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Abstract
We present a natural, combinatorial problem whose solution is given by the meta-
Fibonacci recurrence relation a(n) =

Pp
i=1 a(n� i+1�a(n� i)), where p is prime.

This combinatorial problem is less general than those given by Jackson and Ruskey,
and Ruskey and Deugau, but it has the advantage of having a simpler statement.

1. Introduction

Let M be a matrix with entries in Z2, such that every column contains at least
one 1. We want to pick a subset of the rows such that when they are added together
modulo 2, their sum ~s has as many 1’s as possible. If M has n columns, what is the
largest number of 1’s we can guarantee ~s to have? For example, if n = 5, we can
always find a set of rows whose sum ~s contains at least four 1’s. Let �(n) denote
the largest number of 1’s ~s can be guaranteed to have for any M with n nonzero
columns. We will show that �(n) satisfies the recurrence relation

�(n) = �(n� �(n� 1)) + �(n� 1� �(n� 2)). (1)

More generally, for p prime, let ~v = (v1, . . . , vn) satisfy vi 2 Fp for 1  i  n.
Let supp(~v) = {i 2 [n] : vi 6= 0} and let k~vk = | supp(~v)|, i.e., k~vk is the number
of nonzero terms in ~v. Let M be an m ⇥ n matrix whose entries are in Fp. Let
row(M) be the rowspace of M , i.e., the set of all linear combinations of the row
vectors of M over the field Fp. Let c(M) denote the capacity of M , which we define
as follows,

c(M) = max
~v2row(M)

k~vk.
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For each integer n � 1, let �p(n) be the minimum possible capacity of an Fp-matrix
consisting of n nonzero columns (i.e., no column equals ~0). Restated, let

M⇤
n = {M 2 Fm⇥n

p : 1  m  pn and no column of M equals ~0},

then
�p(n) = min

M2M⇤
n

c(M).

We will see that �p satisfies the recurrence relation

�p(n) =
pX

i=1

�p(n� i + 1� �p(n� i)). (2)

This type of recurrence relation is called a meta-Fibonacci relation.
Meta-Fibonacci sequences have been studied by various authors, dating at least

as far back as 1985, when Hofstadter [4] apparently coined the term “meta-Fibonacci.”
These are integer sequences defined by “nested, Fibonacci-like” recurrence relations,
such as relation (1), which was studied by Conolly [2], and (2). Generalizations of
(2) were studied in [1] and [3], and were shown in [5] and [6] to be solutions to certain
combinatorial problems involving k-ary infinite trees, and compositions of integers.
The “matrix capacity” problem described above is a di↵erent combinatorial prob-
lem whose solution is also given by relation (2). This combinatorial problem is
“natural” in the sense that it arose while the first named author was working on
a problem in spatial graph theory. It was only later that we learned (through the
OEIS A046699) that it can be characterized as a meta-Fibonacci sequence.

The remainder of the paper is organized as follows. In Section 2, we use Propo-
sition 1 and Claim 1 to obtain a lower bound on �p(n) for n � 1. In Lemma 2,
we prove a matching upper bound on �p(n) for the special case when n =

Pk
j=0 pj

by constructing a matrix with
Pk

j=0 pj columns whose capacity matches the lower

bound we obtained on �p

⇣Pk
j=0 pj

⌘
. In Proposition 2, we use a generalization of

the matrix we use in Lemma 2 to provide the matching upper bound on �p(n) for
all n � 1. Once we have the exact value of �p(n) for all n � 1, we prove that �p(n)
satisfies the meta-Fibonacci recurrence relation in Corollary 3 by using a result from
[6].

2. Main Result

We begin with a lemma which allows us to produce a lower bound on �p(n). For
the remainder of this paper, instead of writing �p, we will simply write �. For a
matrix M , let row⇤(M) = row(M)� {~0}.
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Lemma 1. Let M be an Fp-matrix with n nonzero columns, i.e., M 2 M⇤
n. Let

~v 2 row⇤(M). If
p�(n� k~vk) > k~vk,

then there is a vector ~z 2 row⇤(M) such that k~zk > k~vk.

