a) If \(A \) is a square matrix, then \(A + A^T \) is a symmetric matrix.

(b) For any matrix \(A \), matrices \(AA^T \) and \(A^T A \) are symmetric matrices.
Exercises:

1. Write the matrix B as a linear combination of A_1 and A_2, where
 \[
 B = \begin{bmatrix} 2 & 5 \\ 0 & 3 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}
 \]

2. Find a 2×2 non-zero matrix A, such that $A^2 = O$ (zero matrix).

3. The trace of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of the diagonal entries, that is
 \[
 \text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}
 \]

 Show that if A and B are $n \times n$ matrices, then
 \[
 \text{tr}(AB) = \text{tr}(BA)
 \]