
Extremal hypergraphs for the
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Abstract

A positional game is essentially a generalization of Tic-Tac-Toe played on a
hypergraph (V,F). A pivotal result in the study of positional games is the Erdős–
Selfridge theorem, which gives a simple criterion for the existence of a Breaker’s
winning strategy on a finite hypergraph F . It has been shown that the bound in
the Erdős–Selfridge theorem can be tight and that numerous extremal hypergraphs
exist that demonstrate the tightness of the bound. We focus on a generalization
of the Erdős–Selfridge theorem proven by Beck for biased (p : q) games, which we
call the (p : q)–Erdős–Selfridge theorem. We show that for pn-uniform hypergraphs
there is a unique extremal hypergraph for the (p : q)–Erdős–Selfridge theorem when
q > 2.

1 Introduction

A positional game is a generalization of Tic-Tac-Toe played on a hypergraph (V,F) where
the vertices can be considered the “board” on which the game is played, and the edges
can be thought of as the “winning sets.” (In this paper we will only consider finite hy-
pergraphs.) A positional game on (V,F) is a two-player game where at every turn each
player alternately occupies a previously unoccupied vertex from V . A biased positional
game or a (p : q) positional game on (V,F) is a two player game where at every turn the
first player occupies p previously unoccupied vertices from V and then the second player
occupies q previously unoccupied vertices from V . The game is over when all vertices of
F have been occupied, which may require one of the players to occupy less than his/her
number of allotted vertices on the last turn. In a strong positional game, the first player
to occupy all vertices of some edge A ∈ F wins. If at the end of play no edge is completely
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occupied by either player, that play is declared a draw. Normal 3 × 3 Tic-Tac-Toe is a
strong positional game where the vertices of the hypergraph are the nine positions and the
edges are the eight winning lines. In a Maker–Breaker positional game, the first player,
Maker, wins if she1 occupies all vertices of some edge A ∈ F , otherwise the second player,
Breaker, wins. Therefore, by definition there are no draw plays in Maker–Breaker games.
We say that a player P has a winning strategy if no matter how the other player plays,
player P wins by following that winning strategy. Please note that in this paper, we will
use F both to denote the whole hypergraph (V,F) and to denote just its set of edges,
where the appropriate interpretation should be understood from the context.

A pivotal result in the study of positional games is the Erdős–Selfridge theorem [4].
In their paper, Erdős and Selfridge introduced the idea of transforming a probabilistic
argument into a completely deterministic potential-based strategy for positional games.
Their theorem gives a simple criterion for the existence of an explicit Breaker’s winning
strategy on a hypergraph F . It states that if

∑

A∈F

2−|A| <
1

2
, (1)

then Breaker has an explicit winning strategy for the Maker–Breaker game played on
F . In the case where F is n-uniform, condition (1) simplifies to |F| < 2n−1. Despite
its simplicity, the Erdős–Selfridge theorem can be used to determine the correct order
of magnitude for the breaking points of many games. Moreover, it laid the groundwork
for using potential-based strategies in positional game theory. These potential-based
strategies play a key role in determining the asymptotically exact breaking points for
many games where such a result is known. See Beck [2].

In addition to the remarkable results that stem from their theorem, Erdős and Selfridge
provided an example of an n-uniform hypergraph with exactly 2n−1 edges on which Maker
has a winning strategy, thus proving that the bound in their theorem is tight. Let us call a
hypergraph F an extremal hypergraph for the Erdős–Selfridge theorem if

∑

A∈F 2−|A| = 1
2

and Maker has a winning strategy on F . For now, we note that there are numerous
extremal hypergraphs for the Erdős–Selfridge theorem. In this paper we focus on a gener-
alization of the Erdős–Selfridge theorem proven by Beck [1] for (p : q) games, which we call
the (p : q)–Erdős–Selfridge theorem (or sometimes the biased Erdős–Selfridge theorem).
The (p : q)–Erdős–Selfridge theorem states that if

∑

A∈F

(q + 1)−
|A|
p <

1

q + 1
, (2)

then Breaker has an explicit winning strategy for the (p : q)-Maker–Breaker game played
on F . In the case where F is pn-uniform, condition (2) simplifies to |F| < (q + 1)n−1.
Along with this theorem, Beck also gave an example of a pn-uniform hypergraph F with
|F| = (q+1)n−1 on which Maker has a winning strategy, i.e., an extremal hypergraph for

1In this paper, we will refer to Maker with feminine pronouns such as “she” and “her,” and we will
refer to Breaker with masculine pronouns.
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Figure 1: An example of a complete 3-level, 4-ary tree where each node has two vertices.
This is an extremal hypergraph for the (2 : 3)-Erdős–Selfridge theorem which is 6-uniform
and has 42 edges.

Figure 2: A 3-ary tree where every node has 2 vertices. This is an extremal hypergraph
for the (2 : 2)-Erdős–Selfridge theorem which is nonuniform and has 11 edges.

the (p : q)–Erdős–Selfridge theorem, thus showing that the bound in the theorem is tight.
In this paper we will prove that if q > 2, then the extremal hypergraph given by Beck is
unique (for the pn-uniform case).

To explain the extremal hypergraph for the biased case given by Beck in [1], we first
consider the following generalization of a complete binary tree. A rooted (q+1)-ary tree is
a generalization of a rooted binary tree, where each (non-leaf) node has q + 1 children as
a binary tree has two. The hypergraph we wish to consider can be derived from a rooted
(q + 1)-ary tree so that each node of the tree is identified with p distinct vertices of the
hypergraph. Thus, the hypergraph has p times as many vertices as the tree has nodes.
Whereas a tree-edge in the underlying tree connects two nodes of the tree, an edge in
the hypergraph consists of all of the vertices from a path beginning at the root node and
ending at a leaf node. See Figure 1 for a drawing of a 6-uniform hypergraph based on a
complete 3-level, 4-ary tree where each node contains 2 vertices; and see Figure 2 for a
drawing of a nonuniform hypergraph based on a 3-ary tree where each node contains 2
vertices.
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The winning strategy that Maker has on a rooted (q+1)-ary tree can be described as
follows. First Maker occupies all p vertices from the root node. Then there are (essentially)
q + 1 disjoint (q + 1)-ary trees left over. (Each tree is rooted at level 2 in the original
hypergraph.) Breaker can choose his vertices from at most q of the subtrees. Thus, there
is always a subtree in which Breaker has occupied no vertices. Maker occupies her next
p vertices in the root of one such unoccupied subtree and continues in that manner until
she reaches a leaf node. It is worth noting that Breaker can always force upon Maker the
edge by which she wins if at each turn he chooses a vertex from each of the root nodes of
those subtrees which do not contain the leaf node which determines the desired edge.

For a hypergraph F , let us define the potential of an edge A ∈ F as (q+1)−
|A|
p , and the

potential of the whole hypergraph F as
∑

A∈F(q+1)−
|A|
p . Through an inductive argument

we can see that the potential of a rooted (q+1)-ary tree is 1
q+1

. Indeed, a single edge with

p vertices is a (q+1)-ary tree with exactly one level, and its potential is 1
q+1

. A (q+1)-ary

tree T with more than one level is constructed by connecting q + 1 disjoint (q + 1)-ary
trees T1, . . . , Tq+1 with a root node R which consists of p vertices. By induction, each
subtree Ti has potential

1
q+1

as a standalone tree. However, once the root R is appended

to each of its edges, as a subtree of T , each Ti has potential
1

(q+1)2
since each edge in Ti

grows by p vertices. Since T is composed of the q + 1 edge-disjoint, augmented subtrees,
the potential of T is 1

q+1
.

The main result of this paper is that when q > 2, the only extremal hypergraphs for
the (p : q)–Erdős–Selfridge theorem are (q+1)-ary trees. Lu [5] investigated the extremal
hypergraphs for (p : q)–Erdős–Selfridge theorem (no restriction on q) in the case when
Maker has an economical winning strategy, i.e., if the hypergraph F is n-uniform, then
Maker has a winning strategy that wins in n turns. However, his paper contains some
errors. Thus, some of the hypergraphs described in that paper are either not extremal
hypergraphs or not economical extremal hypergraphs. In [6], the author addressed the
case of economical extremal hypergraphs for the (p : q)–Erdős–Selfridge theorem when
q > 2. However, those results are superseded by the current paper. In his paper, Lu
described a family of hypergraphs which became a starting point for defining numerous
extremal hypergraphs for the unbiased, i.e., (1 : 1), Erdős–Selfridge theorem. (It is fairly
easy to see that any extremal hypergraph for a (1 : 1) game can be transformed into an
extremal hypergraph for the (p : 1) game by replacing each vertex with a node containing
p distinct vertices.) In Chapter 6 of [3], Beck amended Lu’s work to define a family
of n-uniform extremal hypergraphs for the (unbiased) Erdős–Selfridge theorem. The
construction proceeds as follows. Let T be a rooted binary tree with n levels and 2n−1

leaves. Using standard tree terminology, we say v is an ancestor of w if v 6= w and v is on
the path between w and the root; and two nodes are called brothers if they are adjacent
to a common ancestor (called their father). Let us say a labeling L : V (T ) → N is good if
it satisfies the following three properties:

1. if v and w are brothers, then L(v) 6= L(w);

2. if v is an ancestor of w, then L(v) 6= L(w);
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Figure 3: Two good labelings which lead to the binary tree extremal hypergraph given
by Beck in [1] and the original extremal hypergraph given by Erdős and Selfridge in [4].

3. suppose v and w are brothers and v′ and w′ are brothers, then L(v) = L(v′) if and
only if L(w) = L(w′).

Given a good labeling of T , we define a hypergraph H whose vertices are the labels on the
nodes of T and whose edges are all sets of the form {L(v1), . . . , L(vn)}, where v1, . . . , vn
is a path from the root node of T to a leaf node of T . Properties (1) and (2) of the
good labeling guarantee that H is n-uniform and has 2n−1 edges. (Lu only used those
two properties for the family of hypergraphs he described.) Property (3) of the good
labeling (missing in Lu’s paper) provides Maker with the following winning strategy.
Maker occupies the label of the root node for her first move. Then for each subsequent
turn, Maker occupies the “brother” of the label that Breaker occupied in the previous
turn. Each label will have a well-defined “brother” by Property (3). Figure 3 shows two
good labelings. The labeling on the left is a trivial labeling where each node receives a
unique label. In this case, the derived hypergraph is the original binary tree example
given by Beck in [1]. The labeling on the right leads to the original extremal hypergraph
given by Erdős and Selfridge in [4].