Proof. Let M be an Fp-matrix with n nonzero columns. Let ~v = (v1, . . . , vn) 2
row⇤(M), and let k = k~vk. W.l.o.g., suppose vi 6= 0 for 1  i  k and vi = 0
for k + 1  i  n. Let ~w 2 row⇤(M) be such that wi 6= 0 for at least �(n � k)
coordinates i, where k + 1  i  n. In other words, if we let ~wL = (w1, . . . , wk)
and ~wR = (wk+1, . . . , wn), then k~wRk � �(n � k). Since k~wk = k~wLk + k~wRk, if
k~wLk � (p� 1)�(n� k), then k~wk � p�(n� k) > k~vk, and we are done. So we may
assume that k~wLk < (p� 1)�(n� k).

Our goal will be to prove that there exists a nonzero constant c such that kc~wL +
~vLk > k��(n�k), where ~vL = (v1, . . . , vk). Once we establish that such a constant
exists, then we will be done, because we will have kc~w+~vk = kc~wL +~vLk+k~wRk >
(k � �(n� k)) + �(n� k) = k.

For 1  a  p� 1, let Sa = {i 2 [k] : awi + vi = 0}. Since vi 6= 0 for 1  i  k,
then Sa ✓ supp(~wL). Thus, if awi + vi = 0 = bwi + vi with wi 6= 0, then a = b.
Therefore, if a 6= b, then Sa \Sb = ;. Since

Sp�1
a=1 Sa ✓ supp(~wL) where the sets Sa

are pairwise disjoint, we have

p�1X

a=1

|Sa|  | supp(~wL)| = k~wLk < (p� 1)�(n� k).

Therefore, the average value of |Sa| is strictly less than �(n � k), and if we let
c 2 [p � 1] be such that |Sc| is minimum, then |Sc| < �(n � k). Thus, kc~wL +
~vLk = k � |Sc| > k � �(n � k), and as noted above, we are done. Specifically,
kc~w + ~vk > k~vk.

Corollary 1. If 1  n  p, then �(n) = n.

Proof. Suppose 1  n  p, M 2 M⇤
p with c(M) = �(n), and ~v 2 row⇤(M) with

k~vk = c(M). Assume towards a contradiction that �(n) < n. Then k~vk = �(n) <
n  p. Since n � k~vk > 0, then �(n � k~vk) � 1 and k~vk < p�(n � k~vk). Thus,
Lemma 1 implies there is a vector ~z 2 row⇤(M) such that k~zk > k~vk, which is
a contradiction since k~vk = c(M). Therefore, by contradiction, �(n) � n. This
implies �(n) = n, since we naturally have �(n)  n.

For an integer k � 0, let �k =
Pk

j=0 pj .

Proposition 1. Suppose

n =
kX

j=`

bj�j ,
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where bk � 1, and 0  bj  p� 1 for j 6= `, and 1  b`  p, and 0  `  k. Then

�(n) �
kX

j=`

bjp
j .

Proof of Proposition 1. We proceed by induction on k. When k = 0, then n =
b0�0 = b0. Since 1  b0  p, then �(n) = b0 by Corollary 1, thus, �(n) = b0p0 and
the result holds. Now suppose k � 1. The inductive hypothesis is if

n =
mX

j=`

bj�j ,

where bm � 1, and 0  bj  p� 1 for j 6= `, and 1  b`  p, and m < k, then

�(n) �
mX

j=`

bjp
j .

Let M be an Fp-matrix with n nonzero columns. Suppose ~v 2 row⇤(M) with

k~vk <
kX

j=`

bjp
j .

Then

n� k~vk > n�
kX

j=`

bjp
j =

kX

j=`

bj�j �
kX

j=`

bjp
j

=
kX

j=`

bj(�j � pj)

=
kX

j=`

bj�j�1,

where we define ��1 = 0 to handle the case j = 0, since �0 � p0 = 0. Thus,

n� k~vk �
X

`�1jk�1

bj+1�j + 1.

