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Abstract
We consider the Maker–Breaker positional game on the vertices of the n-dimensional
hypercube {0, 1}n with k-dimensional subcubes as winning sets. In the general case,
we give a lower bound on k which guarantees the existence of a winning strategy
for Breaker, and an upper bound on k which guarantees the existence of a winning
strategy for Maker. We also consider the problem of determining for which values
of k can Breaker win with a pairing strategy. We prove that Breaker can win with
a pairing strategy if k = n�3 and n � 7. We also use a graph theoretical approach
to prove that Maker can occupy a 3-dimensional subcube if n � 23.

1. Introduction

A positional game is a generalization of Tic-Tac-Toe played on a hypergraph (V,H)
where the vertices can be considered the “board” on which the game is played, and
the edges can be thought of as the “winning sets.” A positional game on (V,H) is a
two-player game where at every turn each player alternately occupies a previously
unoccupied vertex from V . In a strong positional game, the first player to occupy
all vertices of some edge A 2 H wins. If at the end of play no edge is completely
occupied by either player, that play is declared a draw. Normal 3⇥3 Tic-Tac-Toe is
a strong positional game where the vertices of the hypergraph are the nine positions
and the edges are the eight winning lines. In a Maker–Breaker positional game, the
first player, Maker, wins if she1 occupies all vertices of some edge A 2 H, otherwise
the second player, Breaker, wins. Therefore, by definition there are no draw plays in
Maker–Breaker games. We say that a player P has a winning strategy if no matter

1In this paper, we will refer to Maker with feminine pronouns, such as “she” and “her,” and
we will refer to Breaker with masculine pronouns, such as “he.”
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how the other player plays, player P wins by following that winning strategy. It is
well-known that in a finite Maker–Breaker game, exactly one player has a winning
strategy. (For a nice introduction to positional games, please see [1], [2], and [5].)

We will consider a Maker–Breaker game on the n-dimensional boolean hypercube.
Let Qn be the set of vertices of the n-dimensional boolean hypercube, i.e., all n-tuples
with entries from {0, 1}. Thus, Qn = {(x1, . . . , xn) : xi 2 {0, 1} for 1  i  n}.
Clearly, |Qn| = 2n. A k-dimensional subcube of Qn is formed by selecting n � k
coordinates to be fixed, choosing fixed values for each of those coordinates, then
allowing the remaining k coordinates to take on all 2k possible values. Thus, each
k-dimensional subcube of Qn has cardinality 2k, and there are

� n
n�k

�
2n�k distinct

k-dimensional subcubes contained in Qn. Let Q(n, k) denote the hypergraph whose
vertex set is Qn and whose edge set is the set of all k-dimensional subcubes of
Qn. For the Maker–Breaker positional game played on Q(n, k), we would like to
determine for each n and k whether Maker will have a winning strategy, or Breaker
will have a winning strategy. We do not expect to achieve that goal for every n and
k, yet we obtain some partial results. (We note that throughout this paper, we use
lg n for log2 n.)

Lemma 1. If Breaker has a winning pairing strategy for the Maker–Breaker game
played on Q(n, k), then Breaker has a winning pairing strategy for the Maker–
Breaker game played on Q(n + 1, k + 1).

Proposition 1. For n � 3, Breaker has a winning pairing strategy for the Maker–
Breaker game played on Q(n, n� 1).

Proposition 2. For n � 4, Breaker has a winning pairing strategy for the Maker–
Breaker game played on Q(n, n� 2).

Proposition 3. For n � 7, Breaker has a winning pairing strategy for the Maker–
Breaker game played on Q(n, n� 3).

Proposition 4. Maker has a winning strategy for the Maker–Breaker game played
on Q(5, 2).

Proposition 5. Maker has a winning strategy for the Maker–Breaker game played
on Q(23, 3).

Proposition 6. Breaker has a winning strategy for the Maker–Breaker game played
on Q(6, 3).

Proposition 7. If k � lg n+1, then Breaker has a winning strategy for the Maker–
Breaker game played on Q(n, k).

Proposition 8. If k  lg lg n � 1, then Maker has a winning strategy for the
Maker–Breaker game played on Q(n, k).
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The proofs of Propositions 1, 2, and 3 in Section 2 all use induction on n with
Lemma 1 serving as the inductive step. Thus, the pairing strategy for the basis step
becomes the challenge in each of the proofs, i.e., the challenge is to find a winning
pairing strategy for Breaker for the Q(3, 2), Q(4, 2), and Q(7, 4) games, respectively.
The proof of Proposition 4 is a straightforward, almost brute force, approach for
Maker. The proof we have for Proposition 5 makes use of some well-known facts
from graph theory, while the proofs of Propositions 6 and 7 are straightforward
applications of the Erdős–Selfridge theorem [4], which states that if H is an n-
uniform, finite hypergraph and

|H| + MaxDeg(H) < 2n (1)

(where MaxDeg(H) = maxv2V (H) #{A 2 H : v 2 A}), then Breaker has an explicit
winning strategy for the Maker–Breaker game played on H. The proof of Propo-
sition 8 is similar to the proof of Proposition 7, except it relies on a Maker’s win
criterion given by Beck in [1].

It should be fairly obvious that if Maker has a winning strategy for Q(n, k), then
for all N � n, Maker also has a winning strategy for Q(N, k). (Maker can simply
restrict her moves to an n-dimensional subcube and use her strategy for Q(n, k).)
Likewise, if Breaker has a winning strategy for Q(n, k), then for all K � k, Breaker
has a winning strategy for Q(n,K). (Every K-dimensional winning set will contain
a k-dimensional subcube of which Breaker occupies at least one vertex if Breaker
uses his winning strategy for Q(n, k).) Thus, for a given value of n, it makes
sense to speak of a threshold or breaking point k(n) where Maker has a winning
strategy for Q(n, k(n)), but Breaker has a winning strategy for Q(n, k(n)+1). It is
obvious that Maker has a winning strategy for Q(n, 1) when n � 2, thus, k(2) = 1,
i.e., Maker wins Q(2, 1), but Breaker wins Q(2, 2); moreover, Propositions 1 and 2
determine that k(3) = k(4) = 1, i.e., Maker wins Q(3, 1) and Q(4, 1), but Breaker
wins Q(3, 2) and Q(4, 2). Propositions 2, 4, and 6 determine that k(5) = k(6) = 2,
i.e., Maker wins Q(5, 2) and Q(6, 2), but Breaker wins Q(5, 3) and Q(6, 3). For
n � 16, Propositions 7 and 8 provide us with a starting point for bounding the
value of k(n).