In [3], Beck explains how some hypergraphs derived from good labelings are economical
extremal hypergraphs for the Erdős–Selfridge theorem while others are not. Currently,
there are no criteria for determining if a given good labeling will yield an economical or
non-economical extremal hypergraph. Additionally, Lu [5] provided an example of a non-
economical extremal hypergraph for the Erdős–Selfridge theorem which is not derived
from a labeling of a binary tree. A very similar example, provided by A.J. Sanders
in a manuscript from 2004, is mentioned by Beck in Chapter 6 of [3]. Figure 4 shows
the extremal hypergraph given by Sanders on the left and the one given by Lu on the
right. Each hypergraph is 4-uniform. In both cases, the vertices of the hypergraphs are
the labels on the nodes. The edges are the paths indicated by the arrows, i.e., the six
downward black paths, the red (mostly) horizontal path {1, 2, 3, 4}, and the blue (mostly)
horizontal path {1, 5, 6, 7}. Based on these examples and the main result of this paper, it
is clear that there is a stark contrast between the case q = 1 and the case q > 2: when
q > 2, the structure of the extremal hypergraphs for the (p : q)–Erdős–Selfridge theorem
is completely determined, whereas when q = 1 classifying all of the extremal hypergraphs
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Figure 4: Two 4-uniform non-econominal extremal hypergraphs for the Erdős–Selfridge
theorem which are not derived from a labeling of a binary tree.

for the (p : q)–Erdős–Selfridge theorem is a wide open problem.
The remainder of the paper is organized as follows. In Section 2 we give a proof of

the (p : q)–Erdős–Selfridge theorem as we make substantial use of its proof in Section 3.
In Section 3 we give the proof of the main theorem of the paper, namely, that in the case
when q > 2, the only extremal hypergraphs for the (p : q)–Erdős–Selfridge theorem are
rooted (q+1)-ary trees. Section 3 is divided into three subsections. In Section 3.1 we lay
the foundation of the proof by giving some fundamental results that are used throughout
Sections 3.2 and 3.3. In Section 3.2, we give the proof of our main theorem, which requires
Lemma 9 from Section 3.3. Section 3.3 contains the proof of Lemma 9 along with the
results which build up to its proof.

2 (p : q)–Erdős–Selfridge Theorem

In this section we state and prove a generalization of the Erdős–Selfridge theorem for
the (p : q)–Maker–Breaker game. This theorem was originally proven by Beck [1], and it
reduces to the Erdős–Selfridge theorem in the case p = q = 1. Although Beck did not refer
to his theorem by this name, we will refer to it as the (p : q)–Erdős–Selfridge theorem.

Let us use the notation Φ(F) :=
∑

A∈F λ−|A|, where λ = (q + 1)1/p, to denote the
potential of a finite hypergraph F . Then the (p : q)–Erdős–Selfridge theorem can be
stated as follows.

Theorem 1 (Beck [1]) In the (p : q)-Maker–Breaker game on F , if Φ(F) < λ−p, where
λ = (q + 1)1/p, then Breaker has an explicit winning strategy.

Proof: Let Xi be the set of vertices occupied by Maker during her ith turn, and let Yi

be the set of vertices occupied by Breaker during his ith turn. Let Mi = ∪i
j=1Xj and let

Bi = ∪i
j=1Yj. Let Fi = {A \Mi : A ∈ F , A ∩Bi−1 = ∅}. Notice that Fi is the hypergraph

that Breaker plays on during turn i, because neither player is concerned with edges already
killed by Breaker, and both players need consider only the unoccupied portions of those
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edges which are still alive and partially occupied by Maker. Although Maker moves first
within each turn, we will focus on the fact that Breaker can destroy more potential in
turn i than Maker can create in turn i+ 1.

Claim 1 For each turn i, it is possible for Breaker to choose Yi so that for any choice of
Xi+1,

Φ(Fi+1) 6 Φ(Fi). (3)

Proof of Claim 1: Consider the time in the game during turn i after Maker has occupied
her p vertices, but before Breaker has begun to occupy his q vertices. Let Yi = {y1, . . . , yq}
and Xi+1 = {x1, . . . , xp}. We will assume that Breaker picks y1, then y2 and so forth,
rather than all at once. Similarly, we will assume that Maker picks the vertex x1, then
x2, and so forth. We define

F (b,0)
i = {A ∈ Fi : A ∩ {y1, . . . , yb} = ∅}, 1 6 b 6 q, (4)

to be the hypergraphs on which Breaker plays during turn i and

F (q,m)
i = {A \ {x1, . . . , xm} : A ∈ F (q,0)

i }, 1 6 m 6 p, (5)

to be the hypergraphs on which Maker plays during turn i + 1. For convenience, we let
F (0,0)

i = Fi. The hypergraph F (b,0)
i consists of edges from Fi which have not been blocked

by the first b vertices of Breaker’s ith move. The hypergraph F (q,m)
i consists of “partial”

edges of Fi not blocked by Breaker during his ith turn. By “partial” edge, we mean that
each edge A has been replaced by A \ {x1, . . . , xm}.

For an arbitrary hypergraph H, vertex v and set S, let H(v) = {A ∈ H : v ∈ A} and
H(S) = {A ∈ H : S ⊆ A}. We derive the equation

Φ(Fi+1) = Φ(Fi)−

q
∑

k=1

Φ(F (k−1,0)
i (yk)) +

p
∑

j=1

(λ− 1)Φ(F (q,j−1)
i (xj)) (6)

as follows. We begin with Φ(Fi), then subtract the potential of each edge blocked by

Breaker using his vertex y1. We then look at the remaining hypergraph F (1,0)
i and remove

the potential of each edge containing y2. We continue this process until Breaker occupies
q vertices. This accounts for the terms in the first summation. When Maker occupies her
first vertex x1, she multiplies the potential of each edge in F (q,0)

i which contains x1 by λ.

So, for each edge A ∈ F (q,0)
i (x1), we remove its old potential λ−|A| and replace it with its

new potential λ−|A|+1, which we accomplish by adding (λ−1)λ−|A|. When Maker occupies

x2, she multiplies the potential of each edge in F (q,1)
i containing x2 by λ. Thus, for each

edge A ∈ F (q,1)
i (x2), we add (λ − 1)λ−|A| to its old potential. We continue this process

until Maker occupies p vertices. This accounts for the terms in the second summation
and finishes our derivation of equation (6).
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Note that F (k−1,0)
i \F (k−1,0)

i (yk) = F (k,0)
i , which implies that F (k−1,0)

i ⊇ F (k,0)
i . For each

1 6 k 6 q, Breaker selects yk so that Φ(F (k−1,0)
i (yk)) is maximum, i.e., Φ(F (k−1,0)

i (yk)) =

maxw Φ(F (k−1,0)
i (w)). (This is what we will refer to as the strategy from the (p : q)–Erdős–

Selfridge theorem.) Therefore,

Φ(F (k−1,0)
i (yk)) > max

w
Φ(F (q,0)

i (w)) (7)

since F (k−1,0)
i ⊇ F (q,0)

i for 1 6 k 6 q. Let z maximize Φ(F (q,0)
i (w)). Notice for all 1 6 j 6 p,

Φ(F (q,j−1)
i (xj)) =

∑

xj∈A∈F
(q,j−1)
i

λ−|A| =
∑

xj∈A∈F
(q,0)
i

λ−|A\{x1,...,xj−1}| (8)

6
∑

xj∈A∈F
(q,0)
i

λ−|A|+j−1 = λj−1
∑

xj∈A∈F
(q,0)
i

λ−|A| (9)

= λj−1Φ(F (q,0)
i (xj)) 6 λj−1Φ(F (q,0)

i (z)), (10)

i.e.,
Φ(F (q,j−1)

i (xj)) 6 λj−1Φ(F (q,0)
i (z)). (11)

Starting with equation (6) then using equations (7) and (11), we get

Φ(Fi+1) = Φ(Fi)−

q
∑

k=1

Φ(F (k−1,0)
i (yk)) +

p
∑

j=1

(λ− 1)Φ(F (q,j−1)
i (xj))

6 Φ(Fi)− qΦ(F (q,0)
i (z)) + (λ− 1)Φ(F (q,0)

i (z))

p
∑

j=1

λj−1 (12)

= Φ(Fi) + Φ(F (q,0)
i (z))[−q + (λ− 1)(1 + λ+ λ2 + · · ·λp−1)]

= Φ(Fi) + Φ(F (q,0)
i (z))(−q + λp − 1).

Since λ = (q + 1)1/p, then Φ(Fi+1) 6 Φ(Fi) and the proof of the claim is finished. �

Note that if an edge of Fi is completely occupied by Maker, then its potential becomes
1 during some turn for Maker, and remains 1 for the duration of the game. Therefore,
if Φ(Fi) < 1 for all i, then Maker never occupies a complete edge and Breaker wins the
game. By Claim 1, we have Φ(Fi) 6 Φ(F1) for all i. Recall that F1 is the hypergraph that
the players are working on after Maker has played her first turn, i.e., occupied her first
p vertices. If Maker is able to occupy p vertices which are contained in every edge, then
she is able to create the most potential possible. In this case, each edge has its potential
multiplied by λp. By our hypothesis Φ(F) < 1

λp , therefore Φ(F1) 6 λpΦ(F) < 1. This
completes the proof our theorem since we now have, for all i,

Φ(Fi) 6 Φ(F1) < 1.

�
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3 Main Theorem

Theorem 2 When q > 2, the only extremal hypergraphs for the (p : q)–Erdős–Selfridge
theorem are (q + 1)-ary trees where each node contains p vertices. If the hypergraph is
pn-uniform, then there is a unique extremal hypergraph, the complete (q+1)-ary tree with
n levels, where each node contains p vertices.

Let us recall some notation. As before, letXi be the set of vertices that Maker occupies
during turn i, and let Yi be the set of vertices that Breaker occupies during turn i. Let
Mi = ∪i

j=1Xj and let Bi = ∪i
j=1Yj. Let Fi = {A \Mi : A ∈ F , A ∩ Bi−1 = ∅}, and let us

introduce Fi+ 1
2
= {A \Mi : A ∈ F , A ∩ Bi = ∅}. Notice that Fi is the hypergraph that

Maker leaves after her ith move, and Fi+ 1
2
is the hypergraph that Breaker leaves after his

ith move. Thus, Fi is the hypergraph on which Breaker plays during turn i, and Fi+ 1
2
is

the hypergraph on which Maker plays during turn i+ 1.
Let us also give some definitions. A Maker’s strategy on a hypergraph F is called a