We want to determine a lower bound on p�
⇣Pk�1

j=`�1 bj+1�j + 1
⌘

that allows us to
conclude that p�(n � k~vk) > k~vk so that we may use Lemma 1. We consider the
case where b` = p and the case where 1  b`  p� 1 separately.
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Suppose b` = p. Then
X

`�1jk�1

bj+1�j + 1 =
X

`jk�1

bj+1�j + b`�`�1 + 1

=
X

`jk�1

bj+1�j + (p�`�1 + 1)

=
X

`jk�1

bj+1�j + �`

=
X

`+1jk�1

bj+1�j + b`+1�` + �`

=
X

`+1jk�1

bj+1�j + (b`+1 + 1)�`.

Notice that the sum satisfies all of the criteria for the inductive hypothesis. Specif-
ically, the coe�cient of its lowest sigma-term �` is b`+1 + 1, which satisfies 1 
b`+1 + 1  p; the coe�cient of �j is bj+1 and 0  bj+1  p � 1 for j 6= `; the
coe�cient of the largest sigma-term �k�1 is bk, which satisfies bk � 1; and finally,
the index of its largest sigma term is k � 1 which is strictly less than k. Therefore,
by the inductive hypothesis,

p�

0

@
X

`+1jk�1

bj+1�j + (b`+1 + 1)�`

1

A � p

0

@
X

`+1jk�1

bj+1p
j + (b`+1 + 1)p`

1

A

=
X

`+1jk�1

bj+1p
j+1 + (b`+1 + 1)p`+1

=
X

`jk�1

bj+1p
j+1 + p · p`

=
X

`+1jk

bjp
j + p · p`

=
X

`jk

bjp
j ,

where the last equality holds because b` = p. Since � is a nondecreasing function,
our previous work implies

p�(n� k~vk) � p�

0

@
X

`+1jk�1

bj+1�j + (b`+1 + 1)�`

1

A

�
X

`jk

bjp
j > k~vk.

Thus, by Lemma 1, there is a vector ~z 2 row⇤(M) such that k~zk > k~vk.
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Now suppose 1  b`  p� 1. Recall that the sum is
X

`�1jk�1

bj+1�j + 1 =
X

`�1jk�1

bj+1�j + 1 · �0.

In this case, the smallest sigma-term is �0, and its coe�cient is b1+1, where b1 = 0 if
` � 2. We note that the sum satisfies all of the criteria for the inductive hypothesis.
Since each bj satisfies 0  bj  p�1, then 1  b1+1  p; when j � 1, the coe�cient
of each �j is bj+1 and 0  bj+1  p � 1; the coe�cient of the largest sigma-term
�k�1 is bk, which satisfies bk � 1; and finally, the index of its largest sigma term is
k � 1 which is strictly less than k.

When ` � 2, the coe�cient of �0 is 1, and we apply the inductive hypothesis to
obtain

p�

0

@
X

`�1jk�1

bj+1�j + 1

1

A � p

0

@
X

`�1jk�1

bj+1p
j + 1

1

A

=
X

`�1jk�1

bj+1p
j+1 + p

=
X

`jk

bjp
j + p.

Thus,

p�(n� k~vk) � p�

0

@
X

`�1jk�1

bj+1�j + 1

1

A

�
X

`jk

bjp
j + p > k~vk.

When ` 2 {0, 1}, the sum is
Pk�1

j=0 bj+1�j +1, and we apply the inductive hypothesis
to obtain

p�

0

@
X

0jk�1

bj+1�j + 1

1

A = p�

0

@
X

1jk�1

bj+1�j + (b1 + 1)

1

A

� p

0

@
X

1jk�1

bj+1p
j + b1 + 1

1

A

=
X

1jk�1

bj+1p
j+1 + b1p + p

=
X

1jk

bjp
j + p.
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Thus,

p�(n� k~vk) � p�

0

@
X

0jk�1

bj+1�j + 1

1

A

�
X

1jk

bjp
j + p

>
X

`jk

bjp
j > k~vk.

Thus, by Lemma 1, there is a vector ~z 2 row⇤(M) such that k~zk > k~vk. Therefore
�(n) �

Pk
j=` bjpj .