The remainder of the paper is organized as follows. In Section 2, we prove
Lemma 1 and Propositions 1, 2, and 3. In Section 3, we provide alternate proofs for
Propositions 1, 2, and 3 with the exception that these proofs require a larger value
of n than is stated in the propositions, but use pairing strategies that requires less
pairs than the inductive proofs in Section 2. In Section 4, we prove Propositions 4
and 5, and in Section 5, we prove Propositions 6, 7, and 8.



INTEGERS: 18 (2018) 4

2. Pairing Strategies for Breaker

We begin with some notation. We will frequently denote a k-dimensional subcube
of an n-dimensional hypercube by using a vector of length n where k of the coordi-
nates are ⇤’s and the other n�k coordinates are 0’s or 1’s. For example, we will write
(1, ⇤, ⇤, 0) for the 2-dimensional subcube {(1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0)}
which is contained in the 4-dimensional hypercube. Notice that the ⇤’s correspond
to the coordinates which can be di↵erent for two distinct vectors from the subcube.
Breaker will use a pairing strategy in the proofs, thus, for ~v, ~w 2 Qn, we will write
~v $ ~w if Breaker pairs together those two vectors in his strategy. Moreover, if
~v $ ~w, then whenever Maker occupies ~v (respectively, ~w), Breaker immediately
responds with ~w (respectively, ~v) if that vector is unoccupied; otherwise Breaker
occupies an arbitrary vector. Suppose S is a k-dimensional subcube. If ~v $ ~w and
{~v, ~w} ✓ S, then we will say {~v, ~w} handles S because Breaker will occupy one of ~v
or ~w by the end of the game, thus, Maker cannot completely occupy all vectors in
S. If ~v 2 Qn, we will use (~v, c) to denote the (n + 1)-dimensional vector whose first
n coordinates are identical to the n coordinates of ~v and whose (n+1)th coordinate
is c, where c 2 {0, 1}.

Proof of Lemma 1. Suppose Breaker has a winning pairing strategy for Q(n, k). We
will obtain a pairing strategy for Breaker for Q(n + 1, k + 1) by doubling Breaker’s
pairing strategy for Q(n, k) as follows. If ~v $ ~w in Breaker’s pairing strategy
for Q(n, k), then (~v, c) $ (~w, c) for c 2 {0, 1} in Breaker’s pairing strategy for
Q(n + 1, k + 1). We must show that Breaker’s pairing strategy for Q(n + 1, k + 1)
is a winning strategy.

Let S be an arbitrary (k + 1)-dimensional subcube of Qn+1. Let i1 < · · · < in�k

be the n� k coordinates whose entries remain constant across all vectors in S, and
let j1 < · · · < jk+1 be the k + 1 coordinates whose entries can change as we vary
the vectors in S.

Suppose that in�k < n+1, thus, jk+1 = n+1 and the entry in the last coordinate
does not remain constant across all vectors in S. Let S0 be formed by taking
each vector in S and truncating its (n + 1)th coordinate; thus, S0 ⇢ Qn. Since
in�k < n + 1, then i1, . . . , in�k are exactly the n � k coordinates whose entries
remain constant across all vectors in S0 and j1, . . . , jk are the k coordinates whose
entries can change as we vary the vectors in S0. Notice that S0 is a k-dimensional
subcube of Qn. Thus, there exists a pair of vectors {~v, ~w} ⇢ Qn such that ~v $ ~w in
Breaker’s winning pairing strategy for Q(n, k) and {~v, ~w} ⇢ S0. Since ~v $ ~w, then
(~v, 0) $ (~w, 0). Notice that {(~v, 0), (~w, 0)} ⇢ S, thus, {(~v, 0), (~w, 0)} handles S.

Now suppose that in�k = n+1. Let cn�k be the value of coordinate in�k = n+1
for each vector S. As before, let S0 be formed by taking each vector in S and
truncating its (n+1)th coordinate. However, since in�k = n+1, then i1, . . . , in�k�1

are exactly the n�k�1 coordinates whose entries remain constant across all vectors
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in S0 and j1, . . . , jk+1 are the k + 1 coordinates whose entries can change as we
vary the vectors in S0. Notice that S0 is a (k + 1)-dimensional subcube of Qn.
Nonetheless, we can create a k-dimensional subcube S00 of S0, as follows. For each
vector in S0 set the value of coordinate jk+1 equal to, say, 0 and leave all of the other
coordinates of the vector alone. Thus, i1, . . . , in�k�1 and jk+1 are exactly the n�k
coordinates whose entries remain constant across all vectors in S00 and j1, . . . , jk are
the k coordinates whose entries can change as we vary the vectors in S00. Since S00

is a k-dimensional subcube of Qn, then there exists a pair of vectors {~v, ~w} ⇢ Qn

such that ~v $ ~w in Breaker’s winning pairing strategy for Q(n, k) and {~v, ~w} ⇢ S00.
Since ~v $ ~w, then (~v, cn�k) $ (~w, cn�k). Notice that {(~v, cn�k), (~w, cn�k)} ⇢ S,
and thus, {(~v, cn�k), (~w, cn�k)} handles S.

Proof of Proposition 1. Our proof proceeds by induction on n with n = 3 as the
base case. We begin by proving that Breaker can win Q(3, 2) by using a pairing
strategy. Breaker uses the following pairing strategy to win Q(3, 2):

(0, 0, 0) $ (1, 0, 0),
(1, 1, 0) $ (1, 1, 1),
(0, 1, 1) $ (0, 0, 1).

The pair {(0, 0, 0), (1, 0, 0)} handles the subcubes (⇤, ⇤, 0) and (⇤, 0, ⇤); the pair
{(1, 1, 0), (1, 1, 1)} handles the subcubes (⇤, 1, ⇤) and (1, ⇤, ⇤); and the pair {(0, 1, 1),
(0, 0, 1)} handles the subcubes (⇤, ⇤, 1) and (0, ⇤, ⇤). Since all 2-dimensional sub-
cubes are handled by some pair, this is a winning pairing strategy for Breaker for
Q(3, 2). Therefore, by Lemma 1 and induction, Breaker has a winning pairing
strategy for the Maker–Breaker game played on Q(n, n� 1) for n � 3.

We note that we created the pairing strategy for Q(3, 2) by first building a
length 6 cycle in Q3 that begins at (0, 0, 0) and proceeds by changing the first
coordinate, then the second coordinate, then the third, then repeats that same
sequence of coordinate changes whereupon we return to (0, 0, 0). Once we have this
6-cycle, we pair together the first and second vectors, the third and fourth vectors,
and the fifth and sixth vectors.

