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Abstract
We present a natural, combinatorial problem whose solution is given by the meta-
Fibonacci recurrence relation a(n) = Y7_, a(n—i+1—a(n—1i)), where p is prime.

This combinatorial problem is less general than those given by Jackson and Ruskey,
and Ruskey and Deugau, but it has the advantage of having a simpler statement.

1. Introduction

Let M be a matrix with entries in Zs, such that every column contains at least
one 1. We want to pick a subset of the rows such that when they are added together
modulo 2, their sum § has as many 1’s as possible. If M has n columns, what is the
largest number of 1’s we can guarantee § to have? For example, if n = 5, we can
always find a set of rows whose sum § contains at least four 1’s. Let A(n) denote
the largest number of 1’s § can be guaranteed to have for any M with n nonzero
columns. We will show that A(n) satisfies the recurrence relation

An) =An—=An—1))+An—1-A(n-2)). (1)

More generally, for p prime, let ¢ = (vi,...,v,) satisfy v; € F, for 1 < i < n.
Let supp(¥) = {i € [n] : v; # 0} and let ||F|| = | supp(?)|, i.e., ||T]| is the number
of nonzero terms in ¢. Let M be an m x m matrix whose entries are in F,. Let
row (M) be the rowspace of M, i.e., the set of all linear combinations of the row
vectors of M over the field F,. Let ¢(M) denote the capacity of M, which we define
as follows,

M) = 7.
c(M) %ggg)gM)lleI
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For each integer n > 1, let \,(n) be the minimum possible capacity of an F,-matrix
consisting of n nonzero columus (i.e., no column equals 0). Restated, let

M, ={M € F"*" : 1 <m < p" and no column of M equals 6},

then
Ap(n) = min c(M).
Jln) = min_e(M)
We will see that A\, satisfies the recurrence relation

p

Ap(n) = Z)\p(n—i—l—l—)\p(n—i)). (2)

i=1

This type of recurrence relation is called a meta-Fibonacci relation.

Meta-Fibonacci sequences have been studied by various authors, dating at least
as far back as 1985, when Hofstadter [4] apparently coined the term “meta-Fibonacci.”
These are integer sequences defined by “nested, Fibonacci-like” recurrence relations,
such as relation (1), which was studied by Conolly [2], and (2). Generalizations of
(2) were studied in [1] and [3], and were shown in [5] and [6] to be solutions to certain
combinatorial problems involving k-ary infinite trees, and compositions of integers.
The “matrix capacity” problem described above is a different combinatorial prob-
lem whose solution is also given by relation (2). This combinatorial problem is
“natural” in the sense that it arose while the first named author was working on
a problem in spatial graph theory. It was only later that we learned (through the
OEIS A046699) that it can be characterized as a meta-Fibonacci sequence.

The remainder of the paper is organized as follows. In Section 2, we use Propo-
sition 1 and Claim 1 to obtain a lower bound on A,(n) for n > 1. In Lemma 2,
we prove a matching upper bound on A,(n) for the special case when n = Zf:o P

by constructing a matrix with Z?:o 7’ columns whose capacity matches the lower

bound we obtained on A, (Z?:o P’ ) In Proposition 2, we use a generalization of
the matrix we use in Lemma 2 to provide the matching upper bound on A, (n) for
all n > 1. Once we have the exact value of \,(n) for all n > 1, we prove that A,(n)
satisfies the meta-Fibonacci recurrence relation in Corollary 3 by using a result from

[6].

2. Main Result

We begin with a lemma which allows us to produce a lower bound on A,(n). For
the remainder of this paper, instead of writing A,, we will simply write A. For a
matrix M, let row*(M) = row(M) — {0}.
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Lemma 1. Let M be an F,-matriz with n nonzero columns, i.e., M € M. Let
¥ € row*(M). If
pA(n — [[9]]) > [|71],

then there is a vector Z € row*(M) such that ||Z]| > ||7]].

Proof. Let M be an F,-matrix with n nonzero columns. Let ¢ = (vi,...,v,) €
row* (M), and let k = ||¢]]. W.lo.g., suppose v; # 0 for 1 < ¢ < k and v; = 0
for k+1 < i <mn. Let & € row*(M) be such that w; # 0 for at least A(n — k)
coordinates i, where k + 1 < i < n. In other words, if we let Wy = (w1,...,wg)
and Wr = (Wky1,-..,wy), then |[Wg| > A(n — k). Since ||| = ||@L| + ||@r||, if
lWL|l > (p— 1)A(n — k), then ||@|| > pA(n —k) > ||7]|, and we are done. So we may
assume that || @] < (p — D)A(n — k).

