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Abstract

A positional game is essentially a generalization of tic-tac-toe played on a hyper-
graph (V,H). A pivotal result in the study of positional games is the Erdős–Selfridge
theorem, which gives a simple criterion for the existence of a Breaker’s winning strategy
on a finite hypergraph H. It has been shown that the bound in the Erdős–Selfridge the-
orem can be tight and that numerous extremal hypergraphs exist that demonstrate the
tightness of the bound. We call an extremal hypergraph economical if it is n-uniform
and Maker has an n-turn winning strategy on that hypergraph. While characterizing
all extremal hypergraphs for the Erdős–Selfridge theorem is still an open problem, we
make progress on this problem by giving two distinct characterizations of the economi-
cal extremal hypergraphs for the Erdős–Selfridge theorem: one of a theoretical nature,
and one of a more practical nature.

1 Introduction

A positional game is a generalization of tic-tac-toe played on a hypergraph (V,H) where the
vertices can be considered the “board” on which the game is played, and the edges can be
thought of as the “winning sets.” (In this paper we will only consider finite hypergraphs.) A
positional game on (V,H) is a two-player game where at every turn each player alternately
occupies a previously unoccupied vertex from V . In a strong positional game, the first player
to occupy all vertices of some edge A ∈ H wins. If at the end of play no edge is completely
occupied by either player, that play is declared a draw. Normal 3× 3 tic-tac-toe is a strong
positional game where the vertices of the hypergraph are the nine positions and the edges
are the eight winning lines. In a Maker–Breaker positional game, the first player, Maker,
wins if she1 occupies all vertices of some edge A ∈ H, otherwise the second player, Breaker,

1In this paper, we will refer to Maker with feminine pronouns such as “she” and “her,” and we will refer
to Breaker with masculine pronouns.
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wins. Therefore, by definition, there are no draw plays in Maker–Breaker games. We say
that a player P has a winning strategy if no matter how the other player plays, player P
wins by following that winning strategy. It is well-known that in a Maker–Breaker game,
exactly one player has a winning strategy. Please note that in this paper, we will use H
both to denote the whole hypergraph (V,H) and to denote just its set of edges, where the
appropriate interpretation should be understood from the context.

A pivotal result in the study of positional games is the Erdős–Selfridge theorem [4]. In
their paper, Erdős and Selfridge introduced the idea of transforming a probabilistic argument
into a completely deterministic and efficient potential-based strategy for positional games.
Their theorem gives a simple criterion for the existence of an explicit Breaker’s winning
strategy on a hypergraph H. It states that if∑

A∈H

2−|A| <
1

2
, (1)

then Breaker has an explicit winning strategy for the Maker–Breaker game played on H. In
the case where H is n-uniform, condition (1) simplifies to |H| < 2n−1. Despite its simplicity,
the Erdős–Selfridge theorem can be used to determine the correct order of magnitude for
the breaking points (i.e., the value of n at which a game switches from being a win for
Maker to a win for Breaker) of many games. Moreover, it laid the groundwork for using
potential-based strategies in positional game theory. These potential-based strategies play
a key role in determining the asymptotically exact breaking points for many games where
such a result is known. See Beck [2].

In addition to the remarkable results that stem from their theorem, Erdős and Selfridge
provided an example of an n-uniform hypergraph with exactly 2n−1 edges on which Maker
has a winning strategy, thus, proving that the bound in their theorem is tight. Let us call
a hypergraph H an extremal hypergraph for the Erdős–Selfridge theorem if

∑
A∈H 2−|A| = 1

2

and Maker has a winning strategy on H.
In [1], Beck proved a generalization of the Erdős–Selfridge theorem for biased games, i.e.,

games where Maker occupies p vertices per turn and Breaker occupies q vertices per turn,
which we call the (p : q)-Erdős–Selfridge theorem. Beck’s theorem states that if∑

A∈H

(q + 1)−
|A|
p <

1

q + 1
, (2)

then Breaker has an explicit winning strategy for the biased game played on H where Maker
and Breaker occupy p and q vertices per turn, respectively. In the case where H is pn-
uniform, condition (2) simplifies to |H| < (q + 1)n−1. Along with this theorem, Beck also
gave an example of a pn-uniform hypergraph H with |H| = (q+ 1)n−1 on which Maker has a
winning strategy, i.e., an extremal hypergraph for the (p : q)-Erdős–Selfridge theorem, thus,
showing that the bound in the theorem is tight. It should be noted that when p = q = 1, the
(p : q)-Erdős–Selfridge theorem specializes to the Erdős–Selfridge theorem, and the extremal
hypergraph Beck described also specializes to an extremal hypergraph for the Erdős–Selfridge
theorem which is different from the extremal hypergraph described by Erdős and Selfridge
in [4]. The extremal hypergraph given by Beck in [1] can be described by taking a complete
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n-level, (q+ 1)-ary tree2 and associating p distinct vertices with each node in the tree. Each
(hyper)edge is composed of the pn vertices associated with the n nodes on a root-to-leaf path
in the tree. Thus, the hypergraph is pn-uniform and contains exactly (q+1)n−1 (hyper)edges.
Maker’s winning strategy can be described as follows: during turn i, Maker occupies the p
vertices associated with a node Ni in level i, so that the subtree rooted at Ni does not contain
any of Breaker’s vertices at that moment. We note that Maker’s strategy produces a win
for Maker in n turns, which is the minimum number of turns in which Maker can possibly
win. We call such a winning strategy an economical winning strategy, since every vertex
occupied by Maker up to turn n is contained in the edge she occupies during turn n. We call
an extremal hypergraph on which Maker has an economical winning strategy an economical
extremal hypergraph (EEH). Thus, the hypergraph described by Beck is an EEH.

In [5], Lu studied economical extremal hypergraphs for both the Erdős–Selfridge theorem
and the (p : q)-Erdős–Selfridge theorem. Lu described a way to generalize the EEH for
the Erdős–Selfridge theorem given by Beck in order to produce a rich family of n-uniform
hypergraphs. We describe Lu’s construction below, but first we describe a more relevant
modification of Lu’s construction. Let T be a complete binary tree with n-levels, i.e., a
rooted binary tree with exactly 2n−1 leaves all at a distance of n − 1 from the root. There
is a natural partial order on the nodes of T such that Ni ≤ Nj if Ni is a node on the path
between Nj and the root. If Ni < Nj, then we say that Ni is an ancestor of Nj and Nj is
a descendant of Ni. If Np < N and Np is adjacent to N , then Np is the parent of N . If N
and N ′ share the same parent, then N and N ′ are siblings.

We say that a labeling L : V (T )→ N is a good labeling if it is a labeling of T such that:

1. if N and N ′ are siblings, then L(N) 6= L(N ′);

2. if Ni < Nj, then L(Ni) 6= L(Nj);

3. if Ni and Ni
′ are siblings and Nj and Nj

′ are siblings, then L(Ni) = L(Nj) (if and)
only if L(Ni

′) = L(Nj
′).

We say that a hypergraph H is realized by a labeling L of T if each edge in H is precisely
the labels on the nodes of a root-to-leaf path in T , i.e., {L(N1), L(N2), . . . , L(Nn)} is an
edge in H if and only if N1, N2, . . . , Nn are the nodes of a root-to-leaf path in T . Lu studied
hypergraphs that are realized by labelings which satisfy the following two properties:

(L1) if N and N ′ are siblings, then L(N) 6= L(N ′);

(L2) if Ni < Nj and N ′i is the sibling of Ni, then L(Ni) 6= L(Nj) and L(N ′i) 6= L(Nj).

We will call such labelings Lu labelings. Lu mistakenly believed that any hypergraph realized
by a Lu labeling would necessarily be an EEH, however, Properties (L1) and (L2) do not
even guarantee that H is an extremal hypergraph for the Erdős–Selfridge theorem. (See the
hypergraph on the left in Figure 1.) In Chapter 6 of [3], Beck amended Lu’s construction by
replacing Property (L2) with Properties 2 and 3 of a good labeling. In this paper, we will
say that a hypergraph H is a tumbleweed if it is realized by a good labeling L of T . Beck

2Our interpretation of complete n-level, (q + 1)-ary tree is that the root is in level 1, and all (q + 1)n−1

leaves are in level n.
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Figure 1: Two hypergraphs realized by Lu labelings on complete binary trees. These labelings
satisfy Properties 1 and 2 (but not 3) of a good labeling. The hypergraph on the left is not
an extremal hypergraph for the Erdős–Selfridge theorem. (Assuming Maker occupies label 1
for her first move, Breaker can win by occupying label 5 for his first move.) The hypergraph
on the right is an extremal hypergraph for the Erdős–Selfridge theorem, but is not an EEH.
(Assuming Maker occupies label 1 for her first move, Breaker can prevent Maker from winning
within 4 moves by occupying label 9 for his first move.)
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Figure 2: Two good labelings which realize EEHs. On the left is the binary tree extremal
hypergraph given by Beck in [1] and on the right is the original extremal hypergraph given
by Erdős and Selfridge in [4].

proved that all tumbleweeds are extremal hypergraphs for the Erdős–Selfridge theorem, since
Property 3 provides a simple pairing strategy win for Maker. Specifically, Maker occupies
the label of the root node for her first turn. Then for subsequent turns, if Breaker occupies
L(N) during turn i − 1, Maker responds with L(N ′), where N ′ is the sibling of N , during
turn i, for i ≥ 2. We call Maker’s pairing strategy, the sibling strategy. The original extremal
hypergraph provided by Erdős and Selfridge (which is also an EEH) and the EEH given by
Beck in [1] are both examples of tumbleweeds. (See Figure 2.)