Proof of Proposition 2. Our proof proceeds by induction on n with n = 4 as the
base case. We begin by proving that Breaker can win Q(4, 2) by using a pairing
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strategy. Breaker uses the following pairing strategy to win Q(4, 2):

(0, 0, 0, 0) $ (1, 0, 0, 0),
(1, 1, 0, 0) $ (1, 1, 1, 0),
(1, 1, 1, 1) $ (0, 1, 1, 1),
(0, 0, 1, 1) $ (0, 0, 0, 1),
(0, 0, 1, 0) $ (0, 1, 1, 0),
(0, 1, 0, 0) $ (0, 1, 0, 1),
(1, 1, 0, 1) $ (1, 0, 0, 1),
(1, 0, 1, 1) $ (1, 0, 1, 0).

The pair {(0, 0, 0, 0), (1, 0, 0, 0)} handles (⇤, ⇤, 0, 0), (⇤, 0, ⇤, 0), (⇤, 0, 0, ⇤).
The pair {(1, 1, 0, 0), (1, 1, 1, 0)} handles (⇤, 1, ⇤, 0), (1, ⇤, ⇤, 0), (1, 1, ⇤, ⇤).
The pair {(1, 1, 1, 1), (0, 1, 1, 1)} handles (⇤, ⇤, 1, 1), (⇤, 1, ⇤, 1), (⇤, 1, 1, ⇤).
The pair {(0, 0, 1, 1), (0, 0, 0, 1)} handles (⇤, 0, ⇤, 1), (0, ⇤, ⇤, 1), (0, 0, ⇤, ⇤).
The pair {(0, 0, 1, 0), (0, 1, 1, 0)} handles (⇤, ⇤, 1, 0), (0, ⇤, ⇤, 0), (0, ⇤, 1, ⇤).
The pair {(0, 1, 0, 0), (0, 1, 0, 1)} handles (⇤, 1, 0, ⇤), (0, ⇤, 0, ⇤), (0, 1, ⇤, ⇤).
The pair {(1, 1, 0, 1), (1, 0, 0, 1)} handles (⇤, ⇤, 0, 1), (1, ⇤, ⇤, 1), (1, ⇤, 0, ⇤).
The pair {(1, 0, 1, 1), (1, 0, 1, 0)} handles (⇤, 0, 1, ⇤), (1, ⇤, 1, ⇤), (1, 0, ⇤, ⇤).

Since all 2-dimensional subcubes are handled by some pair, this is a winning pairing
strategy for Breaker for Q(4, 2). Therefore, by Lemma 1 and induction, Breaker
has a winning pairing strategy for the Maker–Breaker game played on Q(n, n� 2)
for n � 4.

We note that we created the pairing strategy for Q(4, 2) by building two length 8
cycles in Q4. The first 8-cycle can be constructed by starting at the vector (0, 0, 0, 0),
then changing the first coordinate, then the second, then the third, then the fourth,
then repeating this same sequence of coordinate changes whereupon we return to
(0, 0, 0, 0). Once we have this 8-cycle (in this order), we pair together the first and
second vectors, the third and fourth vectors, the fifth and sixth vectors, and the
seventh and eighth vectors. The second 8-cycle can be constructed by adding the
vector (1, 0, 1, 0) to each vector in the first 8-cycle, where addition is performed
mod 2. Thus, we obtain the cycle ((1, 0, 1, 0), (0, 0, 1, 0), (0, 1, 1, 0), . . . , (1, 0, 1, 1)).
However, for the pairing strategy to work, (using this ordering of the second 8-cycle)
we pair together the second and third vectors, the fourth and fifth vectors, the sixth
and seventh vectors, and the eighth and first vectors.

Proof of Proposition 3. Our proof proceeds by induction on n with n = 7 as the base
case. We need to prove that Breaker can win Q(7, 4) by using a pairing strategy.
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The pairing strategy that we discovered contains 39 pairs, thus, we will simply list
the pairs in five groups of 7, where each group of 7 corresponds to a 14-cycle and
there is another group of four extra pairs listed together. Breaker uses the following
pairing strategy to win Q(7, 4):

(0, 0, 0, 0, 0, 0, 0) $ (1, 0, 0, 0, 0, 0, 0), (0, 1, 1, 1, 0, 1, 0) $ (1, 1, 1, 1, 0, 1, 0),
(1, 1, 0, 0, 0, 0, 0) $ (1, 1, 1, 0, 0, 0, 0), (1, 0, 1, 1, 0, 1, 0) $ (1, 0, 0, 1, 0, 1, 0),
(1, 1, 1, 1, 0, 0, 0) $ (1, 1, 1, 1, 1, 0, 0), (1, 0, 0, 0, 0, 1, 0) $ (1, 0, 0, 0, 1, 1, 0),
(1, 1, 1, 1, 1, 1, 0) $ (1, 1, 1, 1, 1, 1, 1), (1, 0, 0, 0, 1, 0, 0) $ (1, 0, 0, 0, 1, 0, 1),
(0, 1, 1, 1, 1, 1, 1) $ (0, 0, 1, 1, 1, 1, 1), (0, 0, 0, 0, 1, 0, 1) $ (0, 1, 0, 0, 1, 0, 1),
(0, 0, 0, 1, 1, 1, 1) $ (0, 0, 0, 0, 1, 1, 1), (0, 1, 1, 0, 1, 0, 1) $ (0, 1, 1, 1, 1, 0, 1),
(0, 0, 0, 0, 0, 1, 1) $ (0, 0, 0, 0, 0, 0, 1), (0, 1, 1, 1, 0, 0, 1) $ (0, 1, 1, 1, 0, 1, 1),

(0, 1, 0, 1, 1, 1, 0) $ (1, 1, 0, 1, 1, 1, 0), (1, 1, 0, 1, 0, 1, 0) $ (0, 1, 0, 1, 0, 1, 0),
(1, 0, 0, 1, 1, 1, 0) $ (1, 0, 1, 1, 1, 1, 0), (0, 0, 0, 1, 0, 1, 0) $ (0, 0, 1, 1, 0, 1, 0),
(1, 0, 1, 0, 1, 1, 0) $ (1, 0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1, 0) $ (0, 0, 1, 0, 1, 1, 0),
(1, 0, 1, 0, 0, 0, 0) $ (1, 0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 1, 0, 0) $ (0, 0, 1, 0, 1, 0, 1),
(0, 0, 1, 0, 0, 0, 1) $ (0, 1, 1, 0, 0, 0, 1), (1, 0, 1, 0, 1, 0, 1) $ (1, 1, 1, 0, 1, 0, 1),
(0, 1, 0, 0, 0, 0, 1) $ (0, 1, 0, 1, 0, 0, 1), (1, 1, 0, 0, 1, 0, 1) $ (1, 1, 0, 1, 1, 0, 1),
(0, 1, 0, 1, 1, 0, 1) $ (0, 1, 0, 1, 1, 1, 1), (1, 1, 0, 1, 0, 0, 1) $ (1, 1, 0, 1, 0, 1, 1),

