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Abstract

A positional game is essentially a generalization of Tic-Tac-Toe played on a hyper-
graph (V,F). A pivotal result in the study of positional games is the Erdős–Selfridge
theorem, which gives simple criteria for the existence of a Breaker’s winning strategy
on a hypergraph F . It has been shown that the Erdős–Selfridge theorem can be tight
and that numerous extremal systems exist for that theorem. We focus on a gener-
alization of the Erdős–Selfridge theorem proven by Beck for biased (p : q) games,
which we call the (p : q)–Erdős–Selfridge theorem. We show that for pn-uniform hy-
pergraphs there is a unique extremal system for the (p : q)–Erdős–Selfridge theorem
(q ≥ 2) when Maker must win in exactly n turns (i.e., as quickly as possible).
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1 Introduction

A positional game is a generalization of Tic-Tac-Toe played on a hypergraph
(V,F) where the vertices can be considered the “board” on which the game is
played, and the edges can be thought of as the “winning sets.” (In this paper
we will only consider finite hypergraphs.) A positional game on (V,F) is a
two player game where at every turn each player alternately occupies a vertex
from V . A biased positional game or a (p : q) positional game on (V,F) is a
two player game where at every turn the first player occupies p vertices and
then the second player occupies q vertices from V . The game is over when
all vertices of F have been occupied. In a strong positional game, the first
player to occupy all vertices of some edge A ∈ F wins. If at the end of play
no edge is completely occupied by either player, that play is declared a draw.
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Normal 3 × 3 Tic-Tac-Toe is a strong positional game where the vertices of
the hypergraph are the nine positions and the edges are the eight winning–
lines. In a Maker–Breaker positional game, the first player, Maker, wins if
she 1 occupies all vertices of some edge A ∈ F , otherwise the second player,
Breaker, wins. Therefore, by definition there are no draw plays in Maker–
Breaker games. We say that a player P has a winning strategy if no matter
how the other player plays, player P wins by following that winning strategy.

A pivotal result in the study of positional games is the Erdős–Selfridge theo-
rem [3], which gives simple criteria based on a probabilistic intuition for the
existence of an explicit Breaker’s winning strategy on a hypergraph F . It
states that if

∑

A∈F

2−|A| <
1

2
, (1)

then Breaker has an explicit winning strategy for the Maker–Breaker game
played on F . In the case where F is n-uniform, condition (1) simplifies to
|F| < 2n−1. Despite the simplicity of the theorem, it is extremely powerful
and can be used to determine asymptotically tight breaking points for many
games. One of the most impressive results stemming from the Erdős–Selfridge
theorem is given by Beck [2]. In his paper, he considers the Maker–Breaker
graph Ramsey game where Maker and Breaker take turns occupying edges of
the complete graph Kn and Maker’s goal is to occupy all the edges of any k-
clique (complete subgraph on k vertices). Using his ingenious game theoretic
second moment method, Beck shows that if k ≤ 2 log2 n − 2 log2 log2 n +
2 log2 e − 10

3
+ o(1), then Maker has an explicit winning strategy. While on

the other hand, by using the Erdős–Selfridge theorem, he shows that if k ≥
2 log2 n−2 log2 log2 n+2 log2 e−1+o(1), then Breaker has an explicit winning
strategy. This is clearly an amazing result as it shows that for large enough
values of n, there are only three values of k for which we do not know who
wins the Maker–Breaker graph Ramsey game.