Our goal will be to prove that there exists a nonzero constant ¢ such that ||cw +
Ur]| > k—A(n—k), where ¢, = (v1,...,vx). Once we establish that such a constant
exists, then we will be done, because we will have ||ci + 9| = ||ewW, + 0L || + || Wr]| >
(k=AXn—Fk)+Xn—k)=k.

Forl1<a<p-1,let S, ={i € [k] : aw; +v; = 0}. Since v; # 0 for 1 < i <k,
then S, C supp(wr). Thus, if aw; + v; = 0 = bw; + v; with w; # 0, then a = b.
Therefore, if a # b, then S, NS, = (). Since UZ: S C supp(wy,) where the sets S,
are pairwise disjoint, we have

p—1

> 18] < [supp(@r)| = @]l < (p — DA — k).

a=1
Therefore, the average value of |S,| is strictly less than A(n — k), and if we let
¢ € [p — 1] be such that |S.| is minimum, then [S;| < A(n — k). Thus, |c@ +
oLl = k= 1S:] > k — A(n — k), and as noted above, we are done. Specifically,
[lew + 7| > |[]]. O
Corollary 1. If 1 <n <p, then A(n) = n.
Proof. Suppose 1 < n < p, M € Mj with ¢(M) = A(n), and ' € row*(M) with
|7]| = ¢(M). Assume towards a contradiction that A(n) < n. Then ||7]| = A(n) <
n < p. Since n — ||#]] > 0, then A(n — ||¢]]) > 1 and ||T]| < pA(n — ||¥]]). Thus,
Lemma 1 implies there is a vector Z € row*(M) such that ||Z]] > ||7||, which is
a contradiction since ||¥]] = ¢(M). Therefore, by contradiction, A(n) > n. This
implies A(n) = n, since we naturally have A(n) < n. O

For an integer k > 0, let o, = Z?:o .

Proposition 1. Suppose

k
n = E bjO'j,
=t
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where by, > 1, and 0 <b; <p—1 forj#4, and1 <b; <p, and 0 < ¢ < k. Then

k
A(n) = bipl.
j=¢
Proof of Proposition 1. We proceed by induction on k. When k£ = 0, then n =

booo = by. Since 1 < by < p, then A\(n) = by by Corollary 1, thus, A(n) = bop® and
the result holds. Now suppose k > 1. The inductive hypothesis is if

’I’L:EbjO'j7
Jj=¢
where b, > 1, and 0 < b; <p—1for j# ¢, and 1 < b, < p, and m < k, then
Aln) > ijpj.
j=¢

Let M be an F,-matrix with n nonzero columns. Suppose ¥ € row™ (M) with
k .
11l < D b’
j=¢
Then
k ok k _
n= |0l >n=>Y bip) = bjoj— > bp’
j=¢ j=t j=t
k
=> bj(o; — ')
j=¢

k
= E bjO'jfl,
j=0

where we define 0_; = 0 to handle the case j = 0, since g — p° = 0. Thus,

n — ||17|| > Z bjt10; + 1.
—1<j<k—1

We want to determine a lower bound on pA (Z;:el_l bjt105 + 1) that allows us to

conclude that pA(n — ||7]]) > ||U]| so that we may use Lemma 1. We consider the
case where by = p and the case where 1 < by < p — 1 separately.
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Suppose by = p. Then

Z bj+1gj+1 = Z bj+10'j+bg(fg_1+1
1—1<j<k-1 1<j<k-—1

= Z bj+10j —+ (pO'[_l -+ 1)
0<j<k—1

= E bj+10j —+ oy
0<j<k—1

= E bjt105 + bey10¢ + 0¢
L+1<j<k—1

= Z bj+105 + (beg1 + 1)oy.
£+1<j<k—1

Notice that the sum satisfies all of the criteria for the inductive hypothesis. Specif-
ically, the coeflicient of its lowest sigma-term oy is byy; + 1, which satisfies 1 <
bey1 + 1 < p; the coeflicient of o; is bj4q and 0 < b1 < p—1 for j # ¢; the
coefficient of the largest sigma-term o_1 is by, which satisfies by > 1; and finally,
the index of its largest sigma term is k£ — 1 which is strictly less than k. Therefore,
by the inductive hypothesis,

