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Abstract

We consider the Maker–Breaker positional game on the vertices of the n-dimensional
hypercube {0, 1}n with k-dimensional subcubes as winning sets. We describe a pairing
strategy which allows Breaker to win when k = n/4+ 1 in the case where n is a power
of 4. Our results also imply the general result that there is a Breaker’s win pairing
strategy for any n ≥ 3 if k =

⌊
3
7n
⌋
+ 1.

1 Introduction

A positional game is a generalization of Tic-Tac-Toe played on a hypergraph (V,H) where
the vertices can be considered the “board” on which the game is played, and the edges can
be thought of as the “winning sets.” A positional game on (V,H) is a two-player game where
at every turn each player alternately occupies a previously unoccupied vertex from V . In
a strong positional game, the first player to occupy all vertices of some edge A ∈ H wins.
If at the end of play no edge is completely occupied by either player, that play is declared
a draw. Normal 3 × 3 Tic-Tac-Toe is a strong positional game where the vertices of the
hypergraph are the nine positions and the edges are the eight winning lines. In a Maker–
Breaker positional game, the first player, Maker, wins if she1 occupies all vertices of some
edge A ∈ H, otherwise the second player, Breaker, wins. Therefore, by definition there are
no draw plays in Maker–Breaker games. We say that a player P has a winning strategy if no
matter how the other player plays, player P wins by following that winning strategy. It is
well-known that in a finite Maker–Breaker game, exactly one player has a winning strategy.
(For a nice introduction to positional games, please see [5], [6], and [22].)

1In this paper, we will refer to Maker with feminine pronouns, such as “she” and “her,” and we will refer
to Breaker with masculine pronouns, such as, “he.”
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Recall that the n-dimensional boolean hypercube Qn is a bipartite graph whose vertex
set is {0, 1}n and whose edge set is the set of all pairs of vertices that differ in exactly one
coordinate. A k-dimensional subcube of Qn is formed by selecting n − k coordinates to be
fixed, choosing fixed values for each of those coordinates, then allowing the remaining k
coordinates to take on all 2k possible values. Thus, each k-dimensional subcube of Qn has
cardinality 2k, and there are

(
n

n−k

)
2n−k distinct k-dimensional subcubes contained in Qn.

Let Q(n, k) denote the hypergraph whose vertex set is {0, 1}n and whose edge set is the set
of all k-dimensional subcubes of Qn. In [23], Sundberg and Kruczek introduce a Maker–
Breaker game played on Q(n, k), and describe pairing strategies for Breaker, i.e., strategies
where, using a set M of pairwise disjoint pairs of vertices, Breaker moves as follows: each
time Maker occupies a vertex x, if there is a pair in M which contains x, then Breaker
immediately responds by occupying the other vertex in that pair (if the other vertex is
currently unoccupied), otherwise, Breaker occupies an arbitrary (unoccupied) vertex. This
guarantees that Breaker will occupy at least one vertex from each pair in M . If every winning
set (in our case k-dimensional subcube) contains at least one pair from M , then Breaker will
win by using M as a pairing strategy. The sets of pairs that we use in our Breaker’s win
pairing strategies will always be sets of edges. This is a greedy approach because the number
of subcubes which contain a pair of vertices is maximized if those two vertices differ in exactly
one coordinate. Since the sets of pairs must be disjoint, our pairing strategies correspond to
matchings in Qn.

Let ps(n) be the smallest value of k such that Breaker wins the positional game onQ(n, k)
by using a pairing strategy. Proposition 9 in [14], implies that ps(n) > ln(n). Sundberg and
Kruczek showed that ps(n) ≤ n− 3. We improve their result by describing a Breaker’s win
pairing strategy which results in an upper bound on ps(n) of n/4 + 1 when n is a power of
4.