In addition to the remarkable results that the Erdős–Selfridge theorem yields,
it has been shown that the bound in the theorem is tight and that there are
numerous n-uniform hypergraphs with exactly 2n−1 edges on which Maker
has a winning strategy. We will call such hypergraphs extremal systems for
the Erdős–Selfridge theorem because they have exactly the minimum number
of edges allowable for Maker to possibly possess a winning strategy, and indeed
Maker does have a winning strategy for the Maker–Breaker game played on
these hypergraphs. In this paper we shall focus on a generalization of the
Erdős–Selfridge theorem proven by Beck [1] for (p : q) games, which we call

1 In this paper, we will refer to Player 1 and Maker with feminine pronouns like
“she” and “her,” and we will refer to Player 2 and Breaker with masculine pronouns.
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the (p : q)–Erdős–Selfridge theorem (or sometimes the biased Erdős–Selfridge

theorem). The (p : q)–Erdős–Selfridge theorem states that if

∑

A∈F

(q + 1)−
|A|
p <

1

q + 1
(2)

then Breaker has an explicit winning strategy for the (p : q)-Maker–Breaker
game played on F . In the case where F is pn-uniform, condition (2) simplifies
to |F| < (q + 1)n−1. Along with this theorem, Beck also gave an example
of a pn-uniform hypergraph F with |F| = (q + 1)n−1 on which Maker has
a winning-strategy, i.e., an extremal system for the (p : q)–Erdős–Selfridge
theorem, thus showing that the theorem is tight. In this paper we will prove
that if q ≥ 2 and if we add the stipulation that Maker must win in exactly n

turns (i.e., if Maker has an n-turn winning-strategy), then the extremal system
given by Beck is unique.

The results of this paper were arrived at independently of Lu [4], in which
he previously studied the extremal systems for both the biased and unbiased
Erdős–Selfridge theorem. In Lu’s paper, he examined the case where Maker has
a winning strategy that allows her to win in the minimum number of turns,
i.e., Maker has an economical winning strategy. He showed that there are
numerous extremal systems for the Erdős–Selfridge theorem on which Maker
has an economical winning strategy and he also investigated the economical
extremal systems for the (p : q)–Erdős–Selfridge theorem. However, based
on the conclusions that Lu reached, it seems that he may have unwittingly
assumed that Breaker should always follow the Erdős–Selfridge strategy. Thus,
some of the hypergraphs that he believed to be extremal systems for the biased
and unbiased Erdős–Selfridge theorems were, in fact, not extremal systems,
since Breaker could win the Maker–Breaker game played on those hypergraphs
by using a strategy other than the Erdős–Selfridge strategy.

With respect to the extremal systems for the (p : q)–Erdős–Selfridge theo-
rem, Lu reached the same conclusions as this paper up to (but not including)
Claim 2. His technique was essentially to analyze Beck’s proof of the (p : q)–
Erdős–Selfridge theorem and use the fact that all of the inequalities in the
proof must hold with equality when the hypergraph is an extremal system. In
this paper, however, we reach those conclusions by simply appealing to the
fact that an extremal system has the minimum number of edges possible for
Maker to have a chance of winning.

In this paper we will prove that, in fact, there is a unique economical extremal
system for the (p : q)–Erdős–Selfridge theorem when q ≥ 2; and we will point
out that the same extremal system is also the unique extremal system when
Maker can take as many turns as she wants to win. Thus, the extremal system
given by Beck in his original paper is the only extremal system for the (p : q)–
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Fig. 1. An example of a 3-level, 4-ary tree where each node has two vertices, i.e., a
T (2, 4, 3). This is a 6-uniform hypergraph with 42 edges.

Erdős–Selfridge theorem when q ≥ 2.

To explain the example given by Beck, we first consider the following gener-
alization of a complete binary tree. A complete n-level (q + 1)-ary tree is a
generalization of a complete n-level binary tree, where each (non-leaf) node
has (q + 1) children as a binary tree has two. Thus at level l of the (q + 1)-
ary tree there are (q + 1)l−1 nodes. The hypergraph we wish to consider can
be derived from the complete n-level (q + 1)-ary tree so that each node of
the tree is identified with p distinct vertices of the hypergraph. Thus, the
hypergraph has p times as many vertices as the tree has nodes. Whereas a
tree-edge in the underlying tree connects two nodes of the tree, an edge in the
hypergraph consists of all of the vertices from a path beginning at the root
node and ending at a leaf node. Since there is a unique path from the root to
any leaf, and since every path from the root to a leaf contains n nodes, and
thus pn vertices, we can conclude that this is indeed a pn-uniform hypergraph
with (q + 1)n−1 edges. Let us use T (p, q + 1, n) to denote the hypergraph just
described. (Note that we could have defined a T (p, q, n) to be the analogous
hypergraph derived from a complete n-level q-ary tree; however for this paper
we will invariably focus our attention on (q + 1)-ary trees.) See Figure 1 for a
drawing of a T (2, 4, 3) hypergraph.