While every tumbleweed is certainly an extremal hypergraph for the Erdős–Selfridge
theorem, Maker’s winning sibling strategy is almost never an economical winning strategy,
because it essentially allows Breaker to determine the length of the game. For example,
if Maker uses the sibling strategy, Breaker can force Maker’s win to be delayed until the
last label is occupied. However, there may be other winning strategies available to Maker
depending on the particular tumbleweed on which the game is played. For example, Maker
has an economical winning strategy on the EEH originally given by Beck. Thus, we ask,
“for each tumbleweed H, does there exist an economical winning strategy for Maker on H?”
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Figure 3: Two 4-uniform non-economical extremal hypergraphs for the Erdős–Selfridge
theorem which are not derived from a labeling of a binary tree. The vertices are the labels
on the nodes. The edges are the paths indicated by the arrows, i.e., the six downward black
paths, the red (mostly) horizontal path {1, 2, 3, 4}, and the blue (mostly) horizontal path
{1, 5, 6, 7}.

In Chapter 6 of [3], Beck answers this question in the negative by providing an example
of an n-uniform (n ≥ 5) tumbleweed where Breaker can force Maker to occupy at least
(2n−4 +n−1) vertices of H in order for Maker to win. The example was originally described
by A.J. Sanders in a manuscript from 2004.

While Beck revealed that every tumbleweed is an extremal hypergraph for the Erdős–
Selfridge theorem and not every tumbleweed is an EEH, in this paper, we show that every
EEH is a tumbleweed. In fact, we go further, since we characterize all economical extremal
hypergraphs for the Erdős–Selfridge theorem.

The problem of characterizing all extremal hypergraphs for the Erdős–Selfridge theorem is
still a wide open problem. There are examples of labelings which do not satisfy Property 3 of a
good labeling, yet still realize an extremal hypergraph for the Erdős–Selfridge theorem. (See
the hypergraph on the right in Figure 1.) There are also examples of extremal hypergraphs
for the Erdős–Selfridge theorem which do not arise from a labeling of a binary tree. (See
Figure 3 for two similar examples given by Sanders and Lu.) However, Sundberg proved in
[6] that there is a unique EEH for the (p : q)-Erdős–Selfridge theorem when q ≥ 2, namely,
the original (q+1)-ary tree example given by Beck in [1]. Moreover, Sundberg later proved in
[7] that even when we do not force Maker to win as quickly as possible, the same (q+ 1)-ary
tree example is also the unique extremal hypergraph for the (p : q)-Erdős–Selfridge theorem
when q ≥ 2. Thus, the problems of characterizing the extremal hypergraphs for the (p : q)-
Erdős–Selfridge theorem (q ≥ 2) and characterizing the economical extremal hypergraphs
for the Erdős–Selfridge are now settled.

The remainder of the paper is organized as follows. In Section 2, we state some funda-
mental definitions and lemmas. In Section 3, we prove some fundamental theorems about
tumbleweeds that allow us to characterize all economical extremal hypergraphs for the Erdős–
Selfridge theorem, in particular, Theorem 14. In Section 4, we prove two distinct character-
izations of the economical extremal hypergraphs for the Erdős–Selfridge theorem, namely,
Theorem 18 and Corollary 25.
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2 Preliminaries

In this section, we state and prove some useful lemmas.
We begin by encouraging the reader to review the definitions of good labeling, realized,

and tumbleweed from Section 1. The properties of a good labeling give us the following
lemmas.

Lemma 1 If H is a tumbleweed realized by a good labeling L of a complete n-level binary
tree T , then H is n-uniform.

Lemma 2 If H is an n-uniform tumbleweed, then H has exactly 2n−1 distinct edges.

Lemma 3 Let L be a good labeling on a complete binary tree T . Let N be a node in T , and
let TN be the subtree rooted at N . Then L restricted to TN is also a good labeling. Thus, the
hypergraph HN realized by L restricted to TN is a tumbleweed.

Proof of Lemma 3 If Ni and N ′i are siblings in TN , then they are siblings in T . Thus,
Properties 1 and 3 still hold. If Ni < Nj in TN , then Ni < Nj in T . Thus, Property 2 also
holds. �

Property 3 of a good labeling allows us to define sibling vertices for a tumbleweed relative
to a given good labeling L. Namely, let H be a tumbleweed, and let L be a good labeling
which realizes H. We say that x, x′ ∈ V (H) are siblings in H relative to L if there exist
nodes N,N ′ ∈ V (T ) such that N and N ′ are siblings in T and L(N) = x and L(N ′) = x′.
(Figure 4 shows two distinct labelings which realize the same tumbleweed. Notice that labels
4 and 5 are siblings relative to both labelings. In Section 3, we prove Corollary 15 which
states that if x and x′ are siblings relative to some good labeling which realizes H, then x
and x′ are siblings relative to any good labeling which realizes H.) We now state a useful
lemma that follows from Properties 2 and 3 of a good labeling.

Lemma 4 Let H be an n-uniform tumbleweed, and let L be a good labeling on a complete
n-level binary tree T which realizes H. If x and x′ are siblings in H relative to L, then no
edge in H contains both x and x′.

Proof of Lemma 4: Let N and N ′ be a pair of siblings in V (T ) such that L(N) = x and
L(N ′) = x′. Assume towards a contradiction that there is an edge A ∈ H which contains
x and x′. Then this edge must correspond to a root-to-leaf path in T , say N1, N2, . . . , Nn,
in which L(Ni) = x and L(Nj) = x′ for some {i, j} ⊆ {1, . . . , n} where, without loss of
generality, i < j. Let N ′j be the sibling of Nj in T . Since L is a good labeling, Property 3
implies L(Nj

′) = x. But Ni < Nj
′ in T , and L(Ni) = L(Nj

′) = x, which is a contradiction to
Property 2. Therefore, if x and x′ are siblings in H relative to L, then no edge in H contains
both x and x′. �

For a hypergraph H and vertex x ∈ V (H), let H(x) = {A ∈ H : x ∈ A} be the set of
edges which contain x, and let H(x) = H−H(x) be the set of edges which do not contain x.
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Figure 4: Two distinct good labelings which realize the same tumbleweed H.

Lemma 5 If x and x′ are siblings in a tumbleweed H relative to a good labeling L, then
H(x) ∩H(x′) = ∅ and |H(x)| = |H(x′)|.

Proof of Lemma 5: Let H be a tumbleweed realized by a good labeling L of T . Let x and
x′ be siblings in H relative to L. By Lemma 4, H(x) and H(x′) are disjoint. Every labeled
root-to-leaf path which contains x must pass through a node of T which is labeled x. Thus,
the number of edges containing x can be calculated by summing the number of leaves in
each subtree TN of T rooted at a node N which is labeled x. That is,

|H(x)| =
∑

N :L(N)=x

(# of leaves in TN)

But since x and x′ are siblings in H relative to L, if L(N) = x, then L(N ′) = x′ where N ′ is
the sibling of N in T . Since N and N ′ are siblings and T is a complete binary tree, then

(# of leaves in TN) = (# of leaves in TN ′),

which gives us

|H(x)| =
∑

N :L(N)=x

(# of leaves in TN) =
∑

N ′:L(N ′)=x′

(# of leaves in TN ′) = |H(x′)|.

�

Lemma 6 Let H be a tumbleweed, and let x, y ∈ V (H). If x 6= y, then H(x) 6= H(y).

Proof of Lemma 6: Let H be a tumbleweed and let x, y ∈ V (H) such that x 6= y. Let L
be a good labeling on a complete binary tree T which realizes H. Let A ∈ H(x) ∩ H(y).
(If H(x) ∩ H(y) = ∅, then we are already done.) Let P be the root-to-leaf path in T which
realizes A when T is labeled with L. Without loss of generality, x appears as a label on a
node closer to the root of T than y does, in which case we can obtain A′ ∈ H(x) − H(y)
by following P until we reach the parent of the node labeled y. Then we select the sibling
of the node labeled y to ensure that y′ (the sibling of y relative to L) is in our edge A′ and
continue our path P ′ until we reach a leaf. (See Figure 5.) Once we know y′ ∈ A′, then
Lemma 4 guarantees that y 6∈ A′. Since x ∈ A′, then A′ ∈ H(x)−H(y), as desired. �
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Figure 5: The path P on the right realizes the edge A ∈ H(x) ∩ H(y), while the path P ′

realizes the edge A′ ∈ H(x)−H(y).

If H is a hypergraph such that |∩A∈HA| = 1, and {r} = ∩A∈HA, then we say r is a root
vertex of H. Throughout Sections 3 and 4 we will use the notation H1 = {A− r : A ∈ H},
where r is the root of H.

Lemma 7 If H is a tumbleweed, then H has a root vertex r. If L is a good labeling on a
complete binary tree T which realizes H, then the root node of T is labeled r and is the only
node labeled r.

Proof of Lemma 7: Let H be a tumbleweed, and let L be a good labeling on a complete
binary tree T which realizes H. Let r be the label on the root node of T . Since every labeled
root-to-leaf path contains r, we know that | ∩A∈H A| ≥ 1. Let x be an arbitrary vertex in
H such that x 6= r. Since x 6= r, then x has a sibling x′ relative to L. Lemma 4 tells us
that no edge contains both x and x′. Thus, if A ∈ H(x′), then x /∈ A, which implies that
x /∈ ∩A∈HA. Therefore ∩A∈HA = {r}, i.e., r is the root vertex of H. Property 2 of a good
labeling implies that no other node in T is labeled with r. �

If H is an n-uniform tumbleweed realized by a good labeling L on a complete n-level
binary tree T , we say that x and x′ are a heavy sibling pair in H relative to L if x and x′

are siblings in H relative to L, H(x) and H(x′) partition H, and |H(x)| = |H(x′)| = 2n−2.
(In Figure 2, notice that every pair of siblings relative to the labeling on the right is a heavy
sibling pair relative to that labeling.)

Lemma 8 Let H be an n-uniform tumbleweed and let x be a vertex in H which is not the
root vertex. If |H(x)| ≥ 2n−2, then for every good labeling L which realizes H, x and its
sibling x′ relative to L form a heavy sibling pair relative to L. In particular, |H(x)| = 2n−2.