The remainder of the paper is organized as follows. In Section 2, we explain the main
techniques behind constructing our Breaker’s win pairing strategies through an illustrative
example. In Section 3, we state and prove a theorem which uses those techniques and can
be used to produce an upper bound on ps(n) of n/3 + 1 if n = 6 · 4d or n = 9 · 4d for some
d ≥ 1. In Section 4, we enhance the techniques from Section 3 to prove Theorem 3, which
yields an upper bound on ps(n) of n/4 + 1 when n is a power of 4. In Section 5, we briefly
discuss Breaker’s win pairing strategies for specific values of n and k, including the result
that ps(n) ≤ 3

7
n + 1 for all n ≥ 3. In Section 6, we prove a generalization of a lemma from

Section 4 in order to allow us to prove Theorem 4, which is similar to Theorem 3, yet yields
an upper bound on ps(n) of n/3 + 1 when n is a power of 3.

In Section 7, we briefly mention how our results from Theorems 3 and 4 can be viewed
as a variation of d-polychromatic edge colorings of Qn.

2 Illustrative Example

We will generalize a Breaker’s win pairing strategy for Q(4, 2) to create Breaker’s win pairing
strategies for games with board dimension at least 12. The basic strategy will be defined on
boards with dimension 4n. We will partition the 4n coordinates into four bins of size n, and
make use of a Breaker’s win pairing strategy for Q(n, k). Since the first useful (non-trivial)
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Breaker’s win pairing strategy is for Q(3, 2), the smallest bins we use are of size 3. Thus, we
will use our generalized strategy on games with board dimension at least 12.

We will use the following Breaker’s win pairing strategy for Q(4, 2):

PS(4, 2) = {(v, 0, 0, 0), (0, v, 1, 0), (0, 0, v, 1), (0, 1, 0, v),

(v, 1, 1, 1), (1, v, 0, 1), (1, 1, v, 0), (1, 0, 1, v)},

where, for example, (v, 0, 0, 0) indicates the edge with endpoints (0, 0, 0, 0) and (1, 0, 0, 0).
To denote a d-dimensional subcube of Qn, we will write a vector with n coordinates,

where d of the coordinates are ∗’s and each of the other n − d coordinates is fixed with
a value of 0 or 1. For example, (∗, 0, 1, ∗) is the 2-dimensional subcube of Q4 with the
following set of vertices {(0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 1, 0), (1, 0, 1, 1)}. We will say that a pair
or edge handles a subcube if the subcube contains that edge. For example, (1, 0, 1, v) handles
(∗, 0, 1, ∗). Moreover, (∗, 0, 1, ∗), (1, ∗, 1, ∗), and (1, 0, ∗, ∗) are precisely the 2-dimensional
subcubes which are handled by (1, 0, 1, v). To obtain these 2-dimensional subcubes, we
simply replace v with a “∗,” then choose one of the three remaining coordinates to also
become a “∗.” We will say that a set of edges handles a subcube S if it contains an edge
that handles S.

While PS(4, 2) has eight edges, each pairing strategy we describe will be the union of
eight sets of edges, where each set is based on one of the edges from PS(4, 2). As an example,
let us describe our Breaker’s win pairing strategy for Q(12, 5) which is derived from PS(4, 2).
We will partition the 12 coordinates of each vector we use into four bins where the first bin
contains coordinates 1-3, the second bin contains coordinates 4-6, the third bin contains
coordinates 7-9, and the fourth bin contains coordinates 10-12. We will use the following
sets to define each of the eight sets of edges in our Breaker’s win pairing strategy. Let
03 = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, i.e., the set of even parity vectors from {0, 1}3. Let
13 = {(1, 1, 1), (0, 0, 1), (0, 1, 0), (1, 0, 0)}, i.e., the set of odd parity vectors from {0, 1}3. Let
v3 = {(v, 0, 1), (1, v, 0), (0, 1, v)}, i.e., a Breaker’s win pairing strategy for Q(3, 2). (When
the dimensions of the vectors in these sets are known, we will frequently drop the subscript.)
Each 12-dimensional vector in our Breaker’s win pairing strategy will be formed by “gluing
together” or concatenating four vectors from the sets 0,1,v. We will determine which vectors
to glue together by using PS(4, 2) as a guide. For example, our Breaker’s win pairing strategy
will contain a set of edges that corresponds to edge (0, 1, 0, v) ∈ PS(4, 2), specifically,