We can also define T (p, q + 1, n) inductively. Let T (p, q + 1, 1) be a single
(hyper)edge with p vertices in it. The hypergraph T (p, q + 1, n) is created
by taking a set of p new vertices R, that will constitute a root node, along
with q + 1 vertex disjoint copies, Ti (i = 1, . . . , q + 1), of T (p, q + 1, n − 1) so
that each edge of T (p, q + 1, n) has the form R ∪ A, where A ∈ Ti for some
i ∈ {1, . . . , q + 1}.

The winning-strategy that Maker has on T (p, q + 1, n) can be described as
follows. First Maker occupies all p vertices from the root node. Then there are
(essentially) (q+1) disjoint T (p, q+1, n−1)’s left over. (Each T (p, q+1, n−1)
is rooted at level 2 in the original T (p, q + 1, n).) Breaker can choose his
vertices from at most q of the T (p, q + 1, n− 1)’s. Thus there will always be a
T (p, q + 1, n − 1) in which Breaker has no vertices. Maker chooses her next p
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vertices in the root of an unoccupied T (p, q + 1, n − 1) and continues in that
manner until she reaches a leaf node.

2 Main Theorem

Theorem 1 Consider the (p : q)-Maker–Breaker game on a pn-uniform hy-

pergraph F , where q ≥ 2. If there exists a Maker’s winning strategy on F that

takes exactly n turns, and if |F| = (q + 1)n−1, then F is T (p, q + 1, n).

Proof: We proceed by induction on n. The base case is n = 1. Since there
is one edge of size p, Maker completely occupies it in one turn. Also note
that T (p, q + 1, 1) is the hypergraph with one edge of size p. We assume the
theorem is true for k < n and we will show it is true for k = n. We will use
the following lemma to assist us in our proof.

Lemma 2 If F is a pn-uniform hypergraph that has the minimum number of

edges for which Maker has an n-turn winning strategy in the (p : q)-Maker–

Breaker game, then | ∩A∈F A| = p.

(Note that the condition on the number of edges in the lemma can also be
stated as “F is minimal with respect to edges.”)

Proof of Lemma: If | ∩A∈F A| > p, then Breaker will pick one of the vertices
in ∩A∈FA for his first move and win the game. Therefore, we may assume
| ∩A∈F A| ≤ p. Suppose that F has the minimum number of edges for which
Maker has an n-turn winning strategy. Let X1 be the set of p vertices that
Maker chooses during turn 1. Let C = {A ∈ F : A ⊇ X1} be the set of edges
that contain X1 and let N = F \ C be the set of edges that do not contain
all of X1. If A ∈ N then A cannot be completed in n turns because Maker
occupied at most p − 1 vertices from A in the first turn and can only occupy
p(n − 1) more vertices from A in the remaining n − 1 turns. If N 6= ∅ then
|C| < |F|. Since Maker is trying to win in n turns, she must win using an edge
from C, and Breaker will disregard the edges in N . Thus Maker will win the
game on F if and only if she wins the game restricted to C. (See Figure 2.) Yet,
if |C| < |F| then Maker cannot win on C by the minimality of |F|. Therefore,
N = ∅ and | ∩A∈F A| = p completing the proof of our lemma. �

Now we are assuming that the theorem is true for k < n, and we are show-
ing that it holds for k = n. (See Figures 3 through 7 for pictures which
highlight certain steps of the proof.) Let X1 be the set of p vertices that
Maker chooses in the first turn. By the proof of Lemma 2 we know that
| ∩A∈F A| = p and that it must be the case that X1 = ∩A∈FA. Now let us
consider q + 1 hypothetical first moves by Breaker and use the responses by
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Fig. 2. The “circled” edge that does not contain Maker’s first move is an element of
N . As far as Breaker is concerned, he only sees the hypergraph on the right, i.e., the
edges in C. (In this figure and in subsequent figures, Maker’s moves are indicated
by filled, black points and Breaker’s moves are indicated by X’s. Also, each figure
depicts a (2 : 2) game.)

Fig. 3. Maker’s first move is the root.

Maker’s winning strategy to uncover the necessary (q + 1)-ary tree-like struc-

ture of F . Breaker begins by tentatively trying Y
(1)
1 = {y(1)

1 , y
(1)
2 , . . . , y(1)

q } as
his first move. Maker reveals to Breaker that, based on her winning strat-
egy, she would respond by playing X

(1)
2 = {x(1)

1 , x
(1)
2 , . . . , x(1)

p }. From the proof
of Lemma 2, Breaker knows that the only edges on which Maker can win are
those that contain every vertex of every move that she makes. Thus, there will
be a significant number of edges that contain every vertex of X

(1)
2 , in partic-

ular, there will be a significant number of edges that contain x
(1)
1 . Therefore,

Breaker preempts Maker’s response by including x
(1)
1 in place of y

(1)
1 in his

first move and tries Y
(2)
1 = {x(1)

1 , y
(1)
2 , . . . , y(1)

q }. To this, Maker responds with

X
(2)
2 = {x(2)

1 , x
(2)
2 , . . . , x(2)

p }. Similarly, there will be a significant number of

edges A such that A ⊇ X
(2)
2 , yet A ∩ Y

(2)
1 = ∅. Thus, Breaker repeatedly

preempts Maker’s previous responses by offering first moves in such a way
that his ith attempt, Y

(i)
1 = {x(1)

1 , . . . , x
(i−1)
1 , y

(1)
i , . . . , y(1)

q }, contains a vertex

from each of Maker’s previous i − 1 responses X
(1)
2 , . . . , X

(i−1)
2 . But Breaker

can preempt at most q of Maker’s responses, so he ends with the (q + 1)th

first move Y
(q+1)
1 = {x(1)

1 , x
(2)
1 , . . . , x

(q)
1 } consisting entirely of vertices chosen

by Maker, to which Maker responds with X
(q+1)
2 .

We now consider what would happen if situation i was to occur. Let F(i) =

{A \ X1 : A ∈ F , A ∩ Y
(i)
1 = ∅} be the set of partial edges that survive

Breaker’s first move in situation i. Let C(i) = {A ∈ F(i) : A ⊇ X
(i)
2 } be

those surviving partial edges that contain all the vertices in Maker’s second
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Fig. 4. By induction, no matter what Breaker’s first move is, there will always be p

other vertices that Maker can occupy so that (q + 1)n−2 alive edges contain all of
those p vertices.

Fig. 5. By considering hypothetical Breaker and Maker moves, we can determine
information about the structure of F . For every Breaker move there is always a way
for Maker to win.

move in situation i. Let N (i) = F(i) \ C(i) be those surviving partial edges

that do not contain all of X
(i)
2 . Since Maker must win in exactly n turns, we

can show, by using an argument similar to the proof of Lemma 2, that she
cannot win on any edges from N (i). Thus Breaker only has to block edges
from C(i). Therefore, for all intents and purposes, both players are playing
on F(i) restricted to C(i). However, Maker has a winning-strategy on F , and
both of her moves in turns one and two were made according to that strategy;
therefore, after the first move is played by both players, Maker has a winning-
strategy on C(i). Since Maker has a winning-strategy on C(i), and since C(i)
is a p(n− 1)-uniform hypergraph, the (p : q)–Erdős–Selfridge theorem implies
that |C(i)| ≥ (q +1)n−2. Of course these conclusions are true for 1 ≤ i ≤ q +1.