Proof of Lemma 8: LetH be an n-uniform tumbleweed and let x ∈ V (H) satisfy |H(x)| ≥
2n−2 and x is not the root vertex. Let L be an arbitrary good labeling which realizes H, and
let x′ be the sibling of x relative to L. By Lemma 5, H(x)∩H(x′) = ∅, thus, |H(x)∪H(x′)| =
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|H(x)| + |H(x′)|. Moreover, by Lemma 5, |H(x)| = |H(x′)|, and since |H(x)| ≥ 2n−2, then
|H(x) ∪ H(x′)| ≥ 2(2n−2). But H(x) ∪ H(x′) ⊆ H, thus, |H(x) ∪ H(x′)| ≤ |H| = 2n−1.
Therefore, |H(x)| = |H(x′)| = 2n−2, and we can conclude that x and x′ are a heavy sibling
pair relative to L. �

We say that x and y are a heavy pair in an n-uniform tumbleweed H if H(x) and H(y)
partition H and |H(x)| = |H(y)| = 2n−2. Clearly, if x and x′ are a heavy sibling pair of
H relative to a good labeling L, then x and x′ are a heavy pair in H. We will show the
converse, namely, heavy pairs must be siblings in every good labeling which realizes H.
Therefore, after we prove Lemma 9, we will use the terms heavy pair and heavy sibling pair
interchangeably.

Lemma 9 Let H be a n-uniform tumbleweed and let x and y be a heavy pair in H. If L is
a good labeling which realizes H, then x and y are a heavy sibling pair relative to L.

Proof of Lemma 9: Let H be a n-uniform tumbleweed and let x and y be a heavy pair in
H. Let L be an arbitrary good labeling on a complete n-level binary tree T which realizes
H. Let x′ be the sibling of x relative to L. Since |H(x)| = 2n−2, Lemma 8 implies that x and
x′ form a heavy sibling pair relative to L. Since x and y are a heavy pair in H, then H(x)
and H(y) partition H. Since x and x′ are a heavy sibling pair, then H(x) and H(x′) also
partition H. These two partitions of H allow us to conclude that H(y) = H(x′). Lemma 6
allows us to conclude that y = x′. �

We now state some lemmas and definitions related to economical extremal hypergraphs
for the Erdős–Selfridge theorem.

Lemma 10 (Root Vertex Lemma) If H is an economical extremal hypergraph for the Erdős-
Selfridge theorem, then |∩A∈HA| = 1, i.e., H has a root vertex.

Proof of Lemma 10: Let H be an n-uniform economical extremal hypergraph for the
Erdős–Selfridge theorem. If |∩A∈HA| > 1, then Breaker will pick one of the vertices in
∩A∈HA (not occupied by Maker during her first turn) for his first move and win the game.
Thus, |∩A∈HA| ≤ 1. Suppose |∩A∈HA| = 0. Let x1 be Maker’s first move according to her
economical winning strategy. We know that if A ∈ H(x1), then Maker cannot complete A
in n turns, because Maker can occupy at most n − 1 of the vertices in A in her next n − 1
turns. Therefore, since Maker has an economical winning strategy, Maker must win the game
using an edge from H(x1). Thus, Maker must be able to win the game restricted to H(x1).
However, since |∩A∈HA| = 0, no vertex is contained in every edge of H, thus, |H(x1)| < |H|.
But then Maker cannot win the game on H(x1), as |H| is the minimum number of edges
needed for Maker to have an economical winning strategy. Therefore, |∩A∈HA| = 1. �

Lemma 11 In any Maker winning strategy on an economical extremal hypergraph H for the
Erdős–Selfridge theorem, Maker must occupy the root vertex of H for her first move.

9



We say that a tumbleweed H has the Single Label Property (SLP) if for each vertex
v ∈ V (H), there exists a good labeling of a complete binary tree T which realizes H in which
v appears as a label exactly once. (The tumbleweed in Figure 4 has the SLP. The labels
1, 2, 3, 4, 5, 6, 7, 10, 11 each appear as a label exactly once in the labeling on the left,
and the labels 8 and 9 each appear as a label exactly once in the labeling on the right.) In
Section 4, we prove that a hypergraph H is an n-uniform economical extremal hypergraph
for the Erdős–Selfridge theorem if and only if H is an n-uniform tumbleweed with the Single
Label Property.

3 Structure of Tumbleweeds

In this section, we prove Theorem 14 which states that any labeling which realizes a tumble-
weed is necessarily a good labeling. Theorem 14 is used to help prove our characterizations
of the economical extremal hypergraphs for the Erdős–Selfridge theorem in Section 4.

Lemma 12 Let H be an n-uniform tumbleweed, and let L be a good labeling on a complete
n-level binary tree T which realizes H. Let x and x′ be a heavy sibling pair in H relative to
L. Prune and contract T to give Tx by deleting all subtrees in T rooted at nodes labeled x′

then contracting the tree edges in T between each node N labeled x and its parent node Np

and keep the name Np for the resulting contracted node. (See Figure 6.) Let Lx : V (Tx)→ N
be the labeling of V (Tx) such that Lx(N) = L(N) for all N ∈ V (Tx). Then Lx is a good
labeling on Tx which realizes an (n − 1)-uniform tumbleweed which we call Hx; moreover,
Hx = {A− x : A ∈ H(x)}.

Proof of Lemma 12: First, we will show that Tx is an (n − 1)-level complete binary tree
by showing that there are n − 1 nodes in each root-to-leaf path in Tx, there are 2n−2 such
paths, and each node has zero or two children. Since we delete each subtree in T rooted at
a node labeled x′ to form Tx, and since x and x′ are a heavy sibling pair relative to L, we
delete the 2n−2 root-to-leaf paths in T corresponding to the 2n−2 edges in H which contain
x′. This leaves 2n−2 paths, each of which contains a node N which is labeled x. We then
contract the tree edge between N and its parent node Np (and keep the name Np for the
contracted node) to give 2n−2 root-to-leaf paths in Tx with length n− 1.

To show that each node in Tx has zero or two children, we consider an arbitrary node
N ∈ V (Tx). If N was not the parent of a pair of nodes labeled x and x′ in T , i.e., not a
contracted node, then the children of N are not affected when we prune and contract T .
Thus, N retains its zero or two children in Tx. If N was the parent of a pair of nodes Nx and
Nx′ labeled x and x′, respectively, in T , i.e., N is a contracted node, then N loses its two
children when we prune and contract T , but inherits the zero or two children of Nx. Thus,
every node in Tx has zero or two children and we conclude that Tx is a complete (n−1)-level
binary tree. (See Figure 6.)

Now let Lx : V (Tx) → N such that Lx(N) = L(N) for all N ∈ V (Tx). Note that Lx

is well-defined because V (Tx) ⊆ V (T ). We will prove that Lx is a good labeling on Tx.
Arguments similar to those given above allow us to show that if N and N ′ are siblings in Tx,
then N and N ′ are siblings in T , and if Ni < Nj in Tx, then Ni < Nj in T . As in the proof
of Lemma 3, Properties 1 and 3 hold because if N and N ′ are siblings in Tx, then they are
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siblings in T . Property 2 holds because if Ni < Nj in Tx, then Ni < Nj in T . Thus, Lx is a
good labeling of Tx.

Let Hx be the (n − 1)-uniform tumbleweed realized by Lx on Tx. We will show that
Hx = {A− x : A ∈ H(x)}. In forming Tx, after we delete every subtree rooted at a node
labeled x′, every root-to-leaf path contains a node labeled x. Then we contract the tree
edges between the nodes labeled x and their parent nodes. This reveals a bijection between
the root-to-leaf paths in Tx and the root-to-leaf paths which realize the edges in H(x). The
only distinction between the the root-to-leaf paths in Tx and root-to-leaf paths in T which
realize the edges in H(x) is that the root-to-leaf paths in Tx are missing the nodes labeled x.
Thus, Hx = {A− x : A ∈ H(x)}, since Hx is the hypergraph realized by Lx on Tx. �

Recall that H1 = {A− r : A ∈ H}, where r is the root of H.

Lemma 13 Let H be an n-uniform tumbleweed. If x and x′ are a heavy pair in H, then
H1(x) = {A ∈ H1 : x ∈ A} is isomorphic to Hx = {A− x : A ∈ H(x)}, thus, H1(x) is an
(n− 1)-uniform tumbleweed.

Proof of Lemma 13: Let H be an n-uniform tumbleweed, let x and x′ be a heavy pair in
H, and let r be the root of H. It is fairly easy to check that H1(x) is the same hypergraph
as Hx, except the root of H1(x) is called x while the root of Hx is called r. Specifically, both
hypergraphs can be obtained from H(x) = {A ∈ H : x ∈ A}. To obtain H1(x), we delete
the vertex r from each edge in H(x), i.e., H1(x) = {A − r : A ∈ H(x)}. To obtain Hx, we
delete the vertex x from each edge in H(x), i.e., Hx = {A−x : A ∈ H(x)}. Since {r, x} ⊆ A
for every A ∈ H(x), we see that H1(x) is isomorphic to Hx. Thus, Lemma 12 implies that
H1(x) is an (n− 1)-uniform tumbleweed. �

Theorem 14 If H is an n-uniform tumbleweed and L is a labeling of a complete n-level
binary tree T which realizes H, then L is a good labeling.

Proof of Theorem 14: We will prove by induction on n that any labeling of a complete
n-level binary tree which realizes an n-uniform tumbleweed is a good labeling. If H is a 1-
uniform tumbleweed, then there is only one labeling of the single node in a 1-level complete
binary tree which realizes H, and it is trivially a good labeling. So, assume that any labeling
of an (n − 1)-level complete binary tree which realizes an (n − 1)-uniform tumbleweed is
a good labeling. Let H be an n-uniform tumbleweed. Let L : V (T ) → N be an arbitrary
labeling on a complete n-level binary tree T which realizes H. Let Nr be the root node of
T , and let N and N ′ be the children of Nr in level 2.