(p : q)–Erdős–Selfridge–defeating strategy if Maker wins the (p : q)–Maker–Breaker game
on F whenever Breaker follows the (p : q)–Erdős–Selfridge strategy and Maker uses said
strategy. Notice that if Maker has a winning strategy for the (p : q)–Maker–Breaker
game on F , then that winning strategy is also a (p : q)–Erdős–Selfridge–defeating strategy
on F because a winning strategy defeats all Breaker strategies. If F is a hypergraph
such that Φ(F) = 1

q+1
and Maker has a (p : q)–Erdős–Selfridge–defeating strategy on

F , then we say F is a conditionally extremal hypergraph for the (p : q)–Erdős–Selfridge
theorem. We use the qualifier “conditionally” because Maker may lose to Breaker if
Breaker does not restrict himself to using only the (p : q)–Erdős–Selfridge strategy. Notice
that if F is an extremal hypergraph for the (p : q)–Erdős–Selfridge theorem, then F is
also a conditionally extremal hypergraph for the (p : q)–Erdős–Selfridge theorem because
Φ(F) = 1

q+1
and Maker not only has a (p : q)–Erdős–Selfridge–defeating strategy on F ,

but, in fact, a winning strategy on F .
Our proof hinges on being able to take a conditionally extremal hypergraph F for

the (p : q)–Erdős–Selfridge theorem and determine information about its structure by
following plays where Breaker uses the strategy from the (p : q)–Erdős–Selfridge theorem
and Maker uses a fixed (p : q)–Erdős–Selfridge–defeating strategy. While those are the
underlying assumptions in Sections 3.1 and 3.3, in Section 3.2 we see what extra structure
is implied when we further specify that F is an extremal hypergraph for the (p : q)–Erdős–
Selfridge theorem and Maker uses a winning strategy. Here is a brief outline. Claim 2
from Section 3.1 states that there are exactly p vertices that are contained in every edge
of F . Thus, Maker’s first move X1 is precisely those p vertices. (We refer to the p
vertices in X1 as the root node of F , since we eventually show, in the case where F
is extremal, that X1 is the root node of a (q + 1)-ary tree.) Claim 3 from Section 3.1
exploits the fact that all inequalities in the proof of Claim 1 must be equalities since F is
conditionally extremal, and concludes that for each i, the edges of Fi can be partitioned
into Fi(y1),Fi(y2), . . . ,Fi(yq),Fi(Xi+1), Si, where Si is the set of those edges of Fi which
do not contain any of Breaker’s vertices from turn i or any of Maker’s vertices from
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turn i + 1. It also determines that in Fi the potential of Fi(yk) equals the potential of
Fi(xj) for any 1 6 k 6 q and 1 6 j 6 p. Thus, Breaker could choose to swap out any
single vertex from his move during turn i and replace it with one vertex from Maker’s move
during her (i + 1)th turn and still have a valid (p : q)–Erdős–Selfridge move. Lemma 4
from Section 3.1 states that if Maker wins during turn i + 1, then Si = ∅. Thus, there
must be some turn i where Si = ∅. In Section 3.2 we use induction (basically on the
size of the largest edge in F) to prove our main theorem. In Claim 4 from Section 3.2
we show that if Si = ∅, then Fi(y1),Fi(y2), . . . ,Fi(yq),Fi(Xi+1) constitute q + 1 disjoint
(q + 1)-ary trees. We then show that it must be the case that S1 = ∅, which allows us
to conclude that F is the root node X1 connected to the q + 1 disjoint (q + 1)-ary trees
F1(y1),F1(y2), . . . ,F1(yq),F1(X2), i.e., F is a (q + 1)-ary tree. To show this, we assume
that the first time Si = ∅ is not during turn 1. We consider the first time Si = ∅, and
determine that Fi−1 must have a structure very close to q+1 disjoint (q+1)-ary trees, since
Claim 4 implies that Fi is indeed q+1 disjoint (q+1)-ary trees. In fact, in Section 3.3 we
show that Fi−1 is q+1 “pseudo-trees” linked by a set of common edges. In Section 3.3 we
define pseudo-trees and investigate the structure of Fi−1. This investigation culminates
in Lemma 9 which shows how the structure of Fi−1 allows Breaker to deviate from the
(p : q)–Erdős–Selfridge strategy during turn i−1 to eventually win the game. Thus, we are
able to conclude that when F is an extremal hypergraph for the (p : q)–Erdős–Selfridge
theorem and Maker is using a winning strategy, then S1 = ∅ and F is a (q + 1)-ary tree.

3.1 Preliminaries

We begin by stating some lemmas, claims and observations that will be useful in the proof
of our theorem. The first lemma is essentially an observation that after each Maker move,
the potential of the partial edges in the remaining hypergraph must be at least 1, if Maker
is following a (p : q)–Erdős–Selfridge–defeating strategy.

Lemma 1 If Maker follows a (p : q)–Erdős–Selfridge–defeating strategy and Breaker fol-
lows the (p : q)–Erdős–Selfridge strategy on a hypergraph F , then

Φ(Fi) > 1, for i > 1.

Otherwise, since the proof of the (p : q)–Erdős–Selfridge theorem shows that Breaker can
force a non-increasing property on the potential, he can force the potential at the end of
the game to be less than 1 which implies Maker does not win.

The next claim states that if F is a conditionally extremal hypergraph for the (p : q)–
Erdős–Selfridge theorem, then F must contain a “root node,” i.e., F has exactly p vertices
that are contained in every edge of F . (We use the terminology “root node” because when
F is an extremal hypergraph for the (p : q)–Erdős–Selfridge theorem, we eventually show
that F is a (q + 1)-ary tree, and those p vertices constitute its root node.)

Claim 2 If F is a conditionally extremal hypergraph for the (p : q)–Erdős–Selfridge the-
orem, then F contains a root node, that is,

∣

∣

⋂

A∈F A
∣

∣ = p.
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Proof of Claim 2: Clearly
∣

∣

⋂

A∈F A
∣

∣ 6 p, because if
∣

∣

⋂

A∈F A
∣

∣ > p, then after Maker’s
first move, there is still at least one vertex that is contained in every edge of F . Breaker
would occupy one of those vertices (which would be a vertex of maximum potential)
during his first move and kill all edges in F .

Let X1 be the set of p vertices that Maker occupies during turn 1 according to her
(p : q)–Erdős–Selfridge–defeating strategy. Let F1 = {A\X1 : A ∈ F} be the hypergraph
played on after Maker’s first turn. In calculating the potential of F1, we see that

Φ(F1) =
∑

A∈F

(q + 1)−|A\X1|/p 6
∑

A∈F

(q + 1)−(|A|−p)/p = (q + 1)Φ(F) = 1, (13)

since at best each edge A contains p of Maker’s vertices and since Φ(F) = 1
q+1

. By

Lemma 1, Φ(F1) > 1. Thus, we must have equality in equation (13). This implies that
each edge contains exactly p of Maker’s vertices, i.e., there is a root node in F . �

Our next two observations are straightforward facts about the potentials of finite
hypergraphs.

Observation 1 If G and H are hypergraphs so that G ⊆ H, V (G) = V (H), and

Φ(G) = Φ(H),

then G = H. Likewise, if G and H are sets of edges so that G ⊆ H and
∑

A∈G

λ−|A| =
∑

A∈H

λ−|A|,

then G = H.

Observation 2 If G and H are hypergraphs so that the set of edges of G is a proper
subset of the set of edges of H, i.e., G ⊂ H, then

Φ(G) < Φ(H).

Now we declare a set of basic hypotheses that we will often assume.

Basic Hypotheses (for turns 1 through i):
F is a conditionally extremal hypergraph for the (p : q)–Erdős–Selfridge theorem, Breaker
uses the strategy from the (p : q)–Erdős–Selfridge theorem for turns 1 through i, and Maker
uses a fixed (p : q)–Erdős–Selfridge–defeating strategy for turns 1 through i+ 1.

Additionally, let us say that a Breaker’s move is valid if it follows (i.e., is consis-
tent with) the strategy from the proof of the (p : q)–Erdős–Selfridge theorem and that a
Maker’s move is valid if it follows a fixed (p : q)–Erdős–Selfridge–defeating strategy. We
will use the fact that at a given turn i there will often be more than one valid move
available for Breaker; however, since Maker is following a fixed (p : q)–Erdős–Selfridge–
defeating strategy, there is always a unique valid response for Maker, given a move by
Breaker and the history of the game up to that point.

The following lemma is used frequently throughout our proof.
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Lemma 2 If the basic hypotheses hold for turns 1 through i, then

Φ(Fj) = 1, for 1 6 j 6 i+ 1.

Lemma 2 holds because we showed, in the proof of Claim 2, that Φ(F1) = 1. Thus, using
Claim 1 from Section 2 and Lemma 1, we are able to conclude that Φ(Fj) = 1 after each
valid Maker move, i.e., for 1 6 j 6 i+ 1.

The following claim uses the notation from equations (4) and (5) from the proof of
Claim 1, and is critical to our proof.

Claim 3 Suppose the basic hypotheses hold for turns 1 through i and {y1, y2, . . . , yq} is
Breaker’s move in turn i and {x1, . . . , xp} is Maker’s move during turn i+ 1. Then

F (k−1,0)
i (yk) = Fi(yk), 1 6 k 6 q, (14)

F (q,0)
i (xj) = Fi(xj), 1 6 j 6 p, (15)

and
Φ(Fi(yk)) = Φ(Fi(xj)), 1 6 k 6 q, 1 6 j 6 p. (16)

Moreover, x1, . . . , xp are in exactly the same edges of Fi.

Proof of Claim 3: Recall that Fi = {A \Mi : A ∈ F , A ∩ Bi−1 = ∅} is the hypergraph
composed of the set of partial edges left after Maker’s ith move. It is the hypergraph on
which Breaker plays during turn i. Let Yi = {y1, y2, . . . , yq} be Breaker’s ith move, and let
Xi+1 = {x1, . . . , xp} be Maker’s response to Yi.

By Lemma 2, Φ(Fi) = Φ(Fi+1) = 1. This implies that the inequality from equation (3)
in Claim 1 must, in fact, be an equality. Thus, every inequality in the proof of Claim 1
must also be an equality. Let us examine those inequalities.

Since inequality (12) must be tight, we may conclude that

Φ(F (k−1,0)
i (yk)) = Φ(F (q,0)

i (z)), for 1 6 k 6 q, (17)

and
Φ(F (q,j−1)

i (xj)) = λj−1Φ(F (q,0)
i (z)), for 1 6 j 6 p, (18)

where z ∈ V (F (q,0)
i ) is such that Φ(F (q,0)

i (z)) = maxw Φ(F (q,0)
i (w)). Equality in line (10)

then implies that
Φ(F (q,0)

i (xj)) = Φ(F (q,0)
i (z)), for 1 6 j 6 p. (19)

Since we have equality in moving from line (8) to line (9), we may also conclude that
{

A ∈ F (q,0)
i : xj ∈ A

}

⊆
{

A ∈ F (q,0)
i : {x1, . . . , xj−1} ⊆ A

}

, (20)

i.e., for every 1 6 j 6 p, every edge that contains xj also contains x1, . . . , xj−1. But this
naturally implies that for each 1 6 j 6 p,

{A ∈ F (q,0)
i : xj ∈ A} ⊆ {A ∈ F (q,0)

i : xk ∈ A} where 1 6 k 6 j − 1. (21)
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Since equation (19) implies Φ(F (q,0)
i (xj)) = Φ(F (q,0)

i (xk)) for all 1 6 k, j 6 p, the contain-
ment in line (21) and Observation 1 imply that

F (q,0)
i (xj) = F (q,0)

i (xk) for 1 6 k 6 j − 1. (22)

In particular,
F (q,0)

i (xp) = F (q,0)
i (xk) for 1 6 k 6 p, (23)

i.e., x1, . . . , xp are all in exactly the same edges of F (q,0)
i .

Clearly, F (r,0)
i (v) ⊆ Fi(v) for 0 6 r 6 q and v ∈ V (Fi), and by definition, F (0,0)

i = Fi.
Recall that y1 is a vertex of maximum potential in Fi, i.e., Φ(Fi(y1)) = maxw Φ(Fi(w)).
Since equations (17) and (19) imply that

Φ(Fi(y1)) = Φ(F (k−1,0)
i (yk)) for 1 6 k 6 q

and
Φ(Fi(y1)) = Φ(F (q,0)

i (xj)) for 1 6 j 6 p,

we must have that
F (k−1,0)

i (yk) = Fi(yk) for 1 6 k 6 q

and
F (q,0)

i (xj) = Fi(xj) for 1 6 j 6 p,

or else we could use Observation 2 to contradict the fact that y1 is a vertex of maximum
potential in Fi. It is now clear that we must also have

Φ(Fi(yk)) = Φ(Fi(xj)), 1 6 k 6 q, 1 6 j 6 p.