(0,1,0,v) = {(~x1, ~x2, ~x3, ~x4) : ~x1 ∈ 0, ~x2 ∈ 1, ~x3 ∈ 0, ~x4 ∈ v}, (1)

where we really mean the set of 12-dimensional vectors which correspond to the set de-
scribed in equation (1). For example, because (0, 0, 0) ∈ 0, (0, 1, 0) ∈ 1, (1, 1, 0) ∈ 0, and
(1, v, 0) ∈ v, then (0, 0, 0, 0, 1, 0, 1, 1, 0, 1, v, 0) ∈ (0,1,0,v), even though equation (1) tech-
nically describes vectors of the form ((0, 0, 0), (0, 1, 0), (1, 1, 0), (1, v, 0)). Our Breaker’s win
pairing strategy for Q(12, 5) will be formed by taking the union of the sets in the following
set:

BinSetsPS(4, 2) = {(v,0,0,0), (0,v,1,0), (0,0,v,1), (0,1,0,v),

(v,1,1,1), (1,v,0,1), (1,1,v,0), (1,0,1,v)},
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i.e., our Breaker’s win pairing strategy is

BinPS(4, 2) =(v,0,0,0) ∪ (0,v,1,0) ∪ (0,0,v,1) ∪ (0,1,0,v)

∪ (v,1,1,1) ∪ (1,v,0,1) ∪ (1,1,v,0) ∪ (1,0,1,v).

Let us refer to the sets 0,1,v as bin-sets, and refer to the sets in BinSetsPS(4, 2) as bin-
forms, and say, for example, that bin-form (0,1,0,v) has bin-sets 0,1,0, and v. Observe
that the cardinality of each of the eight bin-forms in our Breaker’s win pairing strategy
is 3 · 43 = 192, because each of these bin-forms contains three bin-sets of cardinality 4
and one bin-set of cardinality 3. Thus, our Breaker’s win pairing strategy contains exactly
8(192) = 1536 edges.

Let us say that a vertex or an edge is consistent with a subcube if it is an element of
that subcube. One way to check if a vector (vertex or edge) is consistent with a subcube
is to do the following: for each coordinate of the subcube that contains a “∗,” we place
a “∗” in the corresponding coordinate of the vector. If after making these substitutions
we are left with the vector representation of the subcube, then the vector (vertex or edge)
is consistent with the subcube. For example, (0, 0, 0, 0, 1, 0, 1, 1, 0, 1, v, 0) is consistent with
(0, 0, 0, ∗, 1, ∗, 1, ∗, 0, ∗, ∗, 0). A key observation for us will be that (0, 0, 0, 0, 1, 0, 1, 1, 0, 1, v, 0)
is consistent with (0, 0, 0, ∗, 1, ∗, 1, ∗, 0, ∗, ∗, 0) if and only if ((0, 0, 0), (0, 1, 0), (1, 1, 0), (1, v, 0))
is “consistent” with ((0, 0, 0), (∗, 1, ∗), (1, ∗, 0), (∗, ∗, 0)), i.e., if and only if (0, 0, 0) is consistent
with (0, 0, 0), and (0, 1, 0) is consistent with (∗, 1, ∗), and (1, 1, 0) is consistent with (1, ∗, 0),
and (1, v, 0) is consistent with (∗, ∗, 0).

To determine which subcubes our Breaker’s win pairing strategy can handle, we will focus
on how many coordinates are fixed by the subcube in each bin. We also make the following
important observations. Since Q3 is a bipartite graph with partite sets 0 and 1, each of 0
and 1 is a vertex cover for the edges of Q3. In our language, for any subcube S ⊆ Q3 with
dimension at least 1, i.e., 0, 1, or 2 fixed coordinates, there is a vertex in 0 (respectively, in
1) which is consistent with S. Since v is a Breaker’s win pairing strategy for Q(3, 2), for any
subcube S ⊆ Q3 with dimension at least 2, i.e., 0 or 1 fixed coordinates, there is an edge in
v which is consistent with S.