(1, 0, 1, 1, 1, 0, 0) $ (0, 0, 1, 1, 1, 0, 0), (0, 1, 1, 0, 1, 1, 1) $ (0, 1, 0, 0, 1, 1, 1),
(0, 1, 1, 1, 1, 0, 0) $ (0, 1, 0, 1, 1, 0, 0), (0, 0, 0, 1, 0, 0, 0) $ (0, 0, 0, 1, 0, 0, 1),
(0, 1, 0, 0, 1, 0, 0) $ (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 1) $ (0, 0, 1, 1, 1, 0, 1),
(0, 1, 0, 0, 0, 1, 0) $ (0, 1, 0, 0, 0, 1, 1), (0, 1, 1, 0, 1, 1, 0) $ (0, 1, 1, 0, 1, 0, 0).
(1, 1, 0, 0, 0, 1, 1) $ (1, 0, 0, 0, 0, 1, 1),
(1, 0, 1, 0, 0, 1, 1) $ (1, 0, 1, 1, 0, 1, 1),
(1, 0, 1, 1, 1, 1, 1) $ (1, 0, 1, 1, 1, 0, 1),

We used a computer algebra system to check that these 39 pairs do, indeed,
handle all of the 4-dimensional subcubes of Q7. Thus, this is a winning pairing
strategy for Breaker for the Maker–Breaker game played on Q(7, 4). Therefore, by
Lemma 1 and induction, Breaker has a winning pairing strategy for the Maker–
Breaker game played on Q(n, n� 3) for n � 7.
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3. Alternate Pairing Strategies for Breaker

Alternate Proof of Proposition 1. Let n � 3 be arbitrary. For 1  k  n, let
~ej be the n-dimensional vector whose jth coordinate is 1 and whose other n � 1
coordinates are 0. Let ~0 be the n-dimensional vector whose coordinates are all 0,
and let ~1 be the n-dimensional vector whose coordinates are all 1. Let ~v1 = ~0
and let ~w1 = ~e1. Let ~v2 =

P
1jn�1 ~ej and let ~w2 = ~1. Let ~v3 =

P
2jn ~ej

and let ~w3 =
P

3jn ~ej . Breaker pairs together ~vi and ~wi for 1  i  3. Pair
{~v1, ~w1} handles the n � 1 subcubes whose entry in the jth coordinate is fixed
at 0 for 2  j  n, i.e., (⇤, 0, ⇤, ⇤, . . . , ⇤), (⇤, ⇤, 0, ⇤, . . . , ⇤), . . . , (⇤, ⇤, . . . , ⇤, 0). Pair
{~v2, ~w2} handles the n � 1 subcubes whose entry in the jth coordinate is fixed at
1 for 1  j  n � 1, i.e., (1, ⇤, ⇤, . . . , ⇤), (⇤, 1, ⇤, . . . , ⇤), . . . , (⇤, ⇤, . . . , ⇤, 1, ⇤). Pair
{~v3, ~w3} handles the subcube whose whose entry in the 1st coordinate is fixed at
0, i.e., (0, ⇤, ⇤, . . . , ⇤) and the subcube whose whose entry in the nth coordinate is
fixed at 1, i.e., (⇤, ⇤, . . . , ⇤, 1). Since all (n � 1)-dimensional subcubes are handled
by some pair, this is a winning pairing strategy for Breaker for the Maker–Breaker
game played on Q(n, n� 1) for n � 3.

Alternate Proof of Proposition 2. We will assume n � 6. Breaker will use a pairing
strategy in which if two vectors are paired together, then they di↵er in exactly one
coordinate. We will describe the pairing that Breaker uses by drawing represen-
tations of the vectors that are paired together. When the “;” symbol appears in
a coordinate, that represents the single coordinate in which the two vectors of the
pair di↵er. We use the notation “(0 k—— 0),” or simply “(0——0),” when we mean
a block of k coordinates that are all 0’s, and similarly for a block of 1’s.

Below are the first two groups of pairs in Breaker’s strategy, with n � 1 pairs
in each group. The first entry in Group 1 is “(;, 0 n�1—— 0),” which means Breaker

pairs (0,
n�1z }| {

0, . . . , 0) with (1,
n�1z }| {

0, . . . , 0). Note that each pair in Group 2 interchanged
the 0’s and 1’s in the corresponding pair in Group 1.

Group 1
(;, 0 n�1—— 0)
(;, 1, 0 n�2—— 0)

...
(;, 1 k—— 1, 0 n�k�1—— 0)

...
(;, 1 n�2—— 1, 0)

Group 2
(;, 1 n�1—— 1)
(;, 0, 1 n�2—— 1)

...
(;, 0 k—— 0, 1 n�k�1—— 1)

...
(;, 0 n�2—— 0, 1)

There are also 8 extra pairs:
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Extra Pairs
1 (0, ;, 0, 1, 0 n�4—— 0)
2 (1, ;, 0, 1, 0 n�4—— 0)
3 (0, ;, 0, 1 n�4—— 1, 0)
4 (1, ;, 0, 1 n�4—— 1, 0)
5 (0, 0, 1, 0, ;, 0 n�5—— 0)
6 (1, 0, 1, 0, ;, 0 n�5—— 0)
7 (0, 1, 1, ;, 0 n�5—— 0, 1)
8 (1, 1, 1, ;, 0 n�5—— 0, 1)

Notice that there are n� 1 pairs in Group 1 and n� 1 pairs in Group 2. Thus,
this pairing strategy uses a total of 2n+6 pairs. In the four tables below we indicate
how each type of subcube in Q(n, n� 2) is handled by this pairing strategy.

Subcubes of form
(⇤, . . . , ⇤, 0

i
, ⇤, . . . , ⇤, 0

j
, ⇤, . . . , ⇤)

index locations handled by
i � 2, j > i Group 1
i = 1, j > i Extra Pairs 1 and 5

Subcubes of form
(⇤, . . . , ⇤, 0

i
, ⇤, . . . , ⇤, 1

j
, ⇤, . . . , ⇤)

index locations handled by
i � 2, j > i Group 2
i = 1, j > i Extra Pairs 3 and 7

Subcubes of form
(⇤, . . . , ⇤, 1

i
, ⇤, . . . , ⇤, 0

j
, ⇤, . . . , ⇤)

index locations handled by
i � 2, j > i Group 1
i = 1, j > i Extra Pairs 2 and 6

Subcubes of form
(⇤, . . . , ⇤, 1

i
, ⇤, . . . , ⇤, 1

j
, ⇤, . . . , ⇤)

index locations handled by
i � 2, j > i Group 2
i = 1, j > i Extra Pairs 4 and 8

Alternate Proof of Proposition 3. We will assume n � 10. As in the Alternate Proof
of Proposition 2, Breaker will use a pairing strategy in which if two vectors are paired
together, then the single coordinate in which they di↵er will be represented with
the “;” symbol. In the Alternate Proof of Proposition 2, we used the notation
“(0 k—— 0)” when referring to a block of k coordinates that are all 0’s. In this
proof, we will not include the number indicating the size of the blocks of 0’s and
1’s, as the size of the blocks will be implied by the pair itself. Instead, we simply
use the notation “(0——0).”