�

Observation 3 If Xi+1 = {x1, . . . , xp}, then we will often use Fi(x1) to denote the set
of edges that contain Maker’s (i + 1)th move. This is because Fi(Xi+1) = Fi(x1), by the
last line of Claim 3.

We also have the following two corollaries of Claim 3. Corollary 1 follows from equa-
tions (14) and (15) and Observation 3; while Corollary 2 follows from Corollary 1, equa-
tion (16), and the last line of Claim 3.

Corollary 1 Suppose the basic hypotheses hold for turns 1 through i, Yi = {y1, . . . , yq}
is Breaker’s valid move during turn i, Xi+1 = {x1, . . . , xp} is Maker’s valid response in
turn i + 1, and for convenience, we let y0 = x1. Then we can partition the edges of Fi

into Fi(y1),Fi(y2), . . . ,Fi(yq),Fi(y0), Si, where Si is the set of edges from Fi which do not
contain any of Breaker’s vertices from turn i or Maker’s vertices from turn i+ 1.

Corollary 2 Suppose the basic hypotheses hold for turns 1 through i, Yi = {y1, . . . , yq}
is Breaker’s valid move during turn i, and Xi+1 = {x1, . . . , xp} is Maker’s valid response
in turn i + 1. Then (Yi \ {yk}) ∪ {xj} would also work as a valid Breaker’s move during
turn i for each 1 6 k 6 q and each 1 6 j 6 p.
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Thus, if the basic hypotheses hold for turns 1 through i, then Corollary 1 and equa-
tion (16) give us

Φ(Fi) =

q
∑

k=0

Φ(Fi(yk)) + Φ(Si) = (q + 1)Φ(Fi(yj)) + Φ(Si), for any 0 6 j 6 q. (24)

Then we use Lemma 2, which says Φ(Fi) = 1, and equation (24), to give us the following
lemma.

Lemma 3 Suppose the basic hypotheses hold for turns 1 through i. Then Si 6= ∅ if and
only if Φ(Fi(yk)) <

1
q+1

for each 0 6 k 6 q.

Claim 3, equation (24), and Lemma 3 lead to the following lemma, which tells us that at
the end of the game, Si = ∅ and Maker’s last move is a single edge of cardinality p.

Lemma 4 Suppose that the basic hypotheses hold for turns 1 through i and that Maker
wins during turn i + 1. Then Si = ∅, and Fi(x1) = {A} where |A| = p, i.e., Fi(x1)
contains a single edge of size p.

Proof of Lemma 4: If Maker wins during turn i + 1, then Fi(x1) must contain at
least one edge A with |A| 6 p. Since the potential of a single edge of size p is 1

q+1
,

then Φ(Fi(x1)) > 1
q+1

. Thus, by Lemma 3, Si = ∅. By Lemma 2, Φ(Fi) = 1. Thus,

equation (24) and Si = ∅ imply that Φ(Fi(y0)) =
1

q+1
. Since y0 = x1, then Fi(x1) = {A}

where |A| = p. �

3.2 Proof of Theorem 2

Proof of Theorem 2: Our proof proceeds by induction on maxA∈F⌈|A|/p⌉ (a mea-
sure of the largest edge in F). Let F be an extremal hypergraph for the (p : q)–Erdős–
Selfridge theorem. Recall that because every extremal hypergraph is also a conditionally
extremal hypergraph and because a Maker’s winning strategy is also a (p : q)–Erdős–
Selfridge–defeating strategy, then all of the results from Section 3.1 still hold. Let
n = maxA∈F⌈|A|/p⌉. Our base case will be when n = 1. If n = 1, this implies that
all edges have size p or smaller. Claim 2 implies that F has a root node, thus, every edge
must contain at least p vertices. Since a single edge with p vertices contributes 1

q+1
to the

potential of F and since Φ(F) = 1
q+1

because it is extremal, F must consist of a single

edge with p vertices. This is a (q + 1)-ary tree with one level.
Let us now assume that our theorem holds when maxA∈F⌈|A|/p⌉ 6 n − 1 and show

that it holds when maxA∈F⌈|A|/p⌉ = n. By Claim 2, F has a root node, thus, Maker
must occupy all p vertices in the root for her first move or she cannot win. Moreover,
after Maker occupies the root node, every partial edge A satisfies ⌈|A|/p⌉ 6 n − 1, thus
we are free to utilize the inductive hypothesis.

We need to declare a set of new hypotheses that we will assume for the duration of
this proof. The only difference between the new hypotheses and the basic hypotheses is
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that we now make the stronger assumptions that F is extremal and Maker uses a winning
strategy.

New Hypotheses (for turns 1 through i):
F is an extremal hypergraph for the (p : q)–Erdős–Selfridge theorem, Breaker uses the
strategy from the (p : q)–Erdős–Selfridge theorem for turns 1 through i, and Maker uses a
fixed winning strategy for turns 1 through i+ 1.

Notice that if the new hypotheses hold, then the basic hypotheses also hold since an
extremal hypergraph is also conditionally extremal and a Maker’s winning strategy is also
a (p : q)–Erdős–Selfridge–defeating strategy. As before, let us say that a Breaker’s move
is valid if it follows (i.e., is consistent with) the strategy from the proof of the (p : q)–
Erdős–Selfridge theorem; and for the duration of this proof, let us say that a Maker’s
move is winning if it follows a fixed winning strategy.

We now state a claim which uses the notation from Corollary 1 and Lemma 3 and
makes use of the inductive hypothesis.

Claim 4 Suppose the new hypotheses hold for turns 1 through i. Then Si = ∅ if and only
if Fi is q + 1 disjoint (q + 1)-ary trees.

Proof of Claim 4: Suppose Fi is q+1 disjoint (q+1)-ary trees T1, T2, . . . , Tq+1. Since the
root of each tree Ti has potential

1
q+1

, and since Breaker occupies each vertex y1, y2, . . . , yq
so that it has maximum potential, then Φ(Fi(yk)) > 1

q+1
, for 1 6 k 6 q. Thus, by

Lemma 3, Si = ∅.
Now suppose Si = ∅. By Corollary 1, since Si = ∅, we can partition Fi into

Fi(y0),Fi(y1), . . . ,Fi(yq). Since Φ(Fi) = 1 (by Lemma 2) and Si = ∅, then by equa-

tion (24), we have Φ(Fi(yj)) =
1

q+1
for 0 6 j 6 q. Let Y

(k)
i = {y0, y1, . . . , yq} \ {yk}. If

Breaker chooses Y
(k)
i (which is a valid move by Corollary 2) as his ith move, then only

Fi(yk) is left alive. Therefore, by the inductive hypothesis, Fi(yk) must be a (q + 1)-ary
tree for each 0 6 k 6 q, because Φ(Fi(yk)) =

1
q+1

and Maker has a winning strategy on

Fi(yk). Thus, Fi(y0),Fi(y1), . . . ,Fi(yq) is a collection of q + 1 edge-disjoint (q + 1)-ary
trees. We must now show that they are vertex-disjoint.

Assume towards a contradiction that Fi(y0),Fi(y1), . . . ,Fi(yq) are not vertex-disjoint.
W.l.o.g., V (Fi(y0)) ∩ V (Fi(y1)) 6= ∅. Let I = V (Fi(y0)) ∩ V (Fi(y1)) be the set of vertices
on which those two (q + 1)-ary trees intersect. For w ∈ V (Fi(y0)) we define l0(w) to be
the level of w in Fi(y0), i.e., the tree-distance from the node containing w to the root node
of Fi(y0) plus 1. Similarly, let l1(v) be the level of a vertex v in Fi(y1). We then define the
dual-level of w ∈ I to be l(w) = min{l0(w), l1(w)}. See Figure 5 for an example. The left
tree in Figure 5 is Fi(y0) and its vertices and lines are solid, while the right tree is Fi(y1)
and its vertices are unfilled and its lines are dashed. Also note that Fi(y1) is drawn upside
down in order to emphasize that there need not be any relation between the levels of the
vertices in the two trees. For the two vertices of intersection u and x, we have l0(u) = 2,
l1(u) = 4, thus l(u) = 2, while l0(x) = 4, l1(x) = 3, thus l(x) = 3.
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u

x

Figure 5: In this picture, l0(u) = 2, l1(u) = 4, thus l(u) = 2; while l0(x) = 4, l1(x) = 3,
thus l(x) = 3. Also, I = {u, x} and Imin = {u}.

Let µ = minv∈I l(v), and let Imin = {w ∈ I : l(w) = µ} be the set of vertices in
I whose dual-level is minimum. Breaker chooses {u} ∪ {y2, y3, . . . , yq} for his ith move,
where u ∈ Imin and satisfies max{l0(u), l1(u)} = minv∈Imin

max{l0(v), l1(v)}. Breaker’s
move kills all (q + 1)-ary trees except Fi(y0) and Fi(y1), yet both Fi(y0) and Fi(y1) are
damaged because u ∈ V (Fi(y0)) ∩ V (Fi(y1)). Looking at Figure 5 we see that I = {u, x}
and Imin = {u}, thus Breaker would select u as his vertex of intersection.

We outline an inductive argument as to how Breaker can win. W.l.o.g., let l0(u) = µ

and l1(u) = ν > µ. LetN
(0)
µ be the node of Fi(y0) that contains u, and letN

(1)
ν be the node

of Fi(y1) that contains u. Let P (0) = N
(0)
1 , . . . , N

(0)
µ be the path of nodes in Fi(y0) from

the root N
(0)
1 of Fi(y0) to N

(0)
µ , and let P (1) = N

(1)
1 , . . . , N

(1)
ν be the corresponding path

in Fi(y1). Initially, every living edge in Fi(y0) contains the smallest indexed unoccupied

node of P (0) (namely, the root N
(0)
1 ), and similarly for Fi(y1) and P (1). Breaker forces

this property to hold at the beginning of each turn for the duration of the game. Indeed,
we may assume that at each turn Maker occupies the smallest indexed unoccupied node
from either P (0) or P (1), or else, since Breaker occupies q > 2 vertices per turn, he will
occupy one vertex from the smallest indexed unoccupied node from each path P (0) and
P (1) and kill all remaining edges. If Maker occupies the smallest indexed unoccupied
node N

(0)
r from P (0), then Breaker responds by occupying one vertex from every child

of N
(0)
r except its child N

(0)
r+1 contained in P (0). Breaker does likewise if Maker occupies

the smallest indexed unoccupied node N
(1)
s from P (1). (This is how Breaker maintains

the aforementioned property.) None of the vertices in N
(0)
1 , . . . , N

(0)
µ−1 intersect Fi(y1) by

the choice of u. Thus, Maker’s moves in these nodes do not affect Fi(y1). Additionally,

Maker’s moves in N
(1)
1 , . . . , N

(1)
ν−1 can only affect Fi(y0) in levels c > µ+1 by the choice of

u. Thus, Breaker is able to employ his strategy described above. Eventually, every living
edge in Fi(y0) contains N

(0)
µ and every living edge in Fi(y1) contains N

(1)
ν . Thus, since
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Breaker has already occupied u ∈ N
(0)
µ ∩N

(1)
ν , there are no living edges, which contradicts

the fact that Maker has a winning strategy. Therefore, Fi(y0),Fi(y1), . . . ,Fi(yq) must
also be vertex-disjoint. �

Assuming that the new hypotheses hold, since Maker has a winning strategy and F is
finite, Lemma 4 implies that for any alternating sequence of winning and valid moves, we
must encounter a turn j where Sj = ∅. If S1 = ∅, then Claim 4 provides the q+1 disjoint
(q + 1)-ary trees that are combined to form a single (q + 1)-ary tree with the addition of
the root guaranteed by Claim 2. However, if S1 6= ∅, then we will show that there are
q + 1 alternating sequences of winning and valid moves that satisfy the assumptions for
Section 3.3. In which case, Lemma 9 from Section 3.3 will hold. But this will contradict the
fact that Maker has a winning strategy, since Lemma 9 states that under the assumptions
for Section 3.3, Breaker can deviate from the (p : q)–Erdős–Selfridge strategy to win.