Using the same 5-dimensional subcube (0, 0, 0, ∗, 1, ∗, 1, ∗, 0, ∗, ∗, 0) as an example, let
us describe how we can find an edge in our Breaker’s win pairing strategy that is con-
sistent with a given subcube. We begin by partitioning (0, 0, 0, ∗, 1, ∗, 1, ∗, 0, ∗, ∗, 0) into
(0, 0, 0), (∗, 1, ∗), (1, ∗, 0), and (∗, ∗, 0) according to the four bins we described above. We
want to show that at least one of the eight bin-forms from BinSetsPS(4, 2) contains an edge
that is consistent with our subcube. As we noted above, such an edge will have to be consis-
tent with our subcube in each bin. For the first bin, we need to use a bin-set which contains
a vector that is consistent with (0, 0, 0). Since there is only one such bin-set, we need 0 to
be the bin-set in the first bin. For the second bin, we need to use a bin-set which contains
a vector that is consistent with (∗, 1, ∗). Since only one coordinate is fixed in (∗, 1, ∗) we
can use any bin-set (0,1, or v) in the second bin. Since (1, ∗, 0) has two fixed coordinates,
we are guaranteed that 0 and 1 each contain a vertex that is consistent with (1, ∗, 0), thus,
we can use either 0 or 1 in the third bin. (By coincidence, (1, v, 0) ∈ v is consistent with
(1, ∗, 0), but we cannot rely on coincidence for our proof, so we will not permit ourselves to
use v for the third bin-set.) Since (∗, ∗, 0) has only one fixed coordinate, we can use any
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bin-set for the fourth bin. Thus, we should be able to find a vector which is consistent with
our subcube in either bin-form (0,v,1,0) or bin-form (0,1,0,v). Indeed, we were already
aware of (0, 0, 0, 0, 1, 0, 1, 1, 0, 1, v, 0) ∈ (0,1,0,v) which is consistent with our subcube. Let
us show how to find an edge in (0,v,1,0) which is consistent with our subcube. We need
(0, 0, 0) in the first bin of our edge. For the second bin, we need an element of v which
is consistent with (∗, 1, ∗), thus, we use (0, 1, v) in the second bin. For the third bin we
need an element of 1 which is consistent with (1, ∗, 0), thus, we use (1, 0, 0). For the fourth
bin, we need an element of 0 which is consistent with (∗, ∗, 0). We can use either (0, 0, 0)
or (1, 1, 0). W.l.o.g., we’ll use (1, 1, 0). We glue together (0, 0, 0), (0, 1, v), (1, 0, 0), (1, 1, 0)
to form (0, 0, 0, 0, 1, v, 1, 0, 0, 1, 1, 0) ∈ (0,v,1,0) which is also consistent with the subcube
(0, 0, 0, ∗, 1, ∗, 1, ∗, 0, ∗, ∗, 0).

To show that our Breaker’s win pairing strategy can handle every 5-dimensional subcube,
we consider all ways that the seven fixed coordinates can be distributed amongst the four
bins. We partition these possibilites into the following categories: (3, 3, 1, 0), (3, 2, 2, 0),
(3, 2, 1, 1), (2, 2, 2, 1), where, for example, (0, 0, 0, ∗, 1, ∗, 1, ∗, 0, ∗, ∗, 0) is in category (3, 2, 1, 1)
because its first bin has 3 coordinates fixed, its second bin has 1 coordinate fixed, its third
bin has 2 coordinates fixed, and its fourth bin has 1 coordinate fixed.

We now need to show that for any subcube in any of the four categories, we can find
an edge in our Breaker’s win pairing strategy that is consistent with that subcube. We will
use certain properties possessed by the Breaker’s win pairing strategy PS(4, 2) (which carry
over to the bin-forms in BinSetsPS(4, 2)) in order to help us prove that every subcube in a
given category type is handled by one of the eight bin-forms in BinSetsPS(4, 2).