Suppose that L(Nr) = r, L(N) = x, and L(N ′) = y. Since H is a tumbleweed, r must be
the root vertex of H. Since L realizes H, and H is n-uniform, then L satisfies Property 2 of
a good labeling. Thus, x 6= r and y 6= r. Since there are 2n−2 root-to-leaf paths in T which
contain N (i.e., the paths that pass through the subtree rooted at N), then |H(x)| ≥ 2n−2.
Since x 6= r and |H(x)| ≥ 2n−2, Lemma 8 implies that |H(x)| = 2n−2. Thus, when we
consider N ′, we know that no node Ni ≥ N ′ is labeled with x, otherwise we would have
|H(x)| > 2n−2. We can use similar arguments to conclude that |H(y)| = 2n−2 and no node
Ni ≥ N is labeled with y. Thus, H(x) and H(y) partition H and |H(x)| = |H(y)| = 2n−2,

11



N3 N �
3

N1 N �
1 N2 N �

2

N �
4N4

x x

x

x

x� x�

x�

x�

N3

N1 N2

N4

Np
3

Np
1 Np

2 N3

N1 N2

Np
4

N4

Np
3

Np
1 Np

2

Np
4

Np
3

Np
1 Np

2

Np
4

Figure 6: Locate nodes labeled x and x′; delete subtrees rooted at nodes labeled x′; contract
tree edges between nodes labeled x and their parents; redraw the resulting complete binary
tree.
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i.e., x and y form a heavy pair in H. Lemma 9 implies that x and y are a heavy sibling pair
relative to every good labeling which realizes H.

Since x and y form a heavy pair in H, Lemma 13 implies that both H1(x) and H1(y)
are (n − 1)-uniform tumbleweeds. Let TN and TN ′ be the subtrees of T rooted at N and
N ′, respectively. It is easy to see that L restricted to TN yields H1(x) and L restricted to
TN ′ yields H1(y). Since H1(x) and H1(y) are (n − 1)-uniform tumbleweeds, our inductive
hypothesis implies that L restricted to TN and L restricted to TN ′ are good labelings.

We already know that L satisfies Property 2 of a good labeling. Our inductive hypothesis
almost gives us that L also satisfies Property 1. Specifically, since L restricted to TN and
L restricted to TN ′ are good labelings, any pair of siblings Ni and N ′i contained in TN or
contained in TN ′ receive different labels in L. The only pair of siblings in T which is not
contained in TN or TN ′ is the pair of level 2 nodes, N and N ′, which we already know receive
the distinct labels x and y. Thus, L satisfies Property 1 of a good labeling.

To prove that L satisfies Property 3 of a good labeling, we’ll show that for any pair of
siblings Ni and N ′i in T , if L(Ni) = a and L(N ′i) = b, then a and b are siblings relative to
every good labeling which realizes H. We’ll use an inductive argument which shows that an
arbitrary pair of siblings Ni and N ′i in level n − k of T satisfies the above property given
that every pair of siblings in levels n − k + 1 through n satisfies the property. It will be
convenient to introduce the following definition for use in this proof. If s and s′ are siblings
in H relative to every good labeling which yields H, then we say that s and s′ are global
siblings in H.

Let Ni and N ′i be an arbitrary pair of siblings in level n− k of T for some 0 ≤ k ≤ n− 3,
i.e., Ni and N ′i are both in TN or both in TN ′ . Without loss of generality, assume that Ni and
N ′i are both in TN . Let L(Ni) = a and L(N ′i) = b. Assume that for any pair of siblings Nj

and N ′j in levels n−k+1 through n of T , their labels sj and s′j relative to L are global siblings
in H. Let P1 be a root-to-leaf path in T which contains Ni, and let A1 be the corresponding
edge of H realized by labeling L. Let (v1, . . . , vn−k−1, a, s1, . . . , sk) be the ordered labels
which appear on P1 so that v1 = r and A1 = {v1, . . . , vn−k−1, a, s1, . . . , sk}. Notice that our
inductive assumption implies that if Nj is a node in P1 with L(Nj) = sj for some 1 ≤ j ≤ k,
and N ′j is the sibling of Nj, with L(N ′j) = s′j, then sj and s′j are global siblings in H. Now we
construct a root-to-leaf path in T called P2 which goes through N ′i . At each level between
n − k + 1 and n, we have two choices for the node to include in P2. If we encounter a pair
of siblings Nj and N ′j such that L(Nj) = sj ∈ A1 and L(N ′j) = s′j, then we select Nj for
P2. Otherwise, we arbitrarily choose one of the siblings for P2. Let A2 be the corresponding
edge of H realized by L on P2. Let (v1, . . . , vn−k−1, b, σ1, . . . , σk) be the ordered labels which
appear on P2 so that v1 = r and A2 = {v1, . . . , vn−k−1, b, σ1, . . . , σk}. We also note that our
inductive assumption implies that if Nj is a node in P2 with L(Nj) = σj for some 1 ≤ j ≤ k,
and N ′j is the sibling of Nj, with L(N ′j) = σ′j, then σj and σ′j are global siblings in H. (See
Figure 7 for a possible picture of the paths P1 and P2 when T is labeled with L.)

For each pair of labels si ∈ A1 and σj ∈ A2 such that si = σj, rename si and σj with vt
so that A1 = {v1, . . . , vn−`−1, a, si1 , . . . , si`} and A2 = {v1, . . . , vn−`−1, b, σj1 , . . . , σj`}, where
0 ≤ ` ≤ k. (We include ` = 0 for the case when there are no si’s or σj’s remaining or there
were none to begin with.) For ease of notation, we will drop the double-subscripts and simply
write st for sit and σt for σjt for each 1 ≤ t ≤ ` so that A1 = {v1, . . . , vn−`−1, a, s1, . . . , s`}
and A2 = {v1, . . . , vn−`−1, b, σ1, . . . , σ`}.
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Figure 7: A picture of the the paths P1 and P2 when T is labeled with L.

Given these new expressions for A1 and A2, we will show that si, s
′
i /∈ A2 and σi, σ

′
i /∈ A1

for any 1 ≤ i ≤ `. We proceed by cases. We know that {si, s′i}∩{σj, σ′j} = ∅ for all 1 ≤ i ≤ `
and 1 ≤ j ≤ `, due to how we constructed A2 and renamed the si’s and σj’s which equaled
each other. Furthermore, we will show that a 6∈ {σj, σ′j} and b 6∈ {sj, s′j} for all 1 ≤ j ≤ `.
Since Ni and N ′i are nodes in TN , then their labels a and b are siblings in the tumbleweed
H1(x) realized by L restricted to TN , which is a good labeling. If a = σ′j, then b = σj because
L restricted to TN satisfies Property 3 of a good labeling. But then A2 contains σj twice,
which is a contradiction. If a = σj, then b = σ′j, and A2 − r contains both σj and σ′j which
contradicts Lemma 4 when applied to H1(x). Thus, a 6∈ {σj, σ′j} for all 1 ≤ j ≤ `. Similar
arguments show that b 6∈ {sj, s′j} for all 1 ≤ j ≤ `. Clearly, si 6= vj and σi 6= vj for any i
and j. If vj = s′i for some i and j, then si, s

′
i ∈ A1 which contradicts Lemma 4 applied to H,

since si and s′i are global siblings. Thus, vj 6= s′i for any i and j. A similar argument gives
us that vj 6= σ′i for any i and j. This allows us to conclude that si, s

′
i /∈ A2 and σi, σ

′
i /∈ A1

for any 1 ≤ i ≤ `.
Let Lg be an arbitrary good labeling which realizes H. We know that there must be

root-to-leaf paths P ′1 and P ′2 in T which correspond to A1 and A2, respectively, when T is
labeled with Lg. We will show by finding the ordered labels on P ′1 and P ′2 that a and b are
siblings in H relative to Lg.

First, we will consider the ordering of the labels on P ′1 relative to Lg. Since v1 = r is the
root of H, Lemma 7 implies that the root Nr of T must be labeled with v1. So, we know
that the ordered labels on P ′1 relative to Lg in the first t levels of T are (v1, vi2 , . . . , vit) for
some 1 ≤ t ≤ n− `− 1, where the vij ’s are vertices in A1 ∩A2. We will show that the first t
nodes in P ′2 also receive the labels (v1, vi2 , . . . , vit) relative to Lg. To do so, we will assume
towards a contradiction that at some level j in T where 1 ≤ j ≤ t, P ′2 receives the label v′ij
instead of vij , where vij and v′ij are siblings in H relative to Lg. But since vij ∈ A1∩A2, then
we have vij ∈ A2 and v′ij ∈ A2, which contradicts Lemma 4. Therefore, P ′1 and P ′2 receive
the same labels (v1, vi2 , . . . , vit) in the first t levels of T .

Now let t be the largest index such that the initial portion of ordered labels of P ′1 relative
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to Lg up to level t consists solely of vij ’s, i.e., the ordered labeling of P ′1 relative to Lg is
(v1, vi2 , . . . , vit , w1, . . . , wn−t) and w1 6∈ A1 ∩ A2, thus, w1 = a or w1 = si for some 1 ≤ i ≤ `.
Assume towards a contradiction that w1 = si for some 1 ≤ i ≤ `. From above, we know
that P ′2 has the same initial portion of ordered labels (v1, vi2 , . . . , vit). Since si and s′i are
global siblings, they are the only available choices for the level t + 1 label of P ′2 relative to
Lg. But this forces either si ∈ A2 or s′i ∈ A2, which is a contradiction, since we previously
established that si, s

′
i /∈ A2. Thus, we may assume that w1 = a. Let w′1 be the sibling of w1

relative to Lg. Therefore, the only available choices for the level t+ 1 label of P ′2 relative to
Lg are w1 and w′1. We know that a 6= b because a and b are siblings in H1(x) and we know
that a 6= vj and a 6= σj for all j, thus, w1 /∈ A2. This forces the initial portion of labels of
P ′2 to be (v1, vi2 , . . . , vit , w

′
1) and w′1 ∈ A2. If w′1 = vj for some j, then a and vj are siblings

relative to Lg, yet a ∈ A1 and vj ∈ A1 which contradicts Lemma 4. If w′1 = σj for some
j, then because σj and σ′j are global siblings, we have a = σ′j which contradicts what we
established above. Thus, w′1 = b. This establishes that a and b are siblings relative to Lg.
Since Lg is an arbitrary good labeling which realizes H, then a and b are global siblings in
H. Therefore, by induction, if Ni and N ′i are siblings in level j of T , where 3 ≤ j ≤ n, and
L(Ni) = a and L(N ′i) = b, then a and b are global siblings in H. Since x and y are a heavy
sibling pair relative to every good labeling which realizes H, then x and y are also global
siblings in H.