Let Seq = (X1, Y1, X2, Y2, . . . , Xm, Ym, Xm+1) be a maximum length alternating se-
quence of winning and valid moves with Sm 6= ∅, m > 1. Since Sm 6= ∅, Claim 4 implies
that Fm is not q+1 disjoint (q+1)-ary trees. Thus, the first assumption from Section 3.3
holds. Let Ym = {y1, . . . , yq}, Xm+1 = {x1, . . . , xp}, and as before, let y0 = x1. As in

Claim 4, let Y
(k)
m = {y0, y1, . . . , yq} \ {yk}, for 0 6 k 6 q. By Corollary 2, Y

(k)
m is a valid

Breaker’s move for 0 6 k 6 q, so let X
(k)
m+1 = {x(k)

1 , . . . , x
(k)
p } be Maker’s winning response

to Y
(k)
m , and let S

(k)
m be as Si is in Corollary 1. We apply Corollary 1 and equation (16)

to Y
(k)
m and X

(k)
m+1 for each 0 6 k 6 q to obtain equation (24) for 0 6 k 6 q:

Φ(Fm) =
∑

y∈Y
(k)
m

Φ(Fm(y)) + Φ(Fm(x
(k)
1 )) + Φ(S(k)

m )

= (q + 1)Φ(Fm(v)) + Φ(S(k)
m ), for any v ∈ Y (k)

m ∪ {x(k)
1 }.

Since S
(0)
m = Sm 6= ∅ and Y

(0)
m ∩ Y

(k)
m 6= ∅ for 0 6 k 6 q, these equations allow us

to conclude that Φ(S
(k)
m ) = Φ(Sm) for 0 6 k 6 q. Thus, S

(k)
m 6= ∅ for 0 6 k 6 q.

Therefore, Seq(k) = (X1, Y1, X2, Y2, . . . , Xm, Y
(k)
m , X

(k)
m+1) is a maximum length alternat-

ing sequence of winning and valid moves with S
(k)
m 6= ∅, for 0 6 k 6 q. Thus, if

(X1, Y1, X2, Y2, . . . , Xm, Y
(k)
m , X

(k)
m+1, Y

(k)
m+1, X

(k)
m+2) is an alternating sequence of winning and

valid moves, then by the maximality of Seq(k), we must have S
(k)
m+1 = ∅, for 0 6 k 6 q.

Therefore, by Claim 4, F (k)
m+1 is q + 1 disjoint (q + 1)-ary trees for 0 6 k 6 q. Thus, the

second assumption from Section 3.3 holds. Finally, since S
(k)
m 6= ∅ for 0 6 k 6 q, Lemma 3

implies Φ(Fm(y)) <
1

q+1
for y ∈ Y

(k)
m . Thus, the third assumption from Section 3.3 also

holds. Since Seq(k) is a sequence of valid moves for 0 6 k 6 q and all three assumptions
from Section 3.3 hold, Lemma 9 tells us that Breaker can deviate from the (p : q)–Erdős–
Selfridge strategy during turn m to win. This contradicts the fact that Maker has a
winning strategy, therefore, it must be the case that S1 = ∅ and F is a (q + 1)-ary tree.
�
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3.3 Pseudo-trees

As before, let us say that a Breaker’s move is valid if it follows (i.e., is consistent with) the
strategy from the proof of the (p : q)–Erdős–Selfridge theorem and that a Maker’s move
is valid if it follows a fixed (p : q)–Erdős–Selfridge–defeating strategy.

We begin with a set of assumptions that will hold for the duration of this section.
While these assumptions on their own may seem arbitrary, we see that such a situation
arises in our proof of Theorem 2 in Section 3.2.

Assumptions for Section 3.3:
The sequence (X1, Y1, X2, Y2, . . . , Xm, Ym, Xm+1) is a sequence of valid moves with Ym =

{y1, . . . , yq}, Xm+1 = {x1, . . . , xp}, and y0 = x1. Let Y
(k)
m = {y0, y1, . . . , yq} \ {yk}, for

0 6 k 6 q. By Corollary 2, Y
(k)
m is a valid Breaker’s move for 0 6 k 6 q, so let

X
(k)
m+1 = {x(k)

1 , . . . , x
(k)
p } be Maker’s valid response to Y

(k)
m . Notice that in the special case

k = 0, Y
(0)
m = Ym and X

(0)
m+1 = Xm+1. Let F

(k)

m+ 1
2

be the hypergraph of surviving edges after

Breaker occupies Y
(k)
m during turn m and let F (k)

m+1 be the residual hypergraph left after

Maker occupies X
(k)
m+1. Moreover,

1. Fm is not q + 1 disjoint (q + 1)-ary trees;

2. F (k)
m+1 is q + 1 disjoint (q + 1)-ary trees for 0 6 k 6 q;

3. Φ(Fm(y)) < 1 for y ∈ Y
(k)
m and 0 6 k 6 q.

We will now study the structure of each F (k)

m+ 1
2

. Since F (k)
m+1 is q+1 disjoint (q+1)-ary

trees, it is reasonable to conjecture that the structure of F (k)

m+ 1
2

is somewhat close to that

of a (q + 1)-ary tree. We proceed to show that this is indeed the case.

We begin by partitioning the edges of F (k)

m+ 1
2

into those which contain X
(k)
m+1 and those

which do not. Recall, by Observation 3, Fm(x
(k)
1 ) = Fm(X

(k)
m+1). Since Y

(k)
m is a valid

Breaker’s move and X
(k)
m+1 is a valid Maker’s response for 0 6 k 6 q, then by Corollary 1,

Fm can be partitioned into
⋃

y∈Y
(k)
m

Fm(y),Fm(x
(k)
1 ), S

(k)
m , where S

(k)
m are those edges which

do not contain any vertices from Y
(k)
m or X

(k)
m+1. Once Breaker occupies Y

(k)
m , we are left

with only Fm(x
(k)
1 ) and S

(k)
m , thus, F (k)

m+ 1
2

= Fm(x
(k)
1 ) ∪ S

(k)
m where the union is disjoint.

We will often refer to S
(k)
m as the set of short edges of F (k)

m+ 1
2

and to Fm(x
(k)
1 ) as the set

of long edges of F (k)

m+ 1
2

, because if the edges of the q + 1 disjoint (q + 1)-ary trees in

F (k)
m+1 are uniform, then every edge in Fm(x

(k)
1 ) has exactly p more vertices than those in

S
(k)
m , namely, the vertices in X

(k)
m+1. Since F (k)

m+1 is q + 1 disjoint (q + 1)-ary trees, we let

T
(k)
1 , . . . , T

(k)
q+1 be those trees and r

(k)
1 , . . . , r

(k)
q+1 be the roots of those trees. Thus, T

(k)
j =

F (k)
m+1(r

(k)
j ) is a (q + 1)-ary tree, for 1 6 j 6 q + 1. (We will sometimes call r

(k)
1 , . . . , r

(k)
q+1
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d

little roots

pseudo-root

Figure 6: An example of a pseudo-3-ary tree F (k)

m+ 1
2

with pseudo-root X
(k)
m+1 and little roots

r
(k)
1 , r

(k)
2 , r

(k)
3 .

little roots.) Stepping back, we let t
(k)
j = F (k)

m+ 1
2

(r
(k)
j ) = {A ∈ F (k)

m+ 1
2

: r
(k)
j ⊂ A}. We then

think of F (k)

m+ 1
2

as a pseudo-(q + 1)-ary tree with pseudo-root X
(k)
m+1, and we think of t

(k)
j

as a pseudo-subtree of F (k)

m+ 1
2

. This is because once X
(k)
m+1 is occupied, t

(k)
j = F (k)

m+ 1
2

(r
(k)
j )

becomes T
(k)
j = F (k)

m+1(r
(k)
j ), which is a true (q + 1)-ary tree. (We will sometimes call t

(k)
j

a little tree.)
Figures 6, 7, and 8 give pictorial representations of a pseudo-tree, its underlying struc-

ture, and how it evolves into q + 1 disjoint (q + 1)-ary trees after Maker occupies its

pseudo-root. Figure 6 shows a pseudo-3-ary tree. The pseudo-root is labeled X
(k)
m+1, thus

all long edges contain X
(k)
m+1. Each short edge is a path from a leaf to a little root r

(k)
i

(i = 1, 2, 3) using only thick, lightly shaded edges, e.g., the path from f to r
(k)
2 is a

short edge, as is the path from a to r
(k)
1 , which we will denote by (f, r

(k)
2 ) and (a, r

(k)
1 ),

respectively (even though an edge is technically the union of the vertices of the nodes

on such a path). Each long edge is a path from a leaf to the pseudo-root X
(k)
m+1 using

only thin, dark lines, e.g., the path from g to X
(k)
m+1 is a long edge, as is the path from d

to X
(k)
m+1, denoted by (g, r

(k)
3 , X

(k)
m+1) and (d, r

(k)
2 , X

(k)
m+1), respectively. Figure 7 illustrates

the three pseudo-subtrees t
(k)
1 , t

(k)
2 , t

(k)
3 that are contained in the pseudo-3-ary tree. The

pseudo-subtrees are rooted at r
(k)
1 , r

(k)
2 , and r

(k)
3 . Figure 8 shows how the pseudo-3-ary

tree reduces to 3 disjoint 3-ary trees T
(k)
1 , T

(k)
2 , T

(k)
3 after Maker occupies the pseudo-root.

Though uniformity is not necessary, it is sufficient for us to use an example where F (k)
m+1

(pictured in Figure 8) is 2-uniform in order to illustrate our definitions.

Lemma 5 Every little tree contains at least one long edge, i.e.,

t
(k)
j ∩ F (k)

m (x
(k)
1 ) 6= ∅,

for 0 6 k 6 q and 1 6 j 6 q + 1,
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Figure 7: The three pseudo-subtrees that are contained in the pseudo-3-ary tree.
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Figure 8: The three genuine 3-ary trees that are left after Maker occupies the pseudo-root.
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b c
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Figure 9: Example of a pseudo-3-ary tree F (k)

m+ 1
2

with a forbidden little tree t
(k)
1 rooted

at r
(k)
1 .
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Proof of Lemma 5: Recall that F (k)

m+ 1
2

= F (k)
m (x

(k)
1 ) ∪ S

(k)
m where the union is disjoint.