PA > b+ (e + Do | 2p > b + (e + 1)
+1<j<k—1 H1<j<k—1

= Z b’ + (beyr + 1)p
+1<j<k-1

= > b 4pp
1<j<k—1

= Z bjpj +p- pZ
1+1<<k

= Z bp’,

1<j<k

where the last equality holds because by = p. Since A is a nondecreasing function,
our previous work implies

pA(n — [|7]]) = pA D b0+ (berr + o
+1<j<k—1

> > by’ > |l

<<k

Thus, by Lemma 1, there is a vector Z € row* (M) such that [|Z]] > ||7]|.
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Now suppose 1 < by < p — 1. Recall that the sum is

Z bj+10'j+1 = Z bj+10'j+1~0'0.

1—1<j<k—1 0—1<j<k—1

In this case, the smallest sigma-term is o, and its coefficient is b; 41, where by = 0 if
£ > 2. We note that the sum satisfies all of the criteria for the inductive hypothesis.
Since each b; satisfies 0 < b; < p—1, then 1 < by +1 < p; when j > 1, the coefficient
of each o; is bj41 and 0 < bj41 < p — 1; the coefficient of the largest sigma-term
0k—1 is bg, which satisfies by > 1; and finally, the index of its largest sigma term is
k — 1 which is strictly less than k.

When ¢ > 2, the coefficient of o¢ is 1, and we apply the inductive hypothesis to
obtain

pA > bjpoi 1| =p > b’ +1
—1<5<k—1 0—1<j<k-1
= Y b+
—1<j<k—1
= Z b]p] + p.

€<j<k

Thus,

pPAn—Tl) =pA | D bjpaoi+1
1—1<j<k—1

> Y b +p> ||
<3<k

When ¢ € {0,1}, the sum is Zf;é bj+10;+1, and we apply the inductive hypothesis
to obtain

p)\ Z bj+10j + ]. = p)\ Z bj+10j + (b1 + ].)
0<j<k-1 1<j<k-1

>p( Y. b +bi+1
1<j<k-1

> b tbip+p

1<j<k-1

Z bjpj + p.

1<j<k
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Thus,

pAn =gl =pA [ D bjpaoy+1
0<j<k—1
> Z bip’ +p
1<j<k

> > by’ > |l

<<k

Thus, by Lemma 1, there is a vector Z € row* (M) such that ||Z]| > ||7||. Therefore
p :
An) =35, bip O

Now we show that every n > 1 can be written in the form described in Proposi-
tion 1. This is analogous to determining a base ¢ representation of a number, i.e.,
n= Z?:o ¢j¢’, where ¢ > 1, and 0 < ¢; < ¢—1. A simple algorithm for finding the
base ¢ representation of n is to determine an integer k such that ¢ < n < ¢*+1.
Then we determine the largest coefficient ¢;, such that cxg® < n. We then repeat
this process on the remainder (n—cyq"). Below, in the proof of Claim 1, we describe
the analogous technique for writing n = ijo bjo;, where 0 < b; < p.

Claim 1. Let n € Z*. Suppose n < opi1. Then there exist coefficients b; such

that
k
n = ij()’j,
7=0

where 0 < b; < p for 0 < j <k, and if b; = p for some j, then b; =0 for all i < j.

Proof of Claim 1. Suppose n € ZT7 and n < ojy1. Then n < op1 — 1 = pop. We
describe how to inductively define the b; terms, starting with j = k and decreasing
to j = 0. To help us do this, we introduce remainder terms n;. We start with
ng+1 = n. Then, for 0 < j <k, let b; be the largest integer such that bjo; < njy,
and let n; = n;j4q1 — bjo;. For 0 < j < k+ 1, we will show that 0 < n; < poj_4
(where we define 0_; = 0), and for 0 < j < k, we will show that 0 < b; < p. When
j = k+ 1, we have niyy; = n, and we have the desired bound 0 < ngy1 < pog.
We use the inductive step below to show that 0 < b; < p and 0 < n; < po;_; for
0<j <k