To finish establishing that L satisfies Property 3, suppose that Ni and N ′i are siblings in
T and Nj and N ′j are siblings in T , and L(Ni) = L(Nj) = a and L(N ′i) = b and L(N ′j) = c.
We established above that a and b are global siblings in H, thus, in every good labeling
which realizes H, a and b must be siblings. However, the same is true for a and c. The
only way this can be accomplished is if b = c, i.e., if L satisfies Property 3. Thus, L is a
good labeling of T . Therefore by induction, every labeling which realizes H must be a good
labeling. Moreover, our proof reveals that if a and b are siblings relative to some labeling
which realizes H, then a and b are siblings relative to every labeling which realizes H. We
restate this fact in the following corollary. �

Corollary 15 Let H be an n-uniform tumbleweed and let L be a labeling on a complete
n-level binary tree T which realizes H. If N and N ′ are siblings in T and L(N) = a and
L(N ′) = b, then a and b are siblings relative to every good labeling which realizes H.

Thus, Corollary 15 allows us to say that if x and x′ are siblings relative to some labeling
which realizes a tumbleweed H, then x and x′ are siblings in H.

4 Economical Extremal Hypergraphs

In this section, we give two distinct characterizations of the economical extremal hypergraphs
for the Erdős–Selfridge theorem in Theorem 18 and Corollary 25. Throughout this section
we will assume that every Maker’s move we consider is made according to her economical
winning strategy. Let H be an n-uniform economical extremal hypergraph for the Erdős–
Selfridge theorem. We know from Lemma 11 that Maker’s first move must be the root r
of H, thus, H1 = {A− r : A ∈ H} is the set of partial edges after Maker’s first move. For
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a hypergraph F , let F(x, y) = {A ∈ F : x ∈ A, y /∈ A}, i.e., the set of edges of F which
contain x but do not contain y.

Lemma 16 If H is an n-uniform economical extremal hypergraph and y1 is Breaker’s first
move and x2 is Maker’s response, then H1(x2, y1) is an (n− 1)-uniform economical extremal
hypergraph. Moreover, H1(x2, y1) = H1(x2).

Proof of Lemma 16: We will consider two potential moves by Breaker in his first turn and
the responses made by Maker. First, suppose that Breaker takes y1 as his first move, then
Maker responds with x2 as her second move. Let H(1)

1 = H1 (x2, y1), the set of surviving
partial edges after Breaker’s first move y1 which contain Maker’s second move x2. Suppose
that instead Breaker takes y

(2)
1 = x2 as his first move, then Maker responds with x

(2)
2 . Let

H(2)
1 = H1

(
x
(2)
2 , x2

)
, the set of surviving partial edges after Breaker’s new first move x2

which contain Maker’s response x
(2)
2 .

When Breaker chooses y1 and Maker responds with x2, then Maker can win the game on
H in n turns only if she has an (n− 1)-turn winning strategy for the Maker–Breaker game

played on H(1)
1 . Since Maker has an n-turn winning strategy on H, the Erdős–Selfridge

theorem implies that |H(1)
1 | ≥ 2n−2. The same argument applied to H(2)

1 when Breaker

chooses y
(2)
1 = x2 and Maker responds with x

(2)
2 allows us to conclude that |H(2)

1 | ≥ 2n−2.

Since every edge in H(1)
1 contains x2 and every edge in H(2)

1 does not contain x2, we know

thatH(1)
1 ∩H

(2)
1 = ∅. Thus, |H(1)

1 ∪H
(2)
1 | = |H

(1)
1 |+|H

(2)
1 | ≥ 2(2n−2). However,H(1)

1 ∪H
(2)
1 ⊆ H1

and |H1| = 2n−1, which leads us to conclude that |H(1)
1 | = 2n−2, |H(2)

1 | = 2n−2, and H(1)
1 and

H(2)
1 partition H1.

Since Maker has an (n−1)-turn winning strategy on H(1)
1 = H1(x2, y1) and |H(1)

1 | = 2n−2,

then H(1)
1 is an (n − 1)-uniform economical extremal hypergraph for the Erdős–Selfridge

theorem.
To see that H1(x2, y1) = H1(x2), note that H1(x2, y1) ⊆ H1(x2). On the other hand, if

A ∈ H1(x2), then A /∈ H1(x
(2)
2 , x2). Thus, A ∈ H1(x2, y1), because H(1)

1 and H(2)
1 partition

H1. Therefore, H1(x2) ⊆ H1(x2, y1). �

Recall that we say a tumbleweed H has the Single Label Property (SLP) if for each vertex
v ∈ V (H), there exists a good labeling of a complete binary tree T which realizes H in which
v appears as a label exactly once. We will prove that a hypergraph H is an n-uniform
economical extremal hypergraph if and only if H is an n-uniform tumbleweed with the SLP.

Corollary 17 (Corollary to Lemma 12) If H is an n-uniform tumbleweed with the Single
Label Property and x and x′ are a heavy pair in H, then Hx is an (n−1)-uniform tumbleweed
with the Single Label Property.

Proof of Corollary 17: Let H be an n-uniform tumbleweed with the Single Label Prop-
erty. Let x and x′ be a heavy pair in H. Consider an arbitrary vertex u ∈ V (Hx). We know
that u ∈ V (H) as well, and since H has the Single Label Property, there is a good labeling
L of T which realizes H in which u appears as a label exactly once. Recall that we prune
and contract T to give Tx by deleting all subtrees rooted at nodes labeled x′ and contracting
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the tree edges between each node N labeled x and its parent node Np, and keep the name
Np for the contracted node. Recall that Lx : V (Tx)→ N is the labeling of V (Tx) such that
Lx(N) = L(N) for all N ∈ V (Tx). Then by Lemma 12, Hx is an (n−1)-uniform tumbleweed,
and Lx is a good labeling on Tx which realizes Hx. Then since u appears exactly once in L
and since u ∈ V (Hx), u appears exactly once in Lx as well. As u is an arbtirary vertex in Hx,
such a good labeling can be found for any vertex in Hx. Therefore, Hx is an (n− 1)-uniform
tumbleweed with the Single Label Property. �

Theorem 18 An n-uniform hypergraph H is an economical extremal hypergraph for the
Erdős–Selfridge theorem if and only if H is a tumbleweed with the Single Label Property.

Proof of Theorem 18: First, we will prove by induction on n that every n-uniform EEH
for the Erdős-Selfridge theorem is an n-uniform tumbleweed with the SLP.

Let H be an n-uniform EEH. When n = 1, H consists of a single edge with exactly 1
vertex, which is trivially a tumbleweed with the SLP.

Now suppose n ≥ 2, and assume that every k-uniform EEH for the Erdős-Selfridge
theorem with k < n is a k-uniform tumbleweed with the SLP. Let H(1)

1 and H(2)
1 be defined

as in the proof of Lemma 16. By Lemma 16, we know that H(i)
1 is an (n− 1)-uniform EEH

for i ∈ {1, 2}. So, by the inductive hypothesis, H(i)
1 is an (n− 1)-uniform tumbleweed with

the SLP for i ∈ {1, 2}. Let L(i) be a good labeling on a complete (n − 1)-level binary tree

T (i) which realizes H(i)
1 for each i ∈ {1, 2}.

Now let T be the complete n-level binary tree whose root node is Nr and whose left and
right subtrees are T (1) and T (2), respectively. Let L : V (T ) → N be the labeling of T in
which L(Nr) = x1 and L(N) = L(i)(N) for all N ∈ V (T (i)) for i ∈ {1, 2}. Notice that the
labeling L of T realizes H. Specifically, A ∈ H if and only if A − x1 ∈ H1 if and only if
A− x1 ∈ H(i)

1 for i = 1 or i = 2 (because H(1)
1 and H(2)

1 partition H1) if and only if there is
a root-to-leaf path in T (i) which realizes A − x1 when T (i) is labeled with L(i) for i = 1 or
i = 2 if and only if there is a root-to-leaf path in T which realizes A when T is labeled with
L.

Next, we show that L is a good labeling of T , and hence, H is a tumbleweed. Our
arguments are similar to those in the proof of Theorem 14. For example, since L realizes H,
and H is n-uniform, then L satisfies Property 2 of a good labeling. To show that L satisfies
Property 1, suppose that N and N ′ are siblings in T . If N and N ′ are both in T (i) for i = 1
or i = 2, then L(N) 6= L(N ′) since L(i) is a good labeling for i ∈ {1, 2}. The only remaining

siblings in T are the roots of T (1) and T (2), which are labeled with x2 and x
(2)
2 , respectively.

Since H(2)
1 = H1(x

(2)
2 , x2) 6= ∅, then x2 6= x

(2)
2 . Thus, L satisfies Property 1.

Finally, we must show that L satisfies Property 3. Let Nj and N ′j be siblings in T
and let N` and N ′` also be siblings in T . Suppose that L(Nj) = L(N`). We know that if
Nj, Nj

′, N`, N`
′ ∈ V (T (i)) for i = 1 or i = 2, then L(Nj

′) = L(N`
′), since L(i) is a good

labeling for i ∈ {1, 2}.
So we may assume that Nj, N

′
j ∈ V (T (1)) and N`, N

′
` ∈ V (T (2)). (Other cases are either

trivial, such as, when Nj = N`, or never occur, such as, when Nj is the root of T (1) and
N` ∈ V (T (2)).) Let us also assume that L(Nj) = L(N`) = u, L(Nj

′) = w, and L(N`
′) = z.