Let us begin with (2, 2, 2, 1). Suppose that S is in category (2, 2, 2, 1) and that S has
exactly 1 fixed coordinate in bin i. Observe that for each of the four coordinates, PS(4, 2)
has exactly two vectors with a v in that coordinate. We claim that either of the two bin-
forms from BinSetsPS(4, 2) which has the bin-set v in bin i will handle S. This is because
v can handle any subcube from Q3 with exactly 1 fixed coordinate. The other three bin-sets
will each either be 0 or 1, thus, each of the other three bin-sets can handle any subcube
from Q3 with exactly 2 fixed coordinates. Thus, our eight bin-forms in BinSetsPS(4, 2) can
handle any subcube in category (2, 2, 2, 1).

Now suppose that S is in category (3, 3, 1, 0) and that S has all three coordinates fixed in
bins i and j, where i 6= j. Let S|bin k be S restricted to bin k for k ∈ [4], so that each of S|bin i

and S|bin j is an element of {0, 1}3. Because PS(4, 2) is a Breaker’s win pairing strategy for

Q(4, 2), for each pair {i, j} ∈
(
[4]
2

)
, and for each ordered pair (bi, bj) ∈ {0, 1}2, there is a

vector in PS(4, 2) with value bi in coordinate i and value bj in coordinate j. Thus, there is
a bin-form in BinSetsPS(4, 2) whose bin-set in bin i matches the parity of S|bin i and whose
bin-set in bin j matches the parity of S|bin j. Since each of the bin-sets 0,1,v can handle
any subcube from Q3 with 0 or 1 fixed coordinates, we can conclude that our eight bin-forms
in BinSetsPS(4, 2) can handle any subcube in category (3, 3, 1, 0). As an example, suppose
that S = (∗, ∗, ∗, 0, 1, 1, 0, 1, 0, ∗, 1, ∗). Bins 2 and 3 each have all three coordinates fixed. We
have (0, 1, 1) ∈ 0 in bin 2 and (0, 1, 0) ∈ 1 in bin 3, thus, we search for a bin-form from
BinSetsPS(4, 2) of the form (∗,0,1, ∗). The fact that PS(4, 2) is a Breaker’s win pairing
strategy for Q(4, 2) guarantees that we will find a bin-form from BinSetsPS(4, 2) with the
desired form. We note that (1,0,1,v) has the desired form and that it handles S.
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We can use a similar argument to explain why our eight bin-forms in BinSetsPS(4, 2)
can handle any subcube in category (3, 2, 1, 1). To handle the subcubes from Q3 that have
3 fixed coordinates and 2 fixed coordinates, treat the bin with exactly 2 fixed coordinates
as if it had 3 fixed coordinates and w.l.o.g., pretend those three fixed coordinates yielded
an even parity vector. Then repeat the argument we used for (3, 3, 1, 0), which will work
since the bin-sets 0,1,v can handle any subcube from Q3 with exactly 1 fixed coordinate.
As an example, suppose that S = (∗, 0, ∗, 0, 1, 1, ∗, 1, ∗, 1, ∗, 1). Bins 2 and 4 have three and
two coordinates fixed, respectively. We have (0, 1, 1) ∈ 0 in bin 2, and (1, ∗, 1) in bin 4.
We know that (1, 0, 1) ∈ 0 is consistent with (1, ∗, 1), so we pretend that we have (1, 0, 1)
in bin 4. Thus, we search for a bin-form from BinSetsPS(4, 2) of the form (∗,0, ∗,0). The
fact that PS(4, 2) is a Breaker’s win pairing strategy for Q(4, 2) guarantees that we will find
a bin-form from BinSetsPS(4, 2) with the desired form. We note that (v,0,0,0) has the
desired form and that it handles S.