We now prove the inductive step. Let 0 < j < k. Assume 0 < nj;y; < po;. Since
b; is the largest integer such that bjo; < nj4q1 and 0 < njyq, then b; > 0. Since
bjo; <mji1 < poj and o; > 1, then b; < p. Now we let n; = nj41 — bjo;, and we
show that 0 < nj < poj_;. Since bjo; < njiq, then n; > 0. Since nj4q < (b;+1)oj,
thennj 1 —bjo; < 0j,ie,n; <o;—1=po;_i. (This works even in the special case
J =0, where po_; = 0). Therefore, by induction, 0 < n; < poj_1, for 0 < j < k+1,
and 0 <b; <pfor0<j <k
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Now suppose b; = p. Since bjo; < njy1 < poj, then nj1 = po; and n; =
nj+1 — bjo; = 0. Moreover, b; = 0 and n; = 0 for all 7 < j.

To see that n = Z?:o bjo;, observe that bjo; = njy1 —n; for 0 < j <k, because
of the definition of n;. Thus,

k

k
E bjoj = E (nj41 —ny) = Ngy1 —np = n — ng.
§=0 j=0

Since 0 < ng < po_q and o_; = 0, then ng = 0. Thus, Z?:o bjo; =n.
We note that b could equal 0, but if o < n, then by > 0. Ul

With Proposition 1 and Claim 1, we have established a lower bound on A(n) for
all n > 1. We need to prove the corresponding upper bound. We will do so by
constructing a matrix with n columns whose capacity equals the lower bound given
in Proposition 1. We begin by constructing such a matrix for certain values of n,
namely, when n = oy for some k > 0.

For each integer k > 0, we define a (k+1) X o}, matrix By, recursively, as follows.
The matrix By is the 1 x 1 matrix whose sole entry is 1. For k > 1, By can be
defined as a block matrix with a “row” consisting of p copies of Bp_; followed by
a k x 1 column of 0’s, then one more row of dimensions 1 x o} with its first o,_1
entries equal to 0 (below the first B_1), then of_; entries equal to 1 (below the
next Bg_1), ..., then o,_1 entries equal to p — 1 (below the last By_1), and one
last entry equal to 1, i.e.,

0
5 | Br-1|Br-1]|- B :
e =
0
0.0 1.1 |(-1...p-1] 1
For k > 1, let By, be the k x o}, matrix obtained from By, by removing its last row,
ie.,
0
By=| Br1|Br-1|-| Br-1]| :
0

Lemma 2. For each ¥ € row*(By), ||7] = p”.

Proof. We proceed by induction on k. When k = 0, the result is trivial. Let k& > 1.
Assume the result for j < k. Let ¥ € row*(By,). We first consider the case where
¥ € row*(By,). Then we can write

U= (vgo),. v U%l)

N S e ,v%pil),. p@P—1 0).

LEERENCE IR s Us 1%
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To shorten notation, we will write

52(17071717"'71717—170)’ (3)
where U; = (vgi), .. vgk ,) for 0 <4 < p—1. Technically, in equation (3), ¥; simply
represents the coordinates v( ) . v((fk) .- We observe that tp = 01 = -+ = Up_1

based on how Bj, and ¥ are deﬁned. We also observe that ¥; € row*(Bj_1). By
the inductive hypothesis, ||7;|| = p*~!, therefore, ||7] = p*

We now show the result holds for @ € row*(By) — row*(B},). Let @ be the
last row in By, i.e, @ = (0,...,0,1,...,1,...,p—1,...,p—1,1). We observe that
||| = ox—ok—1 = p¥, thus, the result holds when 1 = 4. To illustrate our argument,
we next consider the special case where @ = ¢ + « for some ¢ € row*(By,). Again,
we slightly abuse notation and write @ = (0,1,..., (p—1)I,1), where 0 = (0,...,0)
and T = (1,...,1) are op_1-dimensional vectors, and for a scalar ¢, we have cl =
c(l,...,1) = (¢,...,c). Then we can write ¥+ 4 = (170+6,171 +f,...,17p_1 +(p-
I)T, 1). Since we are working modulo p, a coordinate of ¥/; + 41 is congruent to 0 if
and only if the corresponding coordinate of ¥; is congruent to p — j. Thus, we can
count the total number of coordinates that are congruent to 0 in ¥+ u as follows

in G4 i = Z(# of (p — j)-coordinates in 7).  (4)