We consider another set of alternative Breaker moves and Maker responses in order to gain
more insight into the structure of H. Specifically, consider the case where Breaker occupies u
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Figure 8: On the left is the labeling L which realizes H, and on the right is the labeling L′

which also realizes H, but uses label u exactly once.

for his first move and Maker responds with m2. Let H(1′)
1 = H1(m2, u) be the set of surviving

partial edges after Breaker’s first move u which contain Maker’s response m2. Let us also
consider the case where instead Breaker occupies m2 for his first move and Maker responds

with m
(2)
2 . Let H(2′)

1 = H1(m
(2)
2 ,m2) be the set of surviving partial edges after Breaker’s first

move m2 which contain Maker’s response m
(2)
2 . Again, by Lemma 16, we know that H(i′)

1

is an (n − 1)-uniform economical extremal hypergraph for i ∈ {1, 2}. So, by the inductive

hypothesis, H(i′)
1 is an (n−1)-uniform tumbleweed with the SLP for i ∈ {1, 2}. Furthermore,

by construction, u /∈ V (H(1′)
1 ), thus, u ∈ V (H(2′)

1 ). Therefore u does not appear in any good

labeling which realizes H(1′)
1 ; and since H(2′)

1 has the SLP, there exists a good labeling which

realizes H(2′)
1 in which u appears exactly once. Let L(1′) be a good labeling of T (1) which

realizes H(1′)
1 , and let L(2′) be a good labeling of T (2) which realizes H(2′)

1 in which u appears
exactly once. Then let L′ be the labeling of T in which L′(Nr) = x1 and L′(N) = L(i′)(N) if
N ∈ V (T (i)) for i ∈ {1, 2}. Clearly, the label u appears exactly once in this labeling L′, so
u has a single sibling, u′, in this labeling. Using the same arguments that we used to prove
that the labeling L of T realizes H, we can show that the labeling L′ of T which contains u
exactly once also realizes H. (See Figure 8 for a possible picture of the the labelings L and
L′.)

Similar to the proof of Theorem 14, we will examine root-to-leaf paths in T which pass
through Nj and N ′j and use L to realize edges A1, A2 ∈ H (so that L(Nj) = u ∈ A1 and
L(N ′j) = w ∈ A2). Then we use L′ to label T and search for the root-to-leaf paths which
realize A1 and A2. Since u appears as a label exactly once when using L′, we are able to
prove that L has Property 3 of a good labeling.

Suppose that the sibling pair Nj and Nj
′ is in level k of T . Let P1 be a root-to-leaf

path in T which contains Nj, and let A1 be the corresponding edge of H realized by la-
beling L. Let (v1, . . . , vk−1, u, s1, . . . , sn−k) be the ordered labels which appear on P1 so
that v1 = x1 and A1 = {v1, . . . , vk−1, u, s1, . . . , sn−k}. Now we construct a root-to-leaf path
in T called P2 which goes through N ′j. At each level between k + 1 and n, we have two
choices for the node to include in P2. If we encounter a pair of siblings Nt and N ′t such
that L(Nt) = st ∈ A1 and L(N ′t) = s′t, then we select Nt for P2. Otherwise, we arbitrarily
choose one of the siblings for P2. Let A2 be the corresponding edge of H realized by L. Let
(v1, . . . , vk−1, w, σ1, . . . , σn−k) be the ordered labels which appear on P2 so that v1 = x1 and
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Figure 9: A picture of the the paths P1 and P2 and P3 when T is labeled with L.

A2 = {v1, . . . , vk−1, w, σ1, . . . , σn−k}. (See Figure 9 for a possible picture of paths P1 and P2

(and P3, which we define later) when T is labeled with L.) Let P ′1 and P ′2 be paths in T
which realize A1 and A2, respectively, when T is labeled with L′. Examining P ′1 and P ′2 (and
other paths) will help us show that u′, the sibling of u relative to L′, equals w. Repeating
the process with N` and N ′` will allow us to show that u′ also equals z, thus allowing us to
conclude that w = z.

First, we will consider the ordering of the labels on P ′1 relative to L′. Notice that L′

labels the root of T (1) with m2 and the root of T (2) with m
(2)
2 . We know that the ordered

labels on P ′1 must begin with v1 = x1. Since u ∈ A1 and u /∈ V (H(1′)
1 ), then we know that

the root of T (2) must be the second node in P ′1, thus m
(2)
2 ∈ A1.

Consider the case where u = m
(2)
2 . Notice this implies that u′ = m2. We know the first

two labels on P ′1 will be v1 and u because u ∈ A1. We also know that P ′2 must have v1
as its first label. However, by applying Lemma 4 to u,w and H(1)

1 , we can conclude that
u /∈ A2 − v1. Thus, no node in P ′2 receives u as a label, and u′ must be the label of the
second node in P ′2. Thus, u′ ∈ {v2, . . . , vk−1, w, σ1, . . . , σn−k}. We will show that u′ = w.
First, assume towards a contradiction that u′ = vi for some 2 ≤ i ≤ k − 1. In this case,
since u′ = m2 and vi ∈ A1 − v1, we have m2 ∈ A1 − v1. However, because P ′1 passes through

T (2), then A1− v1 ∈ H(2′)
1 = H(m

(2)
2 ,m2), thus, m2 /∈ A1− v1, which is a clear contradiction.

Therefore, u′ 6= vi for 2 ≤ i ≤ k − 1. Now assume towards a contradiction that u′ = σi for
some 1 ≤ i ≤ n − k. Let P3 be a root-to-leaf path in T which passes through N ′j and has
the ordered labels (v1, v2, . . . , vk−1, w, σ1, . . . , σi−1, σi

′, r1, . . . , rn−k−i) relative to L where σi
and σ′i are siblings in H(1)

1 ; and let A3 = {v1, v2, . . . , vk−1, w, σ1, . . . , σi−1, σi′, r1, . . . , rn−k−i}
be the corresponding edge of H realized by L. (See Figure 9 for a possible picture of path P3

when T is labeled with L.) We know that A3 must also correspond to some root-to-leaf path
P ′3 in T labeled with L′, but we will show that no such path exists. Clearly, the label that
L′ assigns to the first node of any path must be v1. The two choices for the label that L′
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assigns to the second node of any path are u and u′ = σi. However, as we did above, we can
apply Lemma 4 to u,w, σi, σ

′
i and H(1)

1 to conclude that u /∈ A3− v1 and σi /∈ A3− v1. Thus,
there is no path P ′3 which realizes A3 relative to L′, which is a contradiction. Therefore, it

must be the case that u′ = w when u = m
(2)
2 .

Now consider the case where u 6= m
(2)
2 . Suppose that the ordered labels assigned by

L′ to the first t nodes of P ′1 are (v1, vi2 , . . . , vit), where vi2 , . . . , vit ∈ {v2, . . . , vk−1} with
1 ≤ t ≤ k − 1, and v1 = x1. (When t = 1, we are only considering the first node of
P ′1 which is labeled v1.) If P ′j is a root-to-leaf path which realizes an edge Aj such that
{v1, . . . , vk−1} ⊆ Aj, when T is labeled with L′, then we will show that P ′j has the same
ordered labels on its first t nodes as P ′1. Clearly, the first node of P ′j is labeled v1. When

t ≥ 2, then vi2 = m
(2)
2 . Since vi2 ∈ {v2, . . . , vk−1} ⊆ Aj − v1, then m

(2)
2 ∈ Aj − v1. Thus,

Aj − v1 ∈ H1(m
(2)
2 ). Lemma 16 implies that H1(m

(2)
2 ) = H(2′)

1 , which means P ′j passes

through T (2) and the second node of P ′j is labeled vi2 . Now, assume towards a contradiction
that the level c node of P ′j is labeled vic

′ instead of vic , where vic and vic
′ are siblings relative

to L(2′) and 3 ≤ c ≤ t. But then vic ∈ Aj − v1 and vic
′ ∈ Aj − v1, which is a contradiction

to Lemma 4 applied to H(2′)
1 . Therefore, if the ordered labels assigned by L′ to the first t

nodes of P ′1 are (v1, vi2 , . . . , vit), then the same is true for P ′j .
Now let t be the largest index such that the initial portion of ordered labels of P ′1 relative

to L′ up to level t (where 1 ≤ t ≤ k − 1) consists solely of vj’s, i.e., the ordered labeling
of P ′1 relative to L′ is (v1, vi2 , . . . , vit , α1, . . . , αn−t) and α1 6= vj (for 1 ≤ j ≤ k − 1), thus,
α1 = u or α1 = si for some 1 ≤ i ≤ n − k. Assume towards a contradiction that α1 = si
for some 1 ≤ i ≤ n − k. Let P4 be a root-to-leaf path in T which passes through Nj and
has the ordered labels (v1, v2, . . . , vk−1, u, s1, . . . , si−1, s

′
i, β1, . . . , βn−k−i) relative to L where

si and s′i are siblings in H(1)
1 ; and let A4 = {v1, v2, . . . , vk−1, u, s1, . . . , si−1, s′i, β1, . . . , βn−k−i}

be the corresponding edge of H realized by L. Let P ′4 be the root-to-leaf path in T which
realizes A4 relative to L′. Since there is a unique node in T labeled u and u ∈ A4, the
initial portion of ordered labels of P ′4 must be (v1, vi2 , . . . , vit , α1, . . . , αc), where αc = u
and 2 ≤ c ≤ n − t. Since α1 = si, then si ∈ A4 − v1. But this is a contradiction to
Lemma 4 applied to H(1)

1 since s′i ∈ A4 − v1. Thus, we may assume that α1 = u. From
above, we know that P ′2 has the same initial portion of ordered labels (v1, vi2 , . . . , vit) since

{v1, . . . , vk−1} ⊆ A2. Recall that applying Lemma 4 to u,w andH(1)
1 implies that u /∈ A2−v1,

thus, the level t + 1 node of P ′2 is labeled u′. We will show that u′ = w. If u′ = vi for some

2 ≤ i ≤ k − 1, then u and vi are siblings in H(2′)
1 . But u, vi ∈ A1 − v1 ∈ H(2′)

1 which
contradicts Lemma 4. If u′ = σi for some 1 ≤ i ≤ n− k, then we can show that there is no
path P ′3 which realizes the edge A3 ∈ H relative to L′, (where A3 is defined as above, namely,
A3 = {v1, v2, . . . , vk−1, w, σ1, . . . , σi−1, σi′, r1, . . . , rn−k−i}). Assume towards a contradiction
that P ′3 realizes A3 relative to L′. Since {v1, . . . , vk−1} ⊆ A3, then (v1, vi2 , . . . , vit) is the
initial portion of ordered labels of P ′3. The two choices for the label that L′ assigns to the
(t + 1)th node of P ′3 are u and u′ = σi. However, as above, we can apply Lemma 4 to

u,w, σi, σ
′
i and H(1)

1 to conclude that u /∈ A3 − v1 and σi /∈ A3 − v1. Thus, there is no path
P ′3 which realizes A3 relative to L′, which is a contradiction. Therefore, it must be the case

that u′ = w when u 6= m
(2)
2 .