Now we show that every n � 1 can be written in the form described in Proposi-
tion 1. This is analogous to determining a base q representation of a number, i.e.,
n =

Pk
j=0 cjqj , where q > 1, and 0  cj  q�1. A simple algorithm for finding the

base q representation of n is to determine an integer k such that qk  n < qk+1.
Then we determine the largest coe�cient ck such that ckqk  n. We then repeat
this process on the remainder (n�ckqk). Below, in the proof of Claim 1, we describe
the analogous technique for writing n =

Pk
j=0 bj�j , where 0  bj  p.

Claim 1. Let n 2 Z+. Suppose n < �k+1. Then there exist coe�cients bj such
that

n =
kX

j=0

bj�j ,

where 0  bj  p for 0  j  k, and if bj = p for some j, then bi = 0 for all i < j.

Proof of Claim 1. Suppose n 2 Z+ and n < �k+1. Then n  �k+1 � 1 = p�k. We
describe how to inductively define the bj terms, starting with j = k and decreasing
to j = 0. To help us do this, we introduce remainder terms nj . We start with
nk+1 = n. Then, for 0  j  k, let bj be the largest integer such that bj�j  nj+1,
and let nj = nj+1 � bj�j . For 0  j  k + 1, we will show that 0  nj  p�j�1

(where we define ��1 = 0), and for 0  j  k, we will show that 0  bj  p. When
j = k + 1, we have nk+1 = n, and we have the desired bound 0  nk+1  p�k.
We use the inductive step below to show that 0  bj  p and 0  nj  p�j�1 for
0  j  k.

We now prove the inductive step. Let 0  j  k. Assume 0  nj+1  p�j . Since
bj is the largest integer such that bj�j  nj+1 and 0  nj+1, then bj � 0. Since
bj�j  nj+1  p�j and �j � 1, then bj  p. Now we let nj = nj+1 � bj�j , and we
show that 0  nj  p�j�1. Since bj�j  nj+1, then nj � 0. Since nj+1 < (bj +1)�j ,
then nj+1�bj�j < �j , i.e., nj  �j�1 = p�j�1. (This works even in the special case
j = 0, where p��1 = 0). Therefore, by induction, 0  nj  p�j�1, for 0  j  k+1,
and 0  bj  p for 0  j  k.
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Now suppose bj = p. Since bj�j  nj+1  p�j , then nj+1 = p�j and nj =
nj+1 � bj�j = 0. Moreover, bi = 0 and ni = 0 for all i < j.

To see that n =
Pk

j=0 bj�j , observe that bj�j = nj+1�nj for 0  j  k, because
of the definition of nj . Thus,

kX

j=0

bj�j =
kX

j=0

(nj+1 � nj) = nk+1 � n0 = n� n0.

Since 0  n0  p��1 and ��1 = 0, then n0 = 0. Thus,
Pk

j=0 bj�j = n.

We note that bk could equal 0, but if �k  n, then bk > 0.

With Proposition 1 and Claim 1, we have established a lower bound on �(n) for
all n � 1. We need to prove the corresponding upper bound. We will do so by
constructing a matrix with n columns whose capacity equals the lower bound given
in Proposition 1. We begin by constructing such a matrix for certain values of n,
namely, when n = �k for some k � 0.

For each integer k � 0, we define a (k+1)⇥�k matrix Bk, recursively, as follows.
The matrix B0 is the 1 ⇥ 1 matrix whose sole entry is 1. For k � 1, Bk can be
defined as a block matrix with a “row” consisting of p copies of Bk�1 followed by
a k ⇥ 1 column of 0’s, then one more row of dimensions 1 ⇥ �k with its first �k�1

entries equal to 0 (below the first Bk�1), then �k�1 entries equal to 1 (below the
next Bk�1), . . . , then �k�1 entries equal to p � 1 (below the last Bk�1), and one
last entry equal to 1, i.e.,

Bk =

2

6664
Bk�1 Bk�1 · · · Bk�1

0
...
0

0 . . . 0 1 . . . 1 · · · (p� 1) . . . (p� 1) 1

3

7775
.