Assume towards a contradiction that t
(k)
j ⊆ S

(k)
m , i.e., F (k)

m+ 1
2

(r
(k)
j ) ⊆ S

(k)
m . (See Figure 9

where the little tree t
(k)
1 = F (k)

m+ 1
2

(r
(k)
1 ) ⊆ S

(k)
m .) The only edges of F (k)

m+ 1
2

that are changed

when Maker occupies X
(k)
m+1 are those edges in F (k)

m (x
(k)
1 ). Thus, since F (k)

m+ 1
2

(r
(k)
j ) ⊆ S

(k)
m ,

we have t
(k)
j = F (k)

m+ 1
2

(r
(k)
j ) = F (k)

m+1(r
(k)
j ) = T

(k)
j , i.e., t

(k)
j is already a (q+1)-ary tree before

Maker moves. But if this is the case, then for any v ∈ r
(k)
j , the potential of v in Fm is too

large because

Φ(Fm(v)) > Φ(F (k)

m+ 1
2

(v)) > Φ(F (k)

m+ 1
2

(r
(k)
j )) = Φ(F (k)

m+1(r
(k)
j )) = Φ(T

(k)
j ) =

1

q + 1
. (25)

This contradicts Breaker’s choice of y ∈ Y
(k)
m as a vertex of maximum potential since

Φ(Fm(y)) <
1

q+1
by the third assumption for Section 3.3. �

Let ℓ
(k)
j = t

(k)
j ∩ Fm(x

(k)
1 ) be the set of long edges in t

(k)
j , e.g, in Figures 6 and 7,

ℓ
(k)
2 = {(d, r(k)2 , X

(k)
m+1), (e, r

(k)
2 , X

(k)
m+1)}. By Lemma 5, ℓ

(k)
j 6= ∅ for 1 6 j 6 q + 1, however,

it is quite possible that t
(k)
j ∩ S

(k)
m = ∅. Let us define s

(k)
j = t

(k)
j ∩ S

(k)
m to be the set of

short edges in t
(k)
j , with the understanding that s

(k)
j can be empty in some cases, e.g.,

in Figures 6 and 7, s
(k)
1 = {(a, r(k)1 ), (b, r

(k)
1 )} and s

(k)
3 = ∅. Since F (k)

m+1 is q + 1 disjoint

(q + 1)-ary trees, we can prove the following facts about F (k)

m+ 1
2

.

Lemma 6 For 0 6 k 6 q, any two distinct pseudo-subtrees of F (k)

m+ 1
2

are edge-disjoint

and the intersection of their vertices is X
(k)
m+1. That is to say, t

(k)
j ∩ t

(k)
i = ∅ and V (t

(k)
j )∩

V (t
(k)
i ) = X

(k)
m+1, if i 6= j.

Proof of Lemma 6: By Lemma 5, every little tree contains at least one long edge, thus,
X

(k)
m+1 ⊆ V (t

(k)
j ) ∩ V (t

(k)
i ). After Maker occupies X

(k)
m+1, t

(k)
j and t

(k)
i become the disjoint

(q+1)-ary trees T
(k)
j and T

(k)
i . Thus, (V (t

(k)
j )\X(k)

m+1)∩(V (t
(k)
i )\X(k)

m+1) = ∅, allowing us to

conclude V (t
(k)
j )∩V (t

(k)
i ) = X

(k)
m+1. Since every edge in t

(k)
j contains vertices from V (T

(k)
j )

and every edge in t
(k)
i contains vertices from V (T

(k)
i ), and T

(k)
j and T

(k)
i are disjoint, we

see that there is no edge common to both t
(k)
j and t

(k)
i . �

Corollary 3 For 0 6 k 6 q, let A and C be long edges in different pseudo-subtrees of
F (k)

m+ 1
2

, i.e., let A ∈ ℓ
(k)
j and C ∈ ℓ

(k)
i , i 6= j, then A ∩ C = X

(k)
m+1.

Proof of Corollary 3: Let A ∈ ℓ
(k)
j and C ∈ ℓ

(k)
i , where i 6= j. Since A and C are long

edges, then X
(k)
m+1 ⊆ A ∩C. However, A \X(k)

m+1 ⊆ V (T
(k)
j ) and C \X(k)

m+1 ⊆ V (T
(k)
i ), and

T
(k)
j and T

(k)
i are disjoint, therefore A ∩ C = X

(k)
m+1. �
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Corollary 4 For 0 6 k 6 q, let A,C ∈ S
(k)
m . Then A ∩ C 6= ∅ if and only if A,C ∈ s

(k)
j

for some 1 6 j 6 q + 1.

Proof of Corollary 4: Let A,C ∈ S
(k)
m . For the first direction, suppose A,C ∈ s

(k)
j .

Thus, A,C ∈ T
(k)
j , since the short edges of t

(k)
j do not change when Maker occupies X

(k)
m+1.

However, every edge in T
(k)
j contains its root r

(k)
j , thus, A ∩ C 6= ∅.

For the other direction, suppose A ∈ s
(k)
j and C ∈ s

(k)
i , where i 6= j. As above, since

short edges are not affected when Maker occupies X
(k)
m+1, we may conclude that A ∈ T

(k)
j

and C ∈ T
(k)
i . Since T

(k)
j and T

(k)
i are disjoint, A ∩ C = ∅. �

Recall that for 0 6 k 6 q, F (k)

m+ 1
2

can be partitioned into its set of long edges and its

set of short edges, i.e.,

F (k)

m+ 1
2

= Fm(x
(k)
1 ) ∪ S(k)

m (where Fm(x
(k)
1 ) ∩ S

(k)
m = ∅). (26)

By taking a different viewpoint, we can describe another partition of F (k)

m+ 1
2

. Recall that

Corollary 1 says we can partition the edges of Fm into Fm(y0),Fm(y1), . . . ,Fm(yq), Sm.

When Breaker occupies Y
(k)
m , he kills the edges in Fm(y) for each y ∈ Y

(k)
m , leaving only

the edges in Fm(yk) and Sm alive. Thus, for 0 6 k 6 q, we can also say

F (k)

m+ 1
2

= Fm(yk) ∪ Sm (where Fm(yk) ∩ Sm = ∅). (27)

Luckily, we have the following lemma.

Lemma 7 For 0 6 k 6 q,

Fm(x
(k)
1 ) = Fm(yk) and S(k)

m = Sm,

i.e., Fm(yk) is the set of long edges of F (k)

m+ 1
2

and Sm is the set of short edges.

Proof of Lemma 7: Since y0 = x1 = x
(0)
1 , equations (26) and (27) imply the lemma is

true when k = 0. Now, consider the pseudo-tree F (k)

m+ 1
2

= Fm(x
(k)
1 ) ∪ S

(k)
m with pseudo-

root X
(k)
m+1, where k > 1. If yk ∈ X

(k)
m+1 = {x(k)

1 , . . . , x
(k)
p }, then Claim 3 implies Fm(yk) =

Fm(x
(k)
1 ) because all of Maker’s vertices are in exactly the same edges of Fm; and, by

equations (26) and (27), it follows that S
(k)
m = Sm. If yk 6∈ X

(k)
m+1, then yk is contained

in one of the little trees t
(k)
j ; w.l.o.g., yk ∈ V (t

(k)
1 ) \ X(k)

m+1 = V (T
(k)
1 ). By Lemma 5, t

(k)
2

and t
(k)
3 each contain at least one long edge. Consider long edges A2 ∈ t

(k)
2 and A3 ∈ t

(k)
3 .

Since they are long and in different little trees, Corollary 3 implies A2 ∩ A3 = X
(k)
m+1.

Since yk ∈ V (T
(k)
1 ) and V (T

(k)
1 ) is disjoint from V (t

(k)
2 ) and V (t

(k)
3 ), then yk 6∈ A2, A3, i.e,

A2, A3 6∈ Fm(yk). Therefore, by equation (27), A2, A3 ∈ Sm, which allows us to conclude

that A2, A3 ∈ F(y0) ∪ Sm = F (0)

m+ 1
2

also! Since A2 ∩ A3 6= ∅ and A2, A3 ∈ Sm = S
(0)
m ,

Corollary 4 implies they are in the same little tree of F (0)

m+ 1
2

; w.l.o.g., A2, A3 ∈ t
(0)
1 .
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F
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X
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m+1 X
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X
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1

Figure 10: On the left is the pseudo-tree F (k)

m+ 1
2

. The long edges A2 and A3 are shown

with thick blue and orange lines, respectively. On the right A2 and A3 are shown relative
to F (0)

m+ 1
2

. The long edge A4 is shown as a thick purple line. Notice X
(k)
m+1, X

(0)
m+1 ⊆ A4,

which contradicts the fact that Fm(x
(k)
1 ) ∩ Fm(y0) = ∅.

Every edge of t
(0)
1 contains its little root r

(0)
1 , thus, r

(0)
1 ⊆ A2 ∩ A3 = X

(k)
m+1. Since

|r(0)1 | = p = |X(k)
m+1|, r

(0)
1 = X

(k)
m+1. By Lemma 5, t

(0)
1 contains a long edge A4. Since every

long edge of t
(0)
1 contains both its little root r

(0)
1 = X

(k)
m+1 and the pseudo-root X

(0)
m+1, and

since Fm(x
(k)
1 ) = Fm(X

(k)
m+1) and Fm(y0) = Fm(X

(0)
m+1) by Observation 3, we conclude

that A4 ∈ Fm(x
(k)
1 ) ∩ Fm(y0). However, Fm(x

(k)
1 ) ∩ Fm(y0) = ∅ because x

(k)
1 ∈ X

(k)
m+1

and y0 ∈ Y
(k)
m . (Here we used Corollary 1 applied to Breaker’s valid move Y

(k)
m and

Maker’s valid response X
(k)
m+1.) Therefore, by contradiction, it must be the case that

Fm(yk) = Fm(x
(k)
1 ) and S

(k)
m = Sm. (See Figure 10 for an illustration.) �

Thus, Lemma 7 and equation (27) imply that each Fm(yk)∪ Sm is a different pseudo-
tree, and all of the pseudo-trees share the same set of short edges, Sm.

Recall that s
(0)
i is the set of short edges from little tree t

(0)
i , i.e., s

(0)
i = t

(0)
i ∩ Sm.

W.l.o.g., let us index the little trees of F (0)

m+ 1
2

so that for some 1 6 h 6 q + 1, s
(0)
i 6= ∅ if

1 6 i 6 h, and s
(0)
i = ∅ if i > h. Using Corollary 4, we can show that if s

(0)
i ∩ s

(k)
ik

6= ∅,

then s
(0)
i = s

(k)
ik
.

Lemma 8 If s
(0)
i ∩ s

(k)
ik

6= ∅, then s
(0)
i = s

(k)
ik
.

Proof of Lemma 8: Let A ∈ s
(0)
i ∩ s

(k)
ik
. Since A ∈ s

(0)
i , then C ∈ s

(0)
i if and only if

A ∩ C 6= ∅, by Corollary 4. Yet, by Corollary 4, A ∩ C 6= ∅ if and only if C ∈ s
(k)
ik
, since

A ∈ s
(k)
ik
. Therefore, C ∈ s

(0)
i if and only if C ∈ s

(k)
ik
. �

As a result of Lemma 8, we can re-index the little trees of each pseudo-tree so that
s
(0)
i = s

(k)
i for each 0 6 k 6 q and each 1 6 i 6 q + 1. (We are able to say 1 6 i 6 q + 1
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because for each i > h, s
(0)
i = ∅ = s

(k)
i .) Thus, we can drop superscripts and write

Sm = s1 ∪ s2 ∪ · · · ∪ sh, where si = t
(k)
i ∩ Sm and 0 6 k 6 q. (28)

We now prove a claim which will help us show that Breaker has a winning strategy in
our current setup if he deviates from the (p : q)–Erdős–Selfridge strategy during turn m.