In this way, we have shown that u′ = w is the unique sibling of u when T is labeled with
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L′. However, we can use the same path-finding arguments with a pair of root-to-leaf paths
in T containing N` and N ′` to prove that u′ = z as well, since L(N`) = u and L(N`

′) = z.
Therefore, we reach the conclusion that w = z. So, if Nj and Nj

′ are siblings and N` and
N`
′ are the siblings in T where L(Nj) = L(N`), then L(Nj

′) = L(N`
′). Thus, L also satisfies

Property 3; therefore, L is a good labeling on the complete n-level binary tree T which
realizes H, so H is an n-uniform tumbleweed.

Note that since H is a tumbleweed which is realized by the labeling L′ on the binary tree
T , according to Theorem 14, L′ is a good labeling. And since u was an arbitrary vertex in
V (H), such a good labeling can be found for any vertex in V (H). That is, given any vertex
u ∈ V (H), there is a good labeling which realizes H in which u appears as a label exactly
once. So, H has the SLP. Therefore, by induction, every n-uniform economical extremal
hypergraph is an n-uniform tumbleweed with the Single Label Property.

Next, we prove by induction on n that every n-uniform tumbleweed H with the Single
Label Property is an n-uniform economical extremal hypergraph. If n = 1, then H is the
hypergraph which can be represented by a labeling of the single node in the 1-level complete
binary tree. Clearly, Maker has a 1-turn winning strategy on the game played onH, as Maker
will simply occupy this lone vertex in her first move and win the game. Since |H| = 1 = 21−1,
then H is an economical extremal hypergraph.

Let n ≥ 2, and assume that every k-uniform tumbleweed with the Single Label Property
where k < n is a k-uniform economical extremal hypergraph. We will show that if H is an
n-uniform tumbleweed with the Single Label Property, then H is an n-uniform economical
extremal hypergraph. By Lemmas 1 and 2, H is an n-uniform hypergraph with 2n−1 edges,
so we must prove that Maker has an n-turn winning strategy for the game played on H.
By Lemma 11, Maker’s first move x1 is the root of H. We note that Maker has an n-turn
winning strategy on H, if and only if for every Breaker’s first move y1, there is a vertex x
such that Maker has an (n− 1)-turn winning strategy on H1(x, y1). Let y1 be an arbitrary
Breaker’s first move. Let L be a good labeling of the complete n-level binary tree T in which
y1 appears exactly once as a label. (We know that L exists because H has the SLP.) Let N
and N ′ be the nodes in level 2 of T . Without loss of generality, the unique node in T which
is labeled y1 is contained in the subtree of T rooted at N ′. Let x = L(N) and x′ = L(N ′),
so that y1 ∈ V (H1(x

′)) and y1 /∈ V (H1(x)). Since y1 /∈ V (H1(x)), then H1(x, y1) = H1(x).
Moreover, since x and x′ are the labels of the nodes in level 2 of T , we know that x and x′

are a heavy pair in H. Lemma 13 and Corollary 17 imply that H1(x) is an (n− 1)-uniform
tumbleweed with the SLP. Therefore, by our inductive hypothesis, H1(x) is an (n − 1)-
uniform economical extremal hypergraph, so Maker has an (n− 1)-turn winning strategy on
H1(x) = H1(x, y1). Thus, our note above implies that Maker has an n-turn winning strategy
on H.

Therefore, a hypergraph H is an n-uniform economical extremal hypergraph if and only
if H is an n-uniform tumbleweed with the Single Label Property. �

Corollary 19 Corollary to Lemma 13: If H is an n-uniform tumbleweed and x and x′ are
a heavy pair in H, then there exists a good labeling L of a complete n-level binary tree T
which realizes H in which x and x′ appear as the labels of the nodes in level 2 of T .

Proof of Corollary 19: We essentially repeat the beginning of the proof of Theorem 18.
Let H be an n-uniform tumbleweed and let x and x′ be a heavy pair in H. Let H(1)

1 = H1(x)
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and H(2)
1 = H1(x

′). By Lemma 13, we know that H(i)
1 is an (n− 1)-uniform tumbleweed for

i ∈ {1, 2}. Let L(i) be a good labeling on an (n − 1)-level complete binary tree T (i) which

realizes H(i)
1 for each i ∈ {1, 2}. Let T be the n-level complete binary tree whose root node

is Nr and whose left and right subtrees are T (1) and T (2), respectively. Let L : V (T )→ N be
the labeling of T in which L(Nr) = r and L(N) = L(i)(N) for all N ∈ V (T (i)) for i ∈ {1, 2}.
Since x is the root of H1(x) and x′ is the root of H1(x

′), then Lemma 7 implies that the
level 2 nodes of T are labeled with x and x′. By repeating exactly the same argument from
the proof of Theorem 18, we can conclude that A ∈ H if and only if there is a root-to-leaf
path in T which realizes A when T is labeled with L. Thus, L is a labeling of T which realizes
H in which x and x′ appear as the labels of the nodes in level 2 of T , and by Theorem 14,
L must be a good labeling. �

Lemma 20 If H is an n-uniform tumbleweed with the Single Label Property, then |H(v)| =
2n−k for each vertex v ∈ V (H), where k =

∣∣∩A∈H(v)A
∣∣.

Proof of Lemma 20: Let H be an n-uniform tumbleweed with the SLP. Let v ∈ V (H) be
an arbitrary vertex. Then there is a good labeling L of a complete n-level binary tree T
which realizes H in which v appears exactly once. Let N be the unique node in T which
is labeled v. Then the set of edges H(v) corresponds precisely to the root-to-leaf paths in
T which pass through N . Suppose N is in level k, then there are exactly 2n−k root-to-leaf
paths which pass through N , thus, |H(v)| = 2n−k.

Let TN be the subtree rooted at N . Lemma 3 implies that L restricted to TN realizes
a tumbleweed HN . Let v1, . . . , vk−1 be the labels on the path from the root of T to the
parent of N . Notice that each A ∈ H(v) satisfies A = {v1, . . . , vk−1} ∪AN where AN ∈ HN .
Moreover, since v is the root of HN , we have

∣∣∩A∈H(v)A
∣∣ = k. �

Since Lemma 20 gives a necessary condition for a tumbleweed H to have the SLP, we
will say that an n-uniform tumbleweed is amenable to the SLP if for each vertex v ∈ V (H),
|H(v)| = 2n−k where k =

∣∣∩A∈H(v)A
∣∣. It turns out that the converse of Lemma 20 also

holds. Thus, once we prove the converse, we will have an alternative characterization of
the economical extremal hypergraphs for the Erdős–Selfridge theorem. We introduce some
notation and a lemma which aid in our proof of the converse. For a hypergraph H and a
set {v1, . . . , vk}, we let H(v1, . . . , vk) = {A ∈ H : {v1, . . . , vk} ⊆ A} be the set of edges in H
which contain {v1, . . . , vk}.

Lemma 21 Let H be an n-uniform tumbleweed. If {v1, . . . , vk} is a k-subset of V (H), then
|H(v1, . . . , vk)| ≤ 2n−k.

Proof of Lemma 21: Let H be an n-uniform tumbleweed. We proceed by induction on n.
When n = 1, the result is trivial.

Let n ≥ 2, and assume the result for `-uniform tumbleweeds where ` < n. Let {v1, . . . , vk}
be a k-subset of V (H) which satisfies |H(v1, . . . , vk)| ≥ |H(w1, . . . , wk)| for all k-subsets
{w1, . . . , wk} ⊆ V (H). We will show that |H(v1, . . . , vk)| ≤ 2n−k, thus proving the re-
sult for all k-subsets. We may assume that the root r of H is an element of {v1, . . . , vk},
since for an arbitrary k-subset {w1, w2, . . . , wk} we have H(r, w2, . . . , wk) = H(w2, . . . , wk) ⊇
H(w1, w2, . . . , wk). Without loss of generality, we may assume that v1 = r.
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Let x and x′ be a heavy pair in H. Since H(x) and H(x′) partition the edges of H, we
can write

H(r, v2, . . . , vk) = H(v2, . . . , vk)

= H(x, v2, . . . , vk) ∪H(x′, v2, . . . , vk)

where the union is disjoint. Thus,

|H(r, v2, . . . , vk)| = |H(x, v2, . . . , vk)|+ |H(x′, v2, . . . , vk)|. (3)

Recall that H1 = {A − r : A ∈ H}, and let H(1)
1 = H1(x) and H(2)

1 = H1(x
′). Note that

|H(x, v2, . . . , vk)| = |H(1)
1 (x, v2, . . . , vk)| because we simply remove r from every edge, and

while the x is almost redundant in the right-hand-side of the equality, the equality is true
nonetheless. Similarly, we note that |H(x′, v2, . . . , vk)| = |H(2)

1 (x′, v2, . . . , vk)|. By Lemma 13,

H(i)
1 is an (n− 1)-uniform tumbleweed for i ∈ {1, 2}.

If vi 6∈ {x, x′} for 2 ≤ i ≤ k, then {x, v2, . . . , vk} and {x′, v2, . . . , vk} are both k-sets,

and by the inductive hypothesis, |H(1)
1 (x, v2, . . . , vk)| ≤ 2(n−1)−k and |H(2)

1 (x′, v2, . . . , vk)| ≤
2(n−1)−k. When we combine these bounds with our two notes above and equation (3), we
conclude that |H(r, v2, . . . , vk)| ≤ 2n−k as desired.