Suppose that S is in category (3, 2, 2, 0) and that S has zero coordinates fixed in bin i and
all three coordinates fixed in bin j. Recall that for each of the four coordinates, PS(4, 2) has
exactly two vectors with a v in that coordinate and that those two vectors are complements
of each other (where we consider v to be its own complement). Thus, there are two bin-
forms in BinSetsPS(4, 2) that have a v in bin i, and exactly one of those bin-forms has
a bin-set whose parity equals the parity of S|bin j. We select that bin-form to handle S.
Each of the other two bin-sets will be either 0 or 1, thus, each of the other two bin-sets
can handle any subcube from Q3 with exactly 2 fixed coordinates. Thus, our eight bin-
forms in BinSetsPS(4, 2) can handle any subcube in category (3, 2, 2, 0). As an example,
suppose that S = (1, 0, ∗, 0, 1, 1, ∗, ∗, ∗, 1, ∗, 1). Bin 3 has zero coordinates fixed, so we begin
by searching for a bin-form from BinSetsPS(4, 2) of the form (∗, ∗,v, ∗). Both (0,0,v,1)
and (1,1,v,0) have the desired form, but only (0,0,v,1) is consistent with S in bin 2,
because S|bin 2 = (0, 1, 1) ∈ 0. We note that (0,0,v,1) handles S.

We have shown that BinPS(4, 2) handles every 5-dimensional subcube of Q12, but we
also have to prove that BinPS(4, 2) is a matching. To see this, we use the fact that PS(4, 2)
is a matching. For any two distinct edges in a matching, there is at least one coordinate that
is fixed by both edges in which one of the edges has a 0 and the other has a 1, i.e., there
is some mutually-non-v coordinate where the two edges differ. Otherwise, there would be
a vertex that is shared by two distinct edges of the matching. For example, (v, 0, 1, 0) and
(1, v, 1, 0) do not have such a coordinate, and the vertex (1, 0, 1, 0) is in both edges.

We need to show that for any two distinct edges in BinPS(4, 2), there is some mutually-
non-v coordinate where they differ. It should be clear that any two distinct edges that belong
to the same bin-form of BinSetsPS(4, 2) will satisfy this property, e.g., any two distinct edges
from (0,1,0,v) will differ in a mutually-non-v coordinate.

Now suppose we take two distinct edges that are contained in different bin-forms of
BinSetsPS(4, 2), e.g., an edge from (0,1,0,v) and an edge from (0,v,1,0). (Let us refer
to the two distinct edges as Q12-edges to distinguish them from edges in PS(4, 2) which we
will call Q4-edges.) Since BinSetsPS(4, 2) is derived from PS(4, 2), there are two distinct
Q4-edges from PS(4, 2) that give us our two different bin-forms from BinSetsPS(4, 2). Since
PS(4, 2) is a matching, there is a mutually-non-v coordinate in which those two distinct Q4-
edges from PS(4, 2) differ. Thus, the two different bin-forms from BinSetsPS(4, 2), which
contain our two Q12-edges, differ in the bin that corresponds to that coordinate, i.e., one
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bin-form has bin-set 0 in that bin and the other bin-form has bin-set 1 in that bin. Since
0 ∩ 1 = ∅, the two distinct Q12-edges differ in at least one coordinate which is contained in
that same “mutually-non-v” bin where the two bin-forms from BinSetsPS(4, 2) differ. E.g.,
because (0, 1, 0, v) has 0 in the third coordinate and (0, v, 1, 0) has 1 in the third coordinate,
then (0,1,0,v) has 0 in the third bin and (0,v,1,0) has 1 in the third bin. Thus, every
edge in (0,1,0,v) has an even parity vector in its third bin and every edge in (0,v,1,0)
has an odd parity vector in its third bin. Thus, an edge from (0,1,0,v) and an edge from
(0,v,1,0) will differ in at least one mutually-non-v coordinate within bin 3.

These arguments generalize to any BinPS(4, 2). Thus, we have the following lemma.