Now we wish to show that if i < j, then C(i) ∩ C(j) = ∅, or more formally,
that C∗(i) ∩ C∗(j) = ∅ where C∗(i) = {A′ ∪ X1 : A′ ∈ C(i)} for 1 ≤ i ≤ q + 1,
i.e., C∗(i) is the set of (full) edges in F that lead to the partial edges in C(i).
Once we show that C∗(i)∩C∗(j) = ∅ for i < j, then we will be able to conclude
that there are q + 1 edge disjoint C∗(i)’s contained in F and therefore obtain
an upper bound on the number of edges in each C∗(i).

Claim 1 If i < j, then C∗(i) ∩ C∗(j) = ∅.

Proof of Claim 1: Let A ∈ C∗(i) be an arbitrary edge from C∗(i). By def-

inition of C∗(i), we know that A ⊇ X
(i)
2 and x

(i)
1 ∈ X

(i)
2 . Thus every edge in

C∗(i) contains the vertex x
(i)
1 . Let B ∈ C∗(j) be an arbitrary edge from C∗(j).

By definition of C∗(j), we know that B ∩ Y
(j)
1 = ∅. Since j > i, we have that
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Fig. 6. We have determined that F is a root node connected to (q +1) edge disjoint
T (p, q + 1, n − 1)’s, but we need to show that the T (p, q + 1, n − 1)’s are vertex
disjoint.

x
(i)
1 ∈ Y

(j)
1 , and therefore x

(i)
1 6∈ B. Thus every edge in C∗(j) does not contain

the vertex x
(i)
1 . Therefore it is impossible for an edge in F to be in C∗(i)∩C∗(j).

�

Since we now know that all of the C∗(i)’s are edge disjoint we can conclude
that F has at least as many edges as the sum of |C∗(i)|’s. Together with the
fact that |C∗(i)| ≥ (q+1)n−2 for each C∗(i) we obtain the following inequalities

(q + 1)n−1 = |F| ≥
q+1∑

i=1

|C∗(i)| ≥ (q + 1)(q + 1)n−2.

Yet this implies that |C∗(i)| = (q + 1)n−2 for each C∗(i) since no C∗(i) can
contain fewer than (q + 1)n−2 edges.

Now we recall that |C(i)| = |C∗(i)| = (q+1)n−2, and that Maker has an (n−1)-
turn winning-strategy on C(i) for each i, therefore by induction, each C(i) is
a T (p, q + 1, n − 1). Thus, so far we have concluded that F has a root node
and q + 1 edge disjoint T (p, q + 1, n− 1)’s connected to the root node, but we
are not sure whether or not the C(i)’s are vertex disjoint. (See Figure 6.) If
we can show that the C(i)’s are vertex disjoint, then we will have established
that F is indeed T (p, q + 1, n), and we will have proved the theorem.

As we mentioned earlier, in his paper Lu reached the same conclusions that we
have established so far. However, whereas we have simply appealed to the fact
that an extremal system has the minimum number of edges possible for Maker
to have a chance of winning, Lu essentially analyzed Beck’s proof of the (p : q)–
Erdős–Selfridge theorem and used the fact that all of the inequalities in the
proof must hold with equality when the hypergraph is an extremal system.
Claim 2 and the conclusion that T (p, q + 1, n) is the unique economical n-
uniform extremal system for the (p : q)–Erdős–Selfridge theorem were not
contained in Lu’s paper.

Claim 2 If i 6= j, then V (C(i)) ∩ V (C(j)) = ∅.

Proof of Claim 2: Assume, towards a contradiction, that i 6= j and V (C(i))∩
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Fig. 7. Breaker occupies a vertex from the root of every other C(k) and the “highest”
vertex from V (C(i)) ∩ V (C(j)).