For k � 1, let B0
k be the k ⇥ �k matrix obtained from Bk by removing its last row,

i.e.,

B0
k =

2

64 Bk�1 Bk�1 · · · Bk�1

0
...
0

3

75 .

Lemma 2. For each ~v 2 row⇤(Bk), k~vk = pk.

Proof. We proceed by induction on k. When k = 0, the result is trivial. Let k � 1.
Assume the result for j < k. Let ~v 2 row⇤(Bk). We first consider the case where
~v 2 row⇤(B0

k). Then we can write

~v = (v(0)
1 , . . . , v(0)

�k�1
, v(1)

1 , . . . , v(1)
�k�1

, . . . , v(p�1)
1 , . . . , v(p�1)

�k�1
, 0).
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To shorten notation, we will write

~v = (~v0,~v1, . . . ,~vp�1, 0), (3)

where ~vi = (v(i)
1 , . . . , v(i)

�k�1) for 0  i  p�1. Technically, in equation (3), ~vi simply
represents the coordinates v(i)

1 , . . . , v(i)
�k�1 . We observe that ~v0 = ~v1 = · · · = ~vp�1

based on how B0
k and ~v are defined. We also observe that ~vi 2 row⇤(Bk�1). By

the inductive hypothesis, k~vik = pk�1, therefore, k~vk = pk.
We now show the result holds for ~w 2 row⇤(Bk) � row⇤(B0

k). Let ~u be the
last row in Bk, i.e., ~u = (0, . . . , 0, 1, . . . , 1, . . . , p� 1, . . . , p� 1, 1). We observe that
k~uk = �k��k�1 = pk, thus, the result holds when ~w = ~u. To illustrate our argument,
we next consider the special case where ~w = ~v + ~u for some ~v 2 row⇤(B0

k). Again,
we slightly abuse notation and write ~u = (~0,~1, . . . , (p� 1)~1, 1), where ~0 = (0, . . . , 0)
and ~1 = (1, . . . , 1) are �k�1-dimensional vectors, and for a scalar c, we have c~1 =
c(1, . . . , 1) = (c, . . . , c). Then we can write ~v + ~u = (~v0 +~0,~v1 +~1, . . . ,~vp�1 + (p�
1)~1, 1). Since we are working modulo p, a coordinate of ~vj + j~1 is congruent to 0 if
and only if the corresponding coordinate of ~vj is congruent to p� j. Thus, we can
count the total number of coordinates that are congruent to 0 in ~v + ~u as follows

✓
Total # of 0-coordinates

in ~v + ~u

◆
=

p�1X

j=0

(# of (p� j)-coordinates in ~vj). (4)

Since ~v0 = ~v1 = · · · = ~vp�1, equation (4) reduces to
✓

Total # of 0-coordinates
in ~v + ~u

◆
=

✓
Total # of coordinates

in ~v0

◆
= �k�1.

Thus, k~v + ~uk = �k � �k�1 = pk. In general, ~w 2 row⇤(Bk) � row⇤(B0
k) satisfies

~w = ~v + c~u for some ~v 2 row⇤(B0
k) and c 6⌘ 0 (mod p). In this case, ~w = (~v0 +

c~0,~v1 + c~1, . . . ,~vp�1 + c(p� 1)~1, 1), and equation (4) becomes

✓
Total # of 0-coordinates

in ~w

◆
=

p�1X

j=0

(# of (p� cj)-coordinates in ~vj), (5)

where arithmetic is modulo p. Since ~v0 = ~v1 = · · · = ~vp�1, we obtain

✓
Total # of 0-coordinates

in ~w

◆
=

p�1X

j=0

(# of (p� cj)-coordinates in ~v0).

Since p is prime and c 6⌘ 0 (mod p), then {p, p � c, p � 2c, . . . , p � (p � 1)c} is
equivalent to {0, 1, . . . , p� 1} modulo p, thus,

✓
Total # of 0-coordinates

in ~w

◆
=

✓
Total # of coordinates

in ~v0

◆
= �k�1.