Below are the ten groups of pairs, along with the 16 extra pairs, in Breaker’s
strategy.
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Group 1
(;, 0——0)
(;, 1, 0——0)

...
(;, 1—1, 0—0)

...
(;, 1——1, 0)

Group 2
(;, 1——1)
(;, 0, 1——1)

...
(;, 0—0, 1—1)

...
(;, 0——0, 1)

Group 3
(;, 0, 1, 0——0)

...
(;, 0—0, 1, 0—0)

...
(;, 0——0, 1, 0)

Group 4
(;, 1, 0, 1——1)

...
(;, 1—1, 0, 1—1)

...
(;, 1——1, 0, 1)

Group 5
(0, ;, 1, 0, 0, 1——1)

...
(0, ;, 1, 0—0, 1—1)

...
(0, ;, 1, 0——0, 1)

Group 6
(1, ;, 0, 1, 1, 0——0)

...
(1, ;, 0, 1—1, 0—0)

...
(1, ;, 0, 1——1, 0)

Group 7
(0, ;, 1, 0, 1, 0——0)

...
(0, ;, 1, 0, 1—1, 0—0)

...
(0, ;, 1, 0, 1——1, 0)

Group 8
(1, ;, 0, 1, 0, 1——1)

...
(1, ;, 0, 1, 0—0, 1—1)

...
(1, ;, 0, 1, 0——0, 1)

Group 9
(0, ;, 0, 1, 0, 1——1)

...
(0, ;, 0, 1, 0—0, 1—1)

...
(0, ;, 0, 1, 0——0, 1)

Group 10
(1, ;, 1, 0, 1, 0——0)

...
(1, ;, 1, 0, 1—1, 0—0)

...
(1, ;, 1, 0, 1——1, 0)
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New Extra Pairs
1 (0, 0, 0, 0, 0, ;, 1, 0, 1, 0——0)
2 (1, 1, 1, 1, 1, ;, 0, 1, 0, 1——1)
3 (0, 0, 0, 0, 0, ;, 1, 0, 1———1)
4 (1, 1, 1, 1, 1, ;, 0, 1, 0———0)
5 (1, 0, 0, 0, 0, ;, 1, 0, 1, 0——0)
6 (0, 1, 1, 1, 1, ;, 0, 1, 0, 1——1)
7 (0, 1, 0, 1, ;, 0——————0)
8 (1, 0, 1, 0, ;, 1——————1)
9 (0, 0, 1, 1, 1, 0, 0, ;, 0———0)
10 (1, 1, 0, 0, 0, 1, 1, ;, 1———1)
11 (1, 0, 1, 1, 0, 0, 0, ;, 0———0)
12 (0, 1, 0, 0, 1, 1, 1, ;, 1———1)
13 (0, 1, ;, 0, 0, 1, 0—————0)
14 (1, 0, ;, 1, 1, 0, 1—————1)
15 (0, 0, 0, 1, 1, 1, ;, 1, 0———0)
16 (1, 1, 1, 0, 0, 0, ;, 0, 1———1)

Besides the 16 extra pairs, there are n� 1 pairs in each of Groups 1 and 2, n� 3
pairs in each of Groups 3 and 4, and n� 5 pairs in the remaining 6 groups. Thus,
this pairing strategy uses a total of 10n� 22 pairs. In the table below, we indicate
which groups and extra pairs handle each type of subcube in Q(n, n � 3) in this
pairing strategy:

Subcubes of form
(⇤, . . . , ⇤, bi, ⇤, . . . , ⇤, bj , ⇤, . . . , ⇤, bk, ⇤, . . . , ⇤)
(bi, bj , bk) Groups Extra Pairs
(0, 0, 0) 1, 5, 7, 9 1, 9
(1, 1, 1) 2, 6, 8, 10 2, 10
(0, 0, 1) 2, 5, 7, 9 3, 9, 15
(1, 1, 0) 1, 6, 8, 10 4, 10, 16
(1, 0, 0) 1, 6, 10 5, 11
(0, 1, 1) 2, 5, 9 6, 12
(0, 1, 0) 3, 5, 7, 9 7, 13
(1, 0, 1) 4, 6, 8, 10 8, 14

In the appendix, we provide alternate tables which more precisely indicate which
Groups and Extra Pairs handle which subcubes.
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4. Building a 2-dimensional and a 3-dimensional Subcube

Before we describe Maker’s strategies, we start with some definitions. Let us say
that a vector is in level j or is a level j vector if exactly j of its coordinates are 1.
Let us call a vector ~v a Maker-vector if Maker occupies ~v (respectively, a Breaker-
vector if Breaker occupies ~v). It will also be convenient to refer to a vector by the
coordinates which equal 1 in the vector. For example, we would refer to the vector
(1, 0, 1, 1, 0) as {1, 3, 4} for short. Let ~v, ~w 2 Qn, and let S~v and S~w be the subsets
of {1, . . . , n} which correspond to ~v and ~w, respectively. We will say S~v is below S~w

(or ~v is below ~w) if and only if S~v ✓ S~w.

Proof of Proposition 4. We will prove that Maker can occupy a 2-dimensional sub-
cube of Q5. We will use the subset notation for the vectors in Q5. Maker’s first
move is ;. For 1  j  3, let Bj be Breaker’s jth move. Without loss of generality,
5 2 B1. (Simply relabel the coordinates to make this true.) Maker’s second move
is {1}. Without loss of generality, 4 2 B2. (Again, relabel the coordinates, if nec-
essary.) Maker’s third move is {2}. Breaker is now forced to occupy {1, 2}, or lose
the game next turn, thus, B3 = {1, 2}. Maker’s fourth move is {3}. Maker wins in
turn 5 by occupying either {1, 3} or {2, 3} since Breaker cannot occupy both vectors
during turn 4.

We now describe how Maker can occupy a 3-dimensional subcube. In the strategy
we describe for Maker, she will restrict herself to occupying a 3-dimensional sub-
cube that contains vector ~0. Thus, we will make some assumptions about Breaker’s
moves which are summarized and justified in Lemma 2 and its proof. We begin by
dividing Maker’s strategy into stages, where the first move of every stage is made
by Maker, and for each of Stage 1, 2, and 3, the last move is made by Breaker.