Although the pseudo-subtrees that contain short edges will intersect because s
(k)
i = si 6= ∅

for 0 6 k 6 q and 1 6 i 6 h, we will show for all pseudo-subtrees that we cannot have
too many little roots intersecting. More specifically, we have the following claim.

Claim 5 The intersection of any q + 1 distinct little roots is empty, i.e.,

q
⋂

k=0

r
(k)
ik

= ∅.

Proof of Claim 5: For convenience of notation, we will suppress the subscript k. If
v ∈

⋂q
k=0 r

(k)
i , then Fm(v) contains every edge in t

(k)
i for 0 6 k 6 q. If Maker occupies

X
(k)
m+1, then every long edge in t

(k)
i has its potential increased by a factor of (q+1), every

short edge maintains its potential, and t
(k)
i becomes the (q + 1)-ary tree T

(k)
i . Thus,

1

q + 1
= Φ(T

(k)
i ) = (q + 1)Φ(ℓ

(k)
i ) + Φ(si) for each 0 6 k 6 q. (29)

Since equation (29) holds for 0 6 k 6 q, and si is independent of k, we see that

Φ(ℓ
(k)
i ) = Φ(ℓ

(j)
i ) for 0 6 k 6 j 6 q. (30)

By equation (28), if si 6= ∅, then si ⊂ t
(k)
i for 0 6 k 6 q. By Lemma 7, ℓ

(k)
i ⊆ Fm(yk) for

0 6 k 6 q, and by Corollary 1, Fm(yk) ∩ Fm(yj) = ∅, for k 6= j, therefore, ℓ
(k)
i ∩ ℓ

(j)
i = ∅

for k 6= j. Thus, the potential of the edges that contain v is at least the potential of the
(shared) short edges si (if any) plus the potential of the long edges from each t

(k)
i , where

0 6 k 6 q:

Φ(Fm(v)) > Φ(si) +

q
∑

k=0

Φ(ℓ
(k)
i ) = Φ(si) + (q + 1)Φ(ℓ

(0)
i ) =

1

q + 1
. (31)

This contradicts Breaker’s choice of y ∈ Y
(k)
m as a vertex of maximum potential since

Φ(Fm(y)) <
1

q+1
. Therefore, it must be the case that

⋂q
k=0 r

(k)
i = ∅. �

We will now state an important corollary of Claim 5 that will help us show that Breaker
can win in our given setup. The corollary basically says that in each pseudo-subtree with
short edges, there are more than p vertices that Breaker can use to kill all of the short
edges in that pseudo-subtree.

Corollary 5 If si 6= ∅, then there are more than p vertices that are contained in every
edge in si, i.e.,

|
⋂

A∈si

A| > p. (32)
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Proof of Corollary 5: Because si = Sm ∩ t
(k)
i for each 0 6 k 6 q and because of the

tree structure of each F (k)

m+ 1
2

, each edge A ∈ si contains each little root r
(k)
i for 0 6 k 6 q.

Thus,
⋃q

k=0 r
(k)
i ⊂

⋂

A∈si
A. Since Claim 5 states that

⋂q
k=0 r

(k)
i = ∅, and since each little

root r
(k)
i contains exactly p vertices, it must be the case that

p <

∣

∣

∣

∣

∣

q
⋃

k=0

r
(k)
i

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

⋂

A∈si

A

∣

∣

∣

∣

∣

. (33)

�

We have established that Fm is composed of q + 1 distinct pseudo-trees F (k)

m+ 1
2

=

Fm(yk) ∪ Sm, where 0 6 k 6 q. Since Φ(Fm(yk)) < 1
q+1

for 0 6 k 6 q by the third

assumption for Section 3.3, Lemma 3 implies that Sm 6= ∅. Thus, any two pseudo-trees
necessarily intersect via their common set of short edges Sm. However, the pseudo-root
of a given pseudo-tree will be disjoint from all other pseudo-trees, as explained in the
following claim.

Claim 6 For k 6= j, the pseudo-root X
(k)
m+1 of F (k)

m+ 1
2

is disjoint from the pseudo-tree

F (j)

m+ 1
2

, i.e., X
(k)
m+1 ∩ V (F (j)

m+ 1
2

) = ∅.

Proof of Claim 6: Let v ∈ X
(k)
m+1. Then, by Lemma 7 and the fact that all of Maker’s

vertices are in exactly the same edges, Fm(v) = Fm(yk). Assume v ∈ V (F (j)

m+ 1
2

) also, then

v ∈ A for some A ∈ F (j)

m+ 1
2

= Fm(yj) ∪ Sm. Since v ∈ A, then A ∈ Fm(v) = Fm(yk). But

if k 6= j, then this is a contradiction because Fm(yk)∩ (Fm(yj)∪ Sm) = ∅ by Corollary 1.
�

The situation is somewhat similar to the one considered in the proof of Claim 4,
except for the presence of the shared short edges which, by definition, cannot be killed by
occupying vertices from any pseudo-root X

(k)
m+1. However, Corollary 5 reveals that Breaker

will have a reasonable opportunity to kill the edges in Sm. See Figure 11 for a pictorial
representation of how Fm might appear. The hypergraph in Figure 11 corresponds to a
(2 : 2) game. Thus, there are three pseudo-trees, each distinguished by its own color. In

this figure, Sm = s1 and s1 only contains one edge (r
(0)
1 , r

(2)
1 ) = (r

(1)
1 , r

(2)
1 ) (since r

(0)
1 = r

(1)
1 )

which is represented with dotted lines.
Now we prove a lemma which states that Breaker can win in our given situation if he

deviates from the (p : q)–Erdős–Selfridge strategy during turn m.

Lemma 9 Under the assumptions for Section 3.3, Breaker can deviate from the (p : q)–
Erdős–Selfridge strategy during turn m to win.

Proof of Lemma 9: We use a proof by cases, but please note, in some of the cases
below we only specify the vertices occupied by Breaker which are crucial to his winning
strategy. Any unspecified vertices can be considered as chosen arbitrarily. We show that
Breaker can win in all cases.
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X
(1)
m+1X

(0)
m+1

X
(2)
m+1

r
(0)
1 = r

(1)
1

r
(2)
1

Figure 11: A possible configuration for Fm in a (2 : 2) game. Each pseudo-tree has its

own color: F (0)

m+ 1
2

is blue, F (1)

m+ 1
2

is orange, F (2)

m+ 1
2

is red. There is only one short edge

(indicated by dotted lines) shared by all three pseudo-trees.

The two main cases that we need to consider are when there exist two little roots r
(j)
ij

and r
(k)
ik

from different pseudo-trees that intersect, and when no two little roots r
(j)
ij

and

r
(k)
ik

from different pseudo-trees intersect.
Recall that by Corollary 1, Fm is partitioned into Fm(y0),Fm(y1), . . . ,Fm(yq), Sm, and

by Lemma 7 and equation (27), F (k)

m+ 1
2

= Fm(yk) ∪ Sm where Fm(yk) is the set of long

edges of F (k)

m+ 1
2

and Sm is the set of short edges for 0 6 k 6 q.

Case 1: There exist two little roots r
(j)
ij

and r
(k)
ik

from different pseudo-trees that intersect,

i.e., r
(j)
ij

∩ r
(k)
ik

6= ∅.

W.l.o.g., the two little roots which intersect are r
(0)
q+1 and r

(1)
q+1. If this is the case, for his

move during turn m, Breaker occupies {y2, y3, . . . , yq, v} where v ∈ r
(0)
q+1 ∩ r

(1)
q+1. Breaker’s

move kills Fm(yk) for 2 6 k 6 q, and it kills t
(0)
q+1 and t

(1)
q+1. All that is left of Fm are the

two pseudo-trees F (0)

m+ 1
2

and F (1)

m+ 1
2

which are composed of the edges from Fm(y0),Fm(y1),

and Sm. In addition, each of the pseudo-trees is missing one pseudo-subtree, namely t
(0)
q+1

and t
(1)
q+1. We often use the fact that X

(0)
m+1 and X

(1)
m+1 are disjoint from all of the little roots

within both surviving pseudo-trees F (0)

m+ 1
2

and F (1)

m+ 1
2

. This holds because the pseudo-root
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is disjoint from its own little roots by definition, and by Claim 6, a pseudo-root from one
pseudo-tree is disjoint from other pseudo-trees.

Case 1.1: Maker responds by occupying one of the pseudo-roots X
(0)
m+1 or X

(1)
m+1.

W.l.o.g., Maker occupies X
(0)
m+1. Breaker responds by occupying one vertex from each of

the pseudo-subtree roots r
(0)
1 , . . . , r

(0)
q . This finishes killing off F (0)

m+ 1
2

because now all of

the roots from its pseudo-subtrees have been killed by Breaker. In addition to killing
F (0)

m+ 1
2

, Breaker also manages to kill Sm, because Breaker kills all of the edges in each

t
(0)
i , including all of the short edges si ⊂ t

(0)
i . Therefore the only edges that are alive are

contained in Fm(y1). Thus, Maker must occupy X
(1)
m+1 for her next move. Then Breaker

responds by occupying one vertex from each of the pseudo-subtree roots r
(1)
1 , . . . , r

(1)
q .

This finishes killing off F (1)

m+ 1
2

, and Breaker wins.

Case 1.2: Maker responds by occupying one of the little roots.
It is easier to handle this case if we further divide it into two situations.

Case 1.2.1: No little roots are identical, i.e., r
(0)
j 6= r

(1)
k for all 1 6 j, k 6 q.

W.l.o.g., Maker occupies r
(0)
1 . Breaker responds by occupying one vertex from X

(0)
m+1 and

one vertex from r
(1)
1 . (We know there is a vertex available in r

(1)
1 because r

(0)
1 6= r

(1)
1 .) Now

each of the long edges of F (0)

m+ 1
2

are dead and s1 is dead. If Maker continues by occupying

X
(1)
m+1, then Breaker occupies one vertex from each of the little roots r

(1)
2 , . . . , r

(1)
q . After

this, each edge in Sm is dead as is F (1)

m+ 1
2

, and Breaker wins. If Maker does not occupy

X
(1)
m+1, then Breaker occupies a vertex from X

(1)
m+1 and a vertex from

⋂

A∈si
A, for 2 6

i 6 q. This finishes killing each edge in Sm along with F (1)

m+ 1
2

and Breaker wins. (We use

Corollary 5 to justify the availability of the q − 1 vertices Breaker uses to kill the short
edges.)