( Total # of 0-coordinates ) =
=0

—

Since ¥y = ¥} = -+ = Up_1, equation (4) reduces to

Total # of 0-coordinates \ [ Total # of coordinates |
in 7+ @ - in 7 — Okl

Thus, || + || = o) — ox—1 = p*. In general, @ € row*(By,) — row*(Bj,) satisfies
W = U+ cu for some ¥ € row*(B)) and ¢ # 0 (mod p). In this case, W = (Up +
0,0 +cl,... ,Up—1 +c(p— 1)f, 1), and equation (4) becomes

( Total # of 0-coordinates

in w

p—1
) Z # of (p — ¢j)-coordinates in ¥;),  (5)
7=0

where arithmetic is modulo p. Since ¥y = ¥ = - -+ = ¥j,—1, we obtain

i1 = Z(# of (p — ¢j)-coordinates in 7).

( Total # of 0-coordinates ) _ =
§=0

Since p is prime and ¢ # 0 (mod p), then {p,p — ¢,p — 2¢,...,p — (p — 1)c} is
equivalent to {0,1,...,p — 1} modulo p, thus,

( Total # of 0-coordinates ) ( Total # of coordinates ) o
= = O0k-1

in w in ¥y
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Therefore, ||| = o1 —o1_1 = p*, and we can conclude that for each ' € row*(By,),
15| = p*. O

Since By has oy columns, Lemma 2 implies that A(n) < pk when n = oy, for
some nonnegative integer k. We would like a similar upper bound on A(n) for all
positive integers n. Thus, we provide the following proposition.

Proposition 2. Ifn = Z?:o bjoj, then A(n) < Z?:o bip.

Proof of Proposition 2. We will construct a matrix M with n columns such that
(M) = Z?:o bjp’. The matrix M will essentially be a block matrix with b; copies
of B; for 0 < j < k. However, the number of rows of B; does not equal the number
of rows of By when j # (. Thus, for 0 < j < k, we define the (k + 1) x ¢; matrix

B](k) where the first j rows of Bj(.k) match the first j rows of B; and the last k+1—j

rows of B](.k) all equal the last row of B;. Thus, Bék) isa (k+1) x 1 column of 1’s,

and for 1 <j <k,

] 0
Bj-1| Bj— Bj- :
0
Bj(.k):(Bj(k)> 0. 011 p-10.. p—1 ] 1
(kt+1)xa; 0.0 1...1 p—1..(p—1
L 0...0 | 1...1 |-+ | (p=1)...p=1) | 1 |

where the last row is repeated (k + 1) — j times. After comparing Bj(-k) with Bj, it
is easy to see that row*(B](-k)) =row*(B;).

Let n be a positive integer such that n = Z?:o bjoj. Let M be the (k+1) xn
matrix defined as a block matrix with b; copies of Bj(k) for 0 < j < k, where the

blocks appear in a single row in nondecreasing order according to their lower index,
i.e.,

k k k k k k
M:[Bé) o B | B® .. BW .| B® ... BW |

—_—
bo b1 by,

Let ¥ € row*(M). Then we can (essentially) write

G RO C RN C I C RN )

v=(U;,... c Uy e U Ty

where Ul(j) € row*(Bj) for 0 <j <k and 1 <3 <b;. Moreover, for 1 <i <b;, we
have 171(]) = 17“8). Thus,

k
151 =" bl
j=0
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Because Ulgj) € row*(B;), Lemma 2 implies ||17§3) | = p?, therefore, ||7]| = Z?:o bip.
Thus, ¢(M) = E?:o bjp?, and A\(n) < Z§:o bip. O

Thus, we can combine Propositions 1 and 2 with Claim 1 to obtain the following
corollary.

Corollary 2. Let n € Z*. Suppose n < oxy1. Then n = Z?:o bjo;, where
0<b; <pfor0<j <k, and if bj = p for some j, then b; = 0 for all i < j.
Moreover,

k
An)=> bp’.
=0

Corollary 3. The sequence \(n) satisfies the meta-Fibonacci recurrence relation

P

A(n)zZA(n—i—&—l—/\(n—i)).

=1

Proof of Corollary 3. We refer to Corollary 32 in [6], which implies that a sequence
which is defined by the meta-Fibonacci recurrence relation (2) is also defined by the
recurrence relation

A(n) = p* + A(n — o), (6)
for o3, < n < og41. Based on Corollary 2, it is clear that A(n) satisfies recurrence (6).
Therefore, A(n) satisfies the meta-Fibonacci recurrence (2). O
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