Stage 1: Maker occupies the level 0 vector ~0 = (0, . . . , 0). (We assume Breaker
occupies a level 1 vector during this stage.)

Stage 2: Maker occupies as many level 1 vectors as possible during this stage,
until all level 1 vectors are occupied by either Maker or Breaker. (We assume that
Breaker only occupies level 1 or level 2 vectors during this stage.)

Stage 3: At the beginning of this stage, Maker identifies the largest set I of level 1
Maker-vectors such that there are no level 2 Breaker-vectors that are adjacent to
two vectors from I, i.e., every level 2 vector which is adjacent to two vectors from I
is currently unoccupied. Let AI be the set of level 2 vectors that are adjacent to two
vectors from I, i.e., AI = {{a, b} : {a}, {b} 2 I}. Without loss of generality, {1} 2 I.
Maker occupies as many level 2 vectors of the form {1, x} (where {1, x} 2 AI) as
possible during this stage, until all level 2 vectors of the form {1, x} 2 AI are occu-
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pied by either Maker or Breaker. (We assume that Breaker occupies only elements
of AI during this stage.)

Stage 4: At the beginning of this stage, Maker identifies the largest set I2 of
Maker-vectors of the form {1, x} 2 AI such that every level 2 vector {x, y} where
{1, x}, {1, y} 2 I2 is currently unoccupied. If |I2| � 3, then it is easy to show that
Maker can win. Indeed, suppose {{1, x}, {1, y}, {1, z}} ✓ I2. Then Maker occupies
{x, y}, which forces Breaker to occupy {1, x, y} (or lose next turn). Then Maker
occupies {x, z}, which forces Breaker to occupy {1, x, z} (or lose next turn). Then
Maker occupies {y, z}. Maker wins on the next turn by occupying either {1, y, z}
or {x, y, z}, since Breaker cannot occupy both vectors on his last turn.

Lemma 2. If Breaker occupies a vector from level j where j � 3 during Stages
1–3, then we may either ignore Breaker’s move or substitute a level 2 vector for
Breaker’s move.

Proof of Lemma 2. Maker’s strategy requires she win by occupying a 3-dimensional
subcube containing the vector ~0. Thus, any moves by Breaker that are in level j
where j � 4 may be ignored. Suppose that during Stage 1, 2, or 3, Breaker oc-
cupies a level 3 vector {x, y, z}. Since there is exactly one 3-dimensional subcube
which contains ~0 and {x, y, z}, then if Breaker already occupied some vector below
{x, y, z}, e.g., {x} or {x, y} or {y, z}, then we may ignore Breaker’s move {x, y, z}
since Breaker previously killed the unique 3-dimensional subcube which contains ~0
and {x, y, z}. If Breaker had not occupied any vector below {x, y, z} before he oc-
cupied {x, y, z}, then we will substitute Breaker’s move {x, y, z} with {x, y} so that
Breaker’s move is now in level 2. (Technically, Maker pretends that Breaker occu-
pies {x, y} and uses her winning strategy for the case when Breaker occupies {x, y}.)
By occupying {x, y}, Breaker still kills the 3-dimensional subcube which contains
~0 and {x, y, z} along with all other 3-dimensional subcubes which contain {x, y}.
Thus, if Maker can win by using the strategy which defeats Breaker when Breaker
takes {x, y} instead of {x, y, z}, then the 3-dimensional subcube that Maker occu-
pies does not contain {x, y}, thus, it is does not contain {x, y, z}, therefore, Maker
can use the same strategy to win the game where Breaker takes {x, y, z}.

Proof of Proposition 5. Suppose we play the Maker–Breaker positional game on
Q(d + 1, 3). During Stage 1, Maker occupies the level 0 vector, and for reasons
similar to those in the proof of Lemma 2 (and w.l.o.g.), we may assume that Breaker
occupies the level 1 vector {d+1}. At the beginning of Stage 2, the available level 1
vectors are {1}, . . . , {d}. Let k be the number of level 1 vectors that Breaker occupies
during Stage 2, let e be the number of level 2 vectors {x, y} that Breaker occupies
during Stage 2 where {x} and {y} are Maker-vectors at the end of Stage 2, and
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Figure 1: A possible example of G = (V,E). In this picture, V = {1, . . . , 18, 19, 21}.
Breaker occupied the level 2 vectors corresponding to the edges shown and the two
level 1 vectors {20} and {22}. The independent set I = {1, 4, 7, 10, 13, 16, 19, 21}.

let n be the number of level 1 vectors that Maker occupies during Stage 2. Notice
that k + e = n since we are assuming that Breaker only occupies level 1 and level 2
vectors during Stage 2, and since Maker and Breaker occupy the same number of
vectors during Stage 2. (Technically, we also assume that Breaker only occupies
level 2 vectors {x, y} such that {x} and {y} are both Maker-vectors at the end of
Stage 2, since those are the only level 2 vectors that Maker can use to occupy a 3-
dimensional subcube containing ~0.) Also, since Stage 2 ends when all level 1 vertices
are occupied, we have d = k + n. Substituting for n, we get d = 2k + e. We now
consider the graph G = (V,E) where V is the set of level 1 Maker-vectors and E is
the set of level 2 Breaker-vectors {x, y} such that {x}, {y} 2 V . At the beginning
of Stage 3, Maker selects a maximum independent set I in G. (See Figure 1.) Since
I is an independent set in G, for every {x}, {y} 2 I, the level 2 vector {x, y} is
unoccupied at the beginning of Stage 3. Let ↵(G) be the independence number of
G and let t be the average degree in G. A well-known result in graph theory (a
consequence of Turán’s Theorem) states that ↵(G) � n

(t+1) . Since t = 2e
n , we have

|I| � n2

2e+n . After making the substitutions n = d� k and e = d� 2k, we obtain

|I| � (d� k)2

2(d� 2k) + (d� k)
=

(d� k)2

3d� 5k
. (2)

We let f(k) = (d�k)2

3d�5k , and since f(k) is a lower bound for |I|, we wish to minimize
f(k) over the interval [0, d

2 ]. We use d
2 as our right endpoint because we know

e = d�2k and e � 0. We determine that f 0(k) = (d�k)(5k�d)
(3d�5k)2 , thus, the only critical

point of f(k) in [0, d
2 ] occurs at k = d

5 . It is easy to check that the minimum value
of f(k) on [0, d

2 ] occurs at k = d
5 . Therefore, |I| � f(d

5 ) = 8d
25 .