Case 1.2.2: There are little roots which are identical.
When q > 2, we may assume that r

(0)
1 = r

(1)
1 and Maker occupies r

(0)
1 . In this case, Breaker

responds by occupying a vertex from X
(0)
m+1, one from X

(1)
m+1, and a vertex v1 ∈

⋂

A∈s1
A,

whose availability is guaranteed by Corollary 5. This kills all long edges and the short
edges in s1, thus, the only edges still alive are those in si for 2 6 i 6 q. No matter
what Maker’s next move is, Breaker occupies a vertex vi ∈

⋂

A∈si
A, for 2 6 i 6 q, whose

availability is guaranteed by Corollary 5.
When q = 2, we notice that (during turn m,) the pseudo-trees F (0)

m+ 1
2

, F (1)

m+ 1
2

, and F (2)

m+ 1
2

cannot have too many “shared” little roots amongst them. For instance, if each pair of
pseudo-trees F (i)

m+ 1
2

and F (j)

m+ 1
2

, where 0 6 i < j 6 2 share at least two little roots, then

the pigeon-hole principle implies that there are in fact three little roots r
(0)
k = r

(1)
k = r

(2)
k

which are identical, contradicting Claim 5. Thus, there must be a pair of pseudo-trees
F (i)

m+ 1
2

and F (j)

m+ 1
2

that share at most one little root. W.l.o.g., F (0)

m+ 1
2

and F (1)

m+ 1
2

share at
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most one little root, and the little root that they share is r
(0)
3 = r

(1)
3 . In this case, during

turnm, Breaker occupies y2 ∈ X
(2)
m+1 and v ∈ r

(0)
3 . Thus, when Maker occupies a little root

during turn m+ 1, the situation reduces to Case 1.2.1, where no little roots are identical
because F (0)

m+ 1
2

and F (1)

m+ 1
2

share at most one identical little root, which Breaker already

killed during turn m.

Case 1.3: Maker does not occupy X
(0)
m+1, X

(1)
m+1, or a little root.

If Maker occupies at least one vertex from X
(0)
m+1, then Breaker responds by occupying

one vertex from each of r
(0)
1 , . . . , r

(0)
q . Now Maker cannot finish occupying both X

(1)
m+1

and a little root before Breaker’s next turn. If Maker does not fully occupy X
(1)
m+1, then

Breaker occupies a vertex from X
(1)
m+1 and wins. Otherwise, every little root r

(1)
1 , . . . , r

(1)
q

has at least one unoccupied vertex, and Breaker occupies one vertex from each of them
and wins.

If Maker puts no vertices in X
(0)
m+1, then Breaker responds by occupying one vertex

from r
(1)
1 , . . . , r

(1)
q . Maker must use her next move to occupy X

(0)
m+1, or else Breaker takes

a vertex from X
(0)
m+1 and wins. Since Maker did not occupy a little root during turn m+1

or m+2, each little root r
(0)
1 , . . . , r

(0)
q has an unoccupied vertex, and Breaker occupies one

vertex from each of them and wins.

Case 2: No two little roots r
(j)
ij

and r
(k)
ik

from different pseudo-trees intersect, i.e., r
(j)
ij

∩

r
(k)
ik

= ∅ for j 6= k.

In this case, for his move during turnm, Breaker occupies {y2, y3, . . . , yq, v} where v ∈ r
(0)
1 .

Breaker’s move kills Fm(yk) for 2 6 k 6 q, and it kills t
(0)
1 . All that is left of Fm are the

two pseudo-trees F (0)

m+ 1
2

and F (1)

m+ 1
2

which are composed of the edges from Fm(y0),Fm(y1),

and Sm. In addition, F (0)

m+ 1
2

is missing its pseudo-subtree t
(0)
1 and the edges in s1 are dead.

Notice, by Lemma 3 and the assumption that Φ(Fm(yk)) <
1

q+1
for 0 6 k 6 q, we have

Sm 6= ∅. Thus, the indexing used in equation (28) implies that s1 6= ∅ also.

Case 2.1: Maker responds by occupying X
(0)
m+1.

Breaker responds by occupying one vertex from each of the pseudo-subtree roots r
(0)
2 , . . . ,

r
(0)
q+1. This kills F

(0)

m+ 1
2

and Sm, so Maker must now occupy X
(1)
m+1. Breaker then occupies

one vertex from each of r
(1)
2 , . . . , r

(1)
q+1. Now t

(1)
1 is still alive and has transformed into T

(1)
1

since Maker occupied X
(1)
m+1. But all of the edges in s1 ⊆ T

(1)
1 are dead. Since s1 6= ∅

and s1 ⊆ T
(1)
1 , then Φ(T

(1)
1 ) < 1

q+1
. Thus, Breaker can win via the (p : q)–Erdős–Selfridge

strategy.

Case 2.2: Maker responds by occupying X
(1)
m+1.

Breaker responds by occupying one vertex from each of the pseudo-subtree roots r
(1)
2 , . . . ,

r
(1)
q+1. This kills all edges in Sm and leaves only a damaged T

(1)
1 alive from F (1)

m+ 1
2

. Recall
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that the vertex v, which Breaker occupied in turn m, is contained in T
(1)
1 because v was

used to kill the short edges s1 ⊂ T
(1)
1 . Thus, there is a unique path P in T

(1)
1 from its

root r
(1)
1 to the node containing v. Suppose P = N1, N2, . . . , Nk where each Ni is a node

and N1 = r
(1)
1 and Nk is the node containing v. By Corollary 6 below, since v ∈

⋂

A∈s1
A,

then Nk ⊆
⋂

A∈s1
A. Also, by Corollary 7 below, since Nk ⊆

⋂

A∈s1
A, then Ni ⊆

⋂

A∈s1
A

for 1 6 i 6 k. Since s1 ⊂ T
(0)
1 , all vertices in N1 ∪ . . . ∪ Nk only intersect F (0)

m+ 1
2

in

t
(0)
1 , which is already dead. Breaker follows a strategy so that at the beginning of each

turn, every living edge in T
(1)
1 contains Ni where i is the smallest index for which Maker

has not occupied Ni. Initially this is true because every living edge contains the root
N1 = r

(1)
1 . Breaker maintains this property by occupying one vertex from every child

of Ni, except node Ni+1, immediately after Maker occupies Ni. The rest of Breaker’s

strategy is as follows. If Maker occupies X
(0)
m+1, then Breaker occupies one vertex from

each of r
(0)
2 , . . . , r

(0)
q+1. Then all that is left is T

(1)
1 , in which Breaker will win by forcing

Maker to node Nk. If Maker occupies Ni, then Breaker does as stated above. If Maker
occupies neither X

(0)
m+1 nor Ni, then, since q > 2, Breaker immediately occupies one vertex

from each of X
(0)
m+1 and Ni and wins.

Case 2.3: Maker does not occupy X
(0)
m+1 or X

(1)
m+1.

Breaker responds by occupying a vertex from X
(0)
m+1 and a vertex from X

(1)
m+1. Since none

of the little roots intersect,
∣

∣

⋂

A∈si
A
∣

∣ > |r(0)i ∪ · · · ∪ r
(q)
i | = (q + 1)p for each 2 6 i 6 h,

where h is the largest index such that si 6= ∅. Maker occupies her next p vertices, then
Breaker occupies a vertex vi ∈

⋂

A∈si
A, for 2 6 i 6 h, where h 6 q + 1.

We have shown that Breaker wins in every situation. Thus, we are finished with the
proof of Lemma 9. �

We now provide the proofs of Corollaries 6 and 7 from Case 2.2. Let T be a finite
rooted tree. We will make use of the natural partial order on the nodes of T , where
Ni 6 Nj if Ni is on the path between Nj and the root node. Given a set of nodes N , the

meet of N is the node N̂ such that

1. N̂ 6 N for every N ∈ N , and

2. if M 6 N for every N ∈ N , then M 6 N̂ .

Given a nonempty set of nodes N , notice that A = {N ′ : N ′ 6 N for every N ∈ N}
must be a nonempty chain. Indeed, the root of T is in A. Moreover, suppose N ∈ N
and N1, N2 ∈ A. Since N1 6 N and N2 6 N , they are both on the path between N and
the root, thus N1 is related to N2. Since the partial order is finite and antisymmetric,
the meet of a nonempty set exists and is unique. Recall that if T is a (q + 1)-ary tree
hypergraph, then an edge A ∈ T is determined by a leaf node NA so that A is the union
of all nodes on the path from NA to the root node.
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Lemma 10 Let S be a nonempty set of hyperedges of a (q+ 1)-ary tree T . Let N be the
set of leaf nodes that determine the edges in S, let N̂ be the meet of N , and let N ′ be a
node in T . Then N ′ ⊆

⋂

A∈S A if and only if N ′ 6 N̂ .

Proof of Lemma 10: Let N ′ be a node, A a hyperedge, and NA the leaf node that
determines A. Then N ′ ⊆ A if and only if N ′ 6 NA. Thus, N ′ ⊆

⋂

A∈S A if and only

if N ′ 6 N for every N ∈ N . Therefore, N ′ ⊆
⋂

A∈S A if and only if N ′ 6 N̂ , by the
definition of the meet of N . �

Observation 4 Since distinct nodes of T are disjoint, every v ∈ V (T ) is contained in a
unique node Nv.

Lemma 11 Let A be a hyperedge in T , v ∈ V (T ), and Nv the unique node such that
v ∈ Nv. If v ∈ A, then Nv ⊆ A.

Proof of Lemma 11: Let A be the edge determined by the leaf node NA. Then, by
definition, A =

⋃

N6NA
N . Thus, if v ∈ A, then v ∈ N for some N 6 NA. Moreover,

N ⊆ A. Since Nv is the unique node that contains v, then N = Nv and Nv ⊆ A. �

Corollary 6 Let S be a nonempty set of hyperedges of a (q + 1)-ary tree T , v ∈ V (T ),
and Nv the unique node such that v ∈ Nv. If v ∈

⋂

A∈S A, then Nv ⊆
⋂

A∈S A.

Proof of Corollary 6: Suppose v ∈
⋂

A∈S A, then v ∈ A for each A ∈ S. Thus, by
Lemma 11, Nv ⊆ A for each A ∈ S, i.e., Nv ⊆

⋂

A∈S A. �

Corollary 7 Let S be a nonempty set of hyperedges of a (q+1)-ary tree T , and let N be
a node in T . If N ⊆

⋂

A∈S A, then N ′ ⊆
⋂

A∈S A for every N ′ 6 N .

Proof of Corollary 7: Let N be the set of leaf nodes that determine the edges in S,
and let N̂ be the meet of N . Suppose N ⊆

⋂

A∈S A, then by Lemma 10, N 6 N̂ . Let

N ′ 6 N be arbitrary. Then by transitivity, N ′ 6 N̂ . Thus, by Lemma 10, N ′ ⊆
⋂

A∈S A.
�

4 Conclusion

Theorem 2 settles the question of determining the structure of an extremal hypergraph
F for the (p : q)–Erdős–Selfridge theorem for the case when q > 2: F must be a (q + 1)-
ary tree where each node contains p vertices; and if F is pn-uniform, then it must be a
complete (q+1)-ary tree. As was mentioned in the Introduction, there are many extremal
hypergraphs for the (unbiased) Erdős–Selfridge theorem, and the question of classifying
all of the extremal hypergraphs for the Erdős–Selfridge theorem is a wide open problem.
Perhaps we should begin by classifying all economical extremal hypergraphs for the Erdős–
Selfridge theorem. Based on preliminary investigations, the author presents the following
conjecture:
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Conjecture 1 Unlike non-economical extremal hypergraphs for the Erdős–Selfridge theo-
rem, all economical extremal hypergraphs for the Erdős–Selfridge theorem are derived from
special (to be determined) “good” labelings of binary trees (where a “good” labeling is as
described in the Introduction).

Acknowledgments
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[4] P. Erdős and J. L. Selfridge. On a combinatorial game. J. Combinatorial Theory Ser.
A, 14:298-301, 1973.

[5] Xiaoyun Lu. A characterization on n-critical economical generalized tic-tac-toe
games. Discrete Math., 110(1-3):197-203, 1992.

[6] E. L. Sundberg. Economical tight examples for the biased Erdős-Selfridge theorem.
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