INTEGERS: 19 (2019) 10

Therefore, k~wk = �k��k�1 = pk, and we can conclude that for each ~v 2 row⇤(Bk),
k~vk = pk.

Since Bk has �k columns, Lemma 2 implies that �(n)  pk when n = �k for
some nonnegative integer k. We would like a similar upper bound on �(n) for all
positive integers n. Thus, we provide the following proposition.

Proposition 2. If n =
Pk

j=0 bj�j, then �(n) 
Pk

j=0 bjpj .

Proof of Proposition 2. We will construct a matrix M with n columns such that
c(M) =

Pk
j=0 bjpj . The matrix M will essentially be a block matrix with bj copies

of Bj for 0  j  k. However, the number of rows of Bj does not equal the number
of rows of B` when j 6= `. Thus, for 0  j  k, we define the (k + 1) ⇥ �j matrix
B(k)

j where the first j rows of B(k)
j match the first j rows of Bj and the last k+1�j

rows of B(k)
j all equal the last row of Bj . Thus, B(k)

0 is a (k + 1)⇥ 1 column of 1’s,
and for 1  j  k,

B(k)
j =

⇣
B(k)

j

⌘

(k+1)⇥�j

=

2

66666666664

Bj�1 Bj�1 · · · Bj�1

0
...
0

0 . . . 0 1 . . . 1 · · · (p� 1) . . . (p� 1) 1
0 . . . 0 1 . . . 1 · · · (p� 1) . . . (p� 1) 1

...
... · · ·

...
...

0 . . . 0 1 . . . 1 · · · (p� 1) . . . (p� 1) 1

3

77777777775

where the last row is repeated (k + 1)� j times. After comparing B(k)
j with Bj , it

is easy to see that row⇤(B(k)
j ) = row⇤(Bj).

Let n be a positive integer such that n =
Pk

j=0 bj�j . Let M be the (k + 1)⇥ n

matrix defined as a block matrix with bj copies of B(k)
j for 0  j  k, where the

blocks appear in a single row in nondecreasing order according to their lower index,
i.e.,

M =
h

| {z }
b0

B(k)
0 · · · B(k)

0 | {z }
b1

B(k)
1 · · · B(k)

1 · · ·
| {z }

bk

B(k)
k · · · B(k)

k

i
.

Let ~v 2 row⇤(M). Then we can (essentially) write

~v = (~v(0)
1 , . . . ,~v(0)

b0
,~v(1)

1 , . . . ,~v(1)
b1

, . . . ,~v(k)
1 , . . . ,~v(k)

bk
)

where ~v(j)
i 2 row⇤(Bj) for 0  j  k and 1  i  bj . Moreover, for 1  i  bj , we

have ~v(j)
i = ~v(j)

bj
. Thus,

k~vk =
kX

j=0

bjk~v(j)
bj
k.
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Because ~v(j)
bj
2 row⇤(Bj), Lemma 2 implies k~v(j)

bj
k = pj , therefore, k~vk =

Pk
j=0 bjpj .

Thus, c(M) =
Pk

j=0 bjpj , and �(n) 
Pk

j=0 bjpj .

Thus, we can combine Propositions 1 and 2 with Claim 1 to obtain the following
corollary.

Corollary 2. Let n 2 Z+. Suppose n < �k+1. Then n =
Pk

j=0 bj�j , where
0  bj  p for 0  j  k, and if bj = p for some j, then bi = 0 for all i < j.
Moreover,

�(n) =
kX

j=0

bjp
j .

Corollary 3. The sequence �(n) satisfies the meta-Fibonacci recurrence relation

�(n) =
pX

i=1

�(n� i + 1� �(n� i)).

Proof of Corollary 3. We refer to Corollary 32 in [6], which implies that a sequence
which is defined by the meta-Fibonacci recurrence relation (2) is also defined by the
recurrence relation

�(n) = pk + �(n� �k), (6)

for �k  n < �k+1. Based on Corollary 2, it is clear that �(n) satisfies recurrence (6).
Therefore, �(n) satisfies the meta-Fibonacci recurrence (2).
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