Without loss of generality, the vector {1} 2 I. (Simply relabel the vectors if this
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is not the case.) During Stage 3, Maker occupies as many level 2 vectors of the
form {1, x}, where {x} 2 I, as possible. We will assume that Breaker only occupies
vectors of the form {x, y} where both {x}, {y} 2 I. Similar to above, we consider
a graph G2 = (V2, E2). This time V2 is the set of level 2 Maker-vectors at the end
of Stage 3 (thus, every vector in V2 has the form {1, x}) and E2 is the set of level 2
vectors {x, y} such that {1, x}, {1, y} 2 V2 and {x, y} is a Breaker-vector at the end
of Stage 3. Let k2 be the number of level 2 vectors of the form {1, x} that Breaker
occupies during Stage 3, and let e2 = |E2| and n2 = |V2|. Let d2 = |I|� 1, i.e., the
number of level 1 Maker-vectors in I that are not the vector {1}. Then, similar
to above, we may assume that k2 + e2 = n2 and d2 = k2 + n2 = 2k2 + e2. Using
the same reasoning as above, we obtain an inequality analogous to inequality (2),
and we can conclude that Maker can select an independent set I2 in G2 such that
|I2| � 8d2

25 . (See Figure 2.)
If d2 = 7, then |I2| � 2.24, and since |I2| is integral, then |I2| � 3. If d = 22, then

|I| � 7.04, and since |I| is integral, then |I| � 8; thus, d2 � 7. Therefore, Maker
can win Q(23, 3).

4

7

10

13

16

1

1921

G2

Figure 2: In this picture of Stage 3, Maker occupied the level 2 vectors shown
with solid blue lines and Breaker occupied the level 2 vectors shown with dotted
red lines. While G2 is technically defined di↵erently, we can imagine that V2 =
{4, 7, 10, 13, 16}, E2 = {{4, 7}, {7, 10}, {10, 13}}, and I2 = {4, 10, 16}.
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5. Proofs of Propositions 6, 7, and 8

Proof of Proposition 6. The Erdős–Selfridge theorem states that if H is an m-
uniform, finite hypergraph and

|H| + MaxDeg(H) < 2m (3)

(where MaxDeg(H) = maxv2V (H) #{A 2 H : v 2 A}), then Breaker has an explicit
winning strategy for the Maker–Breaker game played on H. In the game played on
Q(6, 3), the hypergraph H is 8-uniform, |H| =

�6
3

�
23 = 160, and H is 20-regular.

Thus, MaxDeg(H) = 20. Since 180 < 256, by the Erdős–Selfridge theorem, Breaker
has an explicit winning strategy for the Maker–Breaker game played on Q(6, 3).

Proof of Proposition 7. We will show that if k � lg n+1, then Breaker has a winning
strategy for the Maker–Breaker positional game on Q(n, k) by applying the Erdős–
Selfridge theorem. Since MaxDeg(H)  |H|, then we can use a slightly weaker form
of the Erdős–Selfridge theorem which states that if H is an m-uniform hypergraph,
then Breaker has an explicit winning strategy if

|H| < 2m�1. (4)

In the game Q(n, k), we have that the hypergraph H is m-uniform where m = 2k

and we have |H| =
�n

k

�
2n�k. Thus, it is enough to show that if k � lg n + 1, then

✓
n

k

◆
2n�k < 22k�1. (5)

Since
�n

k

�


�
en
k

�k, it is enough to show that
⇣en

k

⌘k
2n�k < 22k�1.

By taking the binary logarithm of both sides, we obtain

k lg
⇣en

k

⌘
+ n� k < 2k � 1,

or equivalently,
k lg e + k lg n� k lg k + n� k + 1 < 2k.

If we factor out n, we get

n


1 +

k

n
(lg e� 1) +

k

n
lg n� k

n
lg k +

1
n

�
< 2k.

Again, we take the binary logarithm of both sides to obtain

lg n + lg

1 +

k

n
(lg e� 1) +

k

n
lg n� k

n
lg k +

1
n

�
< k.
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Since we are looking for the smallest value of k for which this inequality holds, let
us assume that k  2 lg n. We also observe that k � lg n. Thus, it is enough to
show that

lg n + lg

1 +

2 lg n

n
(lg e� 1) +

2 lg n

n
lg n� lg n

n
lg lg n +

1
n

�
< k. (6)

Thus, if k � lg n + 1 and n � 62, then k will satisfy inequality (6), moreover, k
will satisfy inequality (5). When 1  n  61 and k = dlg ne + 1, then k satisfies
inequality (5). (This can be verified on a computer algebra system.)

Proof of Proposition 8. We will show that if k = lg lg n � 1, then Maker has a
winning strategy for the Maker–Breaker game played on Q(n, k). Theorem 1.2
from [1] states that if (V,H) is an m-uniform hypergraph and

|H|
|V | > 2m�3�2(H), (7)

where �2(H) = max{deg(x, y) : x, y 2 V, x 6= y} and deg(x, y) = |{A 2 H : x, y 2
A}|, then Maker has a winning strategy in the Maker–Breaker game on (V,H).

In the game Q(n, k), we have m = 2k, |H| =
�n

k

�
2n�k, and |V | = 2n. We

observe that if ~v and ~w are two vectors that di↵er in exactly j coordinates, then
deg(~v, ~w) =

�n�j
k�j

�
. Thus, �2(H) =

�n�1
k�1

�
, since j � 1 when ~v 6= ~w, and

�n�j
k�j

�
is a nonincreasing function in j when n � k. Thus, it is enough to show that if
k = lg lg n� 1, then ✓

n

k

◆
2n�k2�n > 22k�3

✓
n� 1
k � 1

◆
, (8)

which is equivalent to
n

k
> 22k�3+k.

After taking the binary logarithm, rearranging terms, and taking the binary loga-
rithm again, we arrive at the equivalent inequality

lg lg n > k + lg
✓

1 +
k

2k
+

lg k

2k
� 3

2k

◆
. (9)

Thus, if k  lg lg n � 1, then k will satisfy inequality (9), moreover, k will satisfy
inequality (8).

6. Conclusion

If k(n) is the largest value of k such that Maker wins the positional game played
on Q(n, k), then Propositions 7 and 8 demonstrate that

lg lg n� 1  k(n)  lg n. (10)
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It would be interesting to determine the order of magnitude of k(n) or improve
upon the bounds in inequalities (10).