V (C(j)) 6= ∅. Each C(k) is a T (p, q + 1, n − 1), thus each C(k) has a root. Let

R(k) = {c(k)
1 , . . . , c(k)

p } be the root of C(k). Let I = V (C(i)) ∩ V (C(j)) be the
set of vertices in both C(i) and C(j). For v ∈ I, let li(v) and lj(v) be the level
of v in C(i) and the level of v in C(j) respectively. (Recall that T (p, q+1, n−1)
has a tree structure, thus the vertices in the root are at level 1, the vertices
in the nodes that are children of the root are at level 2, . . ., the vertices in
nodes that are leaves are at level n − 1.) Let l(v) = min{li(v), lj(v)} be the
minimum of the two levels associated with v. Now let a ∈ I be such that
l(a) = minv∈I l(v), i.e., let a be a vertex with the smallest level amongst the
vertices in the intersection of C(i) and C(j).

We know that Maker’s first move is the root of F , X1 = ∩A∈FA. Let Breaker’s
first move be Y1 = {a} ∪ {c(k)

1 : k 6= i, k 6= j}. Since Breaker’s first move
contains a vertex from the root of every C(k) except C(i) and C(j), only edges
from C(i) and C(j) are alive after the first turn. Maker’s second turn is then
forced to be either X2 = R(i) or X2 = R(j), because if Maker occupies neither
R(i) nor R(j) for her second turn, then Breaker will take a vertex from R(i)
and vertex from R(j) for his second turn and kill all remaining edges. (Notice
that this requires q ≥ 2.) Therefore, without loss of generality, let X2 = R(i).

We now claim that R(i) ∩ V (C(j)) = ∅ or a ∈ R(j). If it is the case that
R(i)∩V (C(j)) 6= ∅ and a 6∈ R(j), then there is a vertex b ∈ R(i)∩V (C(j)) ⊆ I

such that l(b) < l(a), which is a contradiction to our choice of a as a vertex in
I with minimum possible level. (To see this, note that l(b) = 1 since b ∈ R(i).
Since X2 = R(i), then R(i) was available to Maker, thus a 6∈ R(i) and we
are assuming that a 6∈ R(j), thus l(a) ≥ 2.) Therefore, we have that either
R(i) ∩ V (C(j)) = ∅ or a ∈ R(j).

If it is the case that R(i) ∩ V (C(j)) = ∅, then by using an argument like the
one used in Lemma 2, we can conclude that if Maker is to win in n turns, then
she must win in C(i). However, since Breaker already chose a ∈ V (C(i)), the
number of edges left in C(i) is less than (q + 1)n−2 and by the (p : q)–Erdős–
Selfridge theorem, Maker cannot win in C(i) and therefore, cannot win in n

turns.
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If it is the case that a ∈ R(j), then all edges of C(j) are killed by a since a is
in the root. Once again a ∈ V (C(i)) also, so the number of edges left in C(i) is
less than (q+1)n−2 and by the (p : q)–Erdős–Selfridge theorem, Maker cannot
win in C(i) and therefore cannot win.

Therefore, by contradiction, it must be the case that V (C(i))∩ V (C(j)) = ∅ if
i 6= j. �

Thus we have established that F is a p-vertex root connected to q+1 edge and
vertex disjoint T (p, q + 1, n − 1)’s, in other words, F is indeed T (p, q + 1, n).
�

We now mention that although this paper only proves that there is a unique
economical extremal system for the (p : q)–Erdős–Selfridge theorem when
q ≥ 2, it is also true that the T (p, q+1, n) is the unique extremal system when
Maker is allowed to take more turns to win. The proof of the non-economical
case is much more complicated and is contained in the second chapter of the
dissertation [5] of Sundberg.
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[2] József Beck. Positional games and the second moment method. Combinatorica,
22(2):169-216, 2002. Special issue: Paul Erdős and his mathematics.
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