If vi = x for some 2 ≤ i ≤ k, then {x, v2, . . . , vk} is a (k − 1)-set and by the inductive

hypothesis, |H(1)
1 (x, v2, . . . , vk)| ≤ 2(n−1)−(k−1) = 2n−k. Yet, when vi = x, Lemma 4 implies

that H(x′, v2, . . . , vk) = ∅, thus, |H(x′, v2, . . . , vk)| = 0. Therefore, by equation (3) and our
two notes, we again conclude that |H(r, v2, . . . , vk)| ≤ 2n−k. A similar argument can be made
for the case when vi = x′ for some 2 ≤ i ≤ k. �

Corollary 22 Let H be an n-uniform tumbleweed. If
∣∣∣⋂A∈H(v)A

∣∣∣ = k, then |H(v)| ≤ 2n−k.

Proof of Corollary 22: Let H be an n-uniform tumbleweed. Let {v1, . . . , vk} = ∩A∈H(v)A,
then H(v1, . . . , vk) = H(v). If |{v1, . . . , vk}| = k, then Lemma 21 implies |H(v1, . . . , vk)| ≤
2n−k, thus, |H(v)| ≤ 2n−k. �

Lemma 23 If H is an n-uniform tumbleweed such that |H(v)| = 2n−k for each vertex v ∈
V (H), where k =

∣∣∩A∈H(v)A
∣∣, then H satisfies the Single Label Property.

Proof of Lemma 23: Let H be an n-uniform tumbleweed such that each vertex v ∈ V (H)
satisfies |H(v)| = 2n−k where k =

∣∣∩A∈H(v)A
∣∣. We will show that if v is an arbitrary vertex

such that |H(v)| = 2n−k where k =
∣∣∩A∈H(v)A

∣∣, then there is a good labeling of a complete
n-level binary tree T which realizes H in which v is used as a label exactly once. We proceed
by induction on n and k.

When n = 1 and n = 2, it is easy to check that the result holds for all k. When n is
arbitrary and k = 1, we have |H(v)| = 2n−1, thus v = r, the root of H. By Lemma 7, exactly
one node of T is labeled r in every labeling which realizes H. When n ≥ 2 is arbitrary and
k = 2, we have |H(v)| = 2n−2 and | ∩A∈H(v) A| = 2. This implies that v is not the root of H,
and Lemma 8 implies that v and its sibling v′ are a heavy pair in H. Corollary 19 implies
that there is a good labeling of T in which v and v′ appear as the labels of the level 2 nodes
of T , in which case, v appears as a label exactly once.
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Let n and k be arbitrary such that n ≥ k ≥ 3. Our inductive hypotheses are: if F is an
m-uniform tumbleweed that is amenable to the SLP, where m < n, then F satisfies the SLP,
and if F is an n-uniform tumbleweed that is amenable to the SLP, then for each v ∈ V (F)
such that | ∩A∈F(v) A| = ` < k, there is a good labeling of T which realizes F in which v
appears as a label exactly once.

Let H be an n-uniform tumbleweed that is amenable to the SLP, and let v satisfy
| ∩A∈H(v) A| = k. Let {v1, v2, . . . , vk} = ∩A∈H(v)A, where |H(v1)| ≥ |H(v2)| ≥ · · · ≥ |H(vk)|.
Since H(v) ⊆ H(vi), then |H(v)| ≤ |H(vi)| for 1 ≤ i ≤ k. Moreover, v ∈ {v1, . . . , vk}, so
let us assume (without loss of generality) that vk = v. Thus, H(vk) ⊆ H(vi) for 1 ≤ i ≤ k.
Notice that we cannot have H(vi) = H(vj) for i 6= j because Lemma 6 would imply that
vi = vj, yet the vi’s must be distinct.

Claim 24 (If we assume the inductive hypotheses, then) |H(vi)| ≥ 2n−i for all 1 ≤ i ≤ k.

Proof of Claim 24: Assume towards a contradiction that the claim is not true, and let j
be such that |H(vi)| ≥ 2n−i for all 1 ≤ i ≤ j − 1, but |H(vj)| = 2n−` < 2n−j. We cannot
have j = k, or else we contradict the fact that |H(vk)| = 2n−k. If j = 1, then |H(vi)| < 2n−1

for 1 ≤ i ≤ k, which contradicts the fact that {v1, . . . , vk} must contain the root of H.
Additionally, we cannot have ` = k, or else we have |H(vk)| = |H(vj)| and H(vk) ⊆ H(vj),
which would imply H(vk) = H(vj), yet vk 6= vj. Thus, 1 < j < ` < k.

Since ` < k, our inductive hypothesis implies that there is a good labeling Lj of T ,
in which vj appears as a label exactly once. Since |H(vj)| = 2n−`, then vj is the label
of a node in level ` of T . Let (w1, . . . , w`−1, vj) be the ordered labels of the path from
the root of T to the unique node labeled vj. Thus, wi is the label of a node in level i
of T , which implies that |H(wi)| ≥ 2n−i, for 1 ≤ i ≤ ` − 1. Since Lj realizes H, we
conclude that {w1, . . . , w`−1, vj} ⊆ A for all A ∈ H(vj). Since H(vk) ⊆ H(vj), we also
conclude that {w1, . . . , w`−1} ⊆ {v1, . . . , vk}. However, we know that |H(vi)| ≤ 2n−` for
j ≤ i ≤ k, and |H(wi)| ≥ 2n−`+1 for 1 ≤ i ≤ ` − 1. Thus, we must, in fact, have
{w1, . . . , w`−1} ⊆ {v1, . . . , vj−1}, which is impossible since j < `. �

Claim 24 applied to v1 implies that v1 = r, the root of H. Since v2 6= v1, Claim 24 and
Lemma 8 imply that v2 and its sibling v′2 are a heavy pair in H. Corollary 19 implies that
there is a good labeling L of T in which v2 and v′2 appear as the labels of the level 2 nodes
N and N ′ of T , respectively. Since H(v2) and H(v′2) partition H, and H(v) ⊆ H(v2), only
nodes in TN , the subtree rooted at N , are labeled with v. Let H′ = H1(v2) and H′′ = H1(v

′
2).

By Lemma 13, H′ and H′′ are (n− 1)-uniform tumbleweeds. Notice that L restricted to TN
realizes H′. We will show that H′ is amenable to the SLP, thus, by induction, H′ satisfies
the SLP. This will allow us to relabel TN so that v is used as a label exactly once in TN ,
hence, exactly once in T .

Let w ∈ V (H′) be arbitrary. Suppose | ∩A∈H(w) A| = ` and ∩A∈H(w)A = {w1, . . . , w`},
where w1 = r, the root of H. Thus, ∩A∈H′(w)A = {v2, w2, . . . , w`}, since every edge in H′(w)
has r removed, but must contain v2, the root of H′. (It may be the case that v2 = wi for
some 2 ≤ i ≤ `.) Since H is amenable to the SLP, then |H(w)| = 2n−`. Let n′ = n − 1
and let `′ = |{v2, w2, . . . , w`}|. We must show that |H′(w)| = 2n′−`′ . If v2 = wi for some
2 ≤ i ≤ `, then `′ = `− 1, and |H′(w)| = |H(w)| = 2n−` = 2n′−`′ .
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Now suppose that v2 6= wi, for any 2 ≤ i ≤ `, so that `′ = `. Notice that H(w) =
H(w, v2)∪H(w, v′2), where the union is disjoint. If |H(w, v2)| = |H(w, v′2)|, then |H(w, v2)| =
2n−`−1. Since |H′(w)| = |H(w, v2)|, this implies |H′(w)| = 2n′−`′ . If |H(w, v2)| 6= |H(w, v′2)|,
then we reach a contradiction. First, we consider the case where |H(w, v2)| > 2n−`−1. Again,
since |H′(w)| = |H(w, v2)|, this implies |H′(w)| > 2n′−`′ . However, this is a contradiction
to Corollary 22 applied to H′ and H′(w). When |H(w, v′2)| > 2n−`−1, we can apply the
same arguments to H(w, v′2) and H′′(w). (We know that v′2 /∈ {w2, . . . , w`} because if v′2 ∈
{w2, . . . , w`}, then since H′(w) = H′(v2, w2, . . . , w`), every edge A ∈ H′(w) contains v2 and
v′2, which contradicts Lemma 4 applied to v2, v

′
2 and H when we extend A ∈ H′(w) to

A ∪ {r} ∈ H.) Therefore, H′ must be amenable to the SLP.
Since H′ is amenable to the SLP, then, by induction, H′ satisfies the SLP. Let L′ be a

good labeling on TN , in which v appears as a label exactly once, which realizes H′ = H1(v2).
We create a labeling Lv on T , in which v appears as a label exactly once, which realizes H
by letting Lv(N) = L′(N) if N ∈ V (TN) and Lv(N) = L(N) if N /∈ V (TN). By Theorem 14,
Lv is a good labeling. �

Corollary 25 An n-uniform hypergraph H is an economical extremal hypergraph for the
Erdős–Selfridge theorem if and only if H is a tumbleweed such that for all v ∈ V (H), |H(v)| =
2n−k where k =

∣∣∩A∈H(v)A
∣∣.

Proof of Corollary 25: This follows from Lemmas 20 and 23, and Theorem 18.

5 Conclusion

Theorem 18 and Corollary 25 provide two distinct characterizations of the economical ex-
tremal hypergraphs for the Erdős–Selfridge theorem. In [7], Sundberg proved that there is a
unique extremal hypergraph for the (p : q)-Erdős–Selfridge theorem when q ≥ 2. However,
the problem of characterizing all extremal hypergraphs for the Erdős–Selfridge theorem is
still a wide open problem. Perhaps the next avenue to pursue is characterizing which la-
belings of a complete binary tree realize an extremal hypergraph for the Erdős–Selfridge
theorem.

As a closing remark, we note that the results in this paper reveal two straightforward
algorithms: one which, given a tumbleweed H (say, as a set of edges), will produce a good
labeling of a complete binary tree which realizes H; and another which, given an economical
extremal hypergraph for the Erdős–Selfridge theoremH and a vertex v ∈ V (H), will produce
a good labeling of a complete binary tree which realizes H in which v appears exactly once.
We leave it to the reader to provide the details.
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