If we let ps(n) be the smallest value of k such that Breaker wins the positional
game on Q(n, k) by using a pairing strategy, then Proposition 3 shows that ps(n) 
n� 3. By using Proposition 9 in [3], we can conclude that ps(n) > ln(n). (Indeed,
the maximum pair degree of H is �2(H) =

�n�1
k�1

�
, |V (H)| = 2n, |H| =

�n
k

�
2n�k,

and when k = bln(n)c, we have �2(H)|V (H)|/2 < |H|.) Thus, we have proven
that ln(n) < ps(n)  n� 3. It is an intriguing problem to describe the asymptotic
behavior of ps(n) or improve upon the current bounds on ps(n).
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Appendix

We provide the following tables which give a more detailed account of how the
Groups and Extra Pairs from the Alternate Proof of Proposition 3, found in Sec-
tion 3, allow Breaker to block all subcubes in the Q(n, n� 3) game when n � 10.
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Subcubes of form
(⇤, . . . , ⇤, 0

i
, ⇤, . . . , ⇤, 0

j
, ⇤, . . . , ⇤, 0

k
, ⇤, . . . , ⇤)

i j k handled by
i � 2 j > i k > j Group 1

{3, 4, 5, 8} [ {10, . . . , n}, Extra Pair 1,
i = 1 j = 2 {6, 7} [ {9, . . . , n} Extra Pair 9

{5, . . . , n� 1}, Group 9,
i = 1 j = 3 {4, 5, 8} [ {10, . . . , n} Extra Pair 1

{5, . . . , n� 1}, Group 5,
i = 1 j = 4 {6, . . . , n} Group 7

{6, . . . , n� 1}, Group 5,
i = 1 j = 5 {8} [ {10, . . . , n} Extra Pair 1
i = 1 j � 6 k > j Group 7

Subcubes of form
(⇤, . . . , ⇤, 1

i
, ⇤, . . . , ⇤, 1

j
, ⇤, . . . , ⇤, 1

k
, ⇤, . . . , ⇤)

i j k handled by
i � 2 j > i k > j Group 2

{3, 4, 5, 8} [ {10, . . . , n}, Extra Pair 2,
i = 1 j = 2 {6, 7} [ {9, . . . , n} Extra Pair 10

{5, . . . , n� 1}, Group 10,
i = 1 j = 3 {4, 5, 8} [ {10, . . . , n} Extra Pair 2

{5, . . . , n� 1}, Group 6,
i = 1 j = 4 {6, . . . , n} Group 8

{6, . . . , n� 1}, Group 6,
i = 1 j = 5 {8} [ {10, . . . , n} Extra Pair 2
i = 1 j � 6 k > j Group 8

Subcubes of form
(⇤, . . . , ⇤, 0

i
, ⇤, . . . , ⇤, 0

j
, ⇤, . . . , ⇤, 1

k
, ⇤, . . . , ⇤)

i j k handled by
i � 2 j > i k > j Group 2

{7} [ {9, . . . , n}, Extra Pair 3,
{3, 4, 5}, Extra Pair 9,

i = 1 j = 2 {4, 5, 6, 8} Extra Pair 15
{4} [ {6, . . . , n}, Group 9,

i = 1 j = 3 {4, 5, 6, 8} Extra Pair 15
i = 1 j � 4 k > j Groups 5, 7



INTEGERS: 18 (2018) 20

Subcubes of form
(⇤, . . . , ⇤, 1

i
, ⇤, . . . , ⇤, 1

j
, ⇤, . . . , ⇤, 0

k
, ⇤, . . . , ⇤)

i j k handled by
i � 2 j > i k > j Group 1

{7} [ {9, . . . , n}, Extra Pair 4,
{3, 4, 5}, Extra Pair 10,

i = 1 j = 2 {4, 5, 6, 8} Extra Pair 16
{4} [ {6, . . . , n}, Group 10,

i = 1 j = 3 {4, 5, 6, 8} Extra Pair 16
i = 1 j � 4 k > j Groups 6, 8

Subcubes of form
(⇤, . . . , ⇤, 1

i
, ⇤, . . . , ⇤, 0

j
, ⇤, . . . , ⇤, 0

k
, ⇤, . . . , ⇤)

i j k handled by
i � 2 j > i k > j Group 1

{3, 4, 5, 8} [ {10, . . . , n}, Extra Pair 5,
i = 1 j = 2 {5, 6, 7} [ {9, . . . , n} Extra Pair 11

{6, . . . , n}, Group 6,
i = 1 j = 3 {4, 5, 8} [ {10, . . . , n} Extra Pair 5

{6, . . . , n}, Group 10,
i = 1 j = 4 {5, 8} [ {10, . . . , n} Extra Pair 5

{8} [ {10, . . . , n}, Extra Pair 5,
i = 1 j = 5 {6, 7} [ {9, . . . , n} Extra Pair 11
i = 1 j � 6 k > j Group 6

Subcubes of form
(⇤, . . . , ⇤, 0

i
, ⇤, . . . , ⇤, 1

j
, ⇤, . . . , ⇤, 1

k
, ⇤, . . . , ⇤)

i j k handled by
i � 2 j > i k > j Group 2

{3, 4, 5, 8} [ {10, . . . , n}, Extra Pair 6,
i = 1 j = 2 {5, 6, 7} [ {9, . . . , n} Extra Pair 12

{6, . . . , n}, Group 5,
i = 1 j = 3 {4, 5, 8} [ {10, . . . , n} Extra Pair 6

{6, . . . , n}, Group 9,
i = 1 j = 4 {5, 8} [ {10, . . . , n} Extra Pair 6

{8} [ {10, . . . , n}, Extra Pair 6,
i = 1 j = 5 {6, 7} [ {9, . . . , n} Extra Pair 12
i = 1 j � 6 k > j Group 5
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Subcubes of form
(⇤, . . . , ⇤, 0

i
, ⇤, . . . , ⇤, 1

j
, ⇤, . . . , ⇤, 0

k
, ⇤, . . . , ⇤)

i j k handled by
i � 2 j > i k > j Group 3

{3} [ {6, . . . , n}, Extra Pair 7,
i = 1 j = 2 {4, 5} [ {7, . . . , n} Extra Pair 13

{4, . . . , n� 1}, Group 5,
i = 1 j = 3 {4} [ {6, . . . , n} Group 7

{5, . . . , n� 1}, Group 9,
i = 1 j = 4 {6, . . . , n} Extra Pair 7
i = 1 j � 5 k > j Group 7

Subcubes of form
(⇤, . . . , ⇤, 1

i
, ⇤, . . . , ⇤, 0

j
, ⇤, . . . , ⇤, 1

k
, ⇤, . . . , ⇤)

i j k handled by
i � 2 j > i k > j Group 4

{3} [ {6, . . . , n}, Extra Pair 8,
i = 1 j = 2 {4, 5} [ {7, . . . , n} Extra Pair 14

{4, . . . , n� 1}, Group 6,
i = 1 j = 3 {4} [ {6, . . . , n} Group 8

{5, . . . , n� 1}, Group 10,
i = 1 j = 4 {6, . . . , n} Extra Pair 8
i = 1 j � 5 k > j Group 8


