Spanning sets and linear independence

A linear combination of vectors v_1, v_2, \cdots, v_k is

$$c_1v_1 + c_2v_2 + \cdots + c_kv_k$$

for any choice of scalars c_1, c_2, \ldots, c_k.

Theorem: A system of linear equations with augmented matrix $[A|b]$ is consistent if and only if b is a linear combination of columns of A.

The span of a set of vectors $S = \{v_1, v_1, \ldots, v_k\}$, denoted by $\text{span}(S)$ or $\text{span}(v_1, v_2, \ldots, v_k)$, is the set of all linear combinations of v_1, v_1, \ldots, v_k. If $\text{span}(S) = \mathbb{R}^n$, then S is called a spanning set of \mathbb{R}^n.

A set of vectors v_1, v_2, \ldots, v_k is called linearly dependent, if there are scalars c_1, c_2, \ldots, c_k, at least one of which is nonzero, such that

$$c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0.$$

A set of vectors which is not linearly dependent is called linearly independent.

Below are some criteria for linear (in)dependence:

Theorem: Vectors v_1, v_2, \ldots, v_k in \mathbb{R}^n are linearly dependent if and only if at least one of them can be expressed as a linear combination of the others.

Remark: Any set of vectors containing 0 is linearly dependent.

Theorem: Let v_1, v_2, \ldots, v_k be column vectors in \mathbb{R}^n and let A be the $n \times m$ matrix $[v_1v_2\ldots v_k]$ with these vectors as its columns. Then v_1, v_2, \ldots, v_k are linearly dependent if and only if the homogeneous linear system with augmented matrix $[A|0]$ has a nontrivial solution.

Theorem: Let v_1, v_2, \ldots, v_k be row vectors in \mathbb{R}^n and let A be the $m \times n$ matrix $\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{bmatrix}$ with these vectors as its rows. Then v_1, v_2, \ldots, v_k are linearly dependent if and only if $\text{rank}(A) < m$.

Theorem: Any set of m vectors in \mathbb{R}^n is linearly dependent if $m > n$.
Exercises:

1. Find the span of the vectors \[\begin{bmatrix} 2 \\ -4 \end{bmatrix} \text{ and } \begin{bmatrix} -1 \\ 2 \end{bmatrix} \].

2. Determine whether the vectors \(\mathbf{u} = (0, 1, 2), \mathbf{v} = (2, 1, 3) \) and \(\mathbf{w} = (2, 0, 1) \) are linearly dependent or independent.