Lemma 1 Using any bin size n, the set of edges BinPS(4, 2) is a matching, therefore, it can
be used as a pairing strategy for a game played on the vertices of Q4n.

3 Expanding a Fixed Pairing Strategy

Now that we know BinPS(4, 2) is a matching for any bin size n, we would like to know what
size subcubes BinPS(4, 2) can handle, based on the Breaker’s win pairing strategy available
for a board of dimension n. This leads us to the following theorem.

Theorem 1 If there exists a Breaker’s win pairing strategy for Q(n, k), then there exists a
Breaker’s win pairing strategy for Q(4n, b), where b = max{4k − 3, n + k}.

Proof of Theorem 1: Similar to the Q(12, 5) example, we partition the 4n coordinates
into four bins of size n, so that bin j contains coordinates 1+(j−1)n through jn for j ∈ [4].
Suppose that a subcube of Q4n has exactly c fixed coordinates in a given bin. If c = n, then
we say that the bin is full or a full-bin; if n − k + 1 ≤ c ≤ n − 1, then we say that the bin
is heavy or a heavy-bin; if 0 ≤ c ≤ n− k, then we say that the bin is light or a light-bin. If a
bin is not full, i.e., it is heavy or light, then we say it is a non-full-bin.

We will use BinPS(4, 2), which is the union of the bin-forms in BinSetsPS(4, 2), as our
Breaker’s win pairing strategy. In this version of BinSetsPS(4, 2), we have that 0 is the set
of even parity vectors from {0, 1}n, that 1 is the set of odd parity vectors from {0, 1}n, and
that v is a Breaker’s win pairing strategy for Q(n, k). Similar to the Q(12, 5) example, we
note that 0 and 1 can each handle any subcube of Qn with dimension at least 1, i.e., they
can each handle any non-full-bin. Since v is a Breaker’s win pairing strategy for Q(n, k), it
can handle any light bin.

Let S be a b-dimensional subcube of Q4n. Then there are 4n− b fixed coordinates in S.
Since 4n− b ≤ 4n− 4k + 3, S has at least one light-bin. Since 4n− b ≤ 3n− k and k ≥ 1,
S has at most two full-bins.

First suppose that S has no full-bins, and that bin i of S is light. Let A ∈ BinSetsPS(4, 2)
be such that v is in bin i of A. Since bin i of S is light, v can handle S|bin i. In each of the
other bins, A has either a 0 or a 1. Since each of 0 and 1 can handle any non-full-bin, A
handles S.

Suppose instead that S has exactly two full-bins, namely, bin i and bin j. Since PS(4, 2)
is a Breaker’s win pairing strategy for Q(4, 2), there is a bin-form A ∈ BinSetsPS(4, 2)
whose bin-set in bin i matches the parity of S|bin i and whose bin-set in bin j matches the
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parity of S|bin j. There are 2n − b other fixed coordinates in S. Since b ≥ n + k, we have
that 2n− b ≤ n− k. Thus, the other two bins must be light, and they can each be handled
by any bin-set 0,1, or v. Therefore, A handles S.

Suppose that S has exactly one full-bin. Since S also has a light-bin, suppose bin i is
light and bin j is full. Recall that BinSetsPS(4, 2) contains exactly two bin-forms with v in
bin i, and exactly one of those bin-forms has a bin-set in bin j whose parity matches S|bin j.
Let A ∈ BinSetsPS(4, 2) be that bin-form. In each of the other two bins, A has either a
0 or a 1. Since each of 0 and 1 can handle any non-full-bin (and the other two bins are
non-full-bins), A handles S.

In light of Lemma 1, we conclude that BinPS(4, 2) is a Breaker’s win pairing strategy
for Q(4n, b). �

Corollary 1 Suppose there exists a Breaker’s win pairing strategy for Q(n, k).

(a) If k ≥ n/3 + 1, then there exists a Breaker’s win pairing strategy for Q(4n, 4k − 3).

(b) If k = bn/3c+1, then there exists a Breaker’s win pairing strategy for Q(4n, b4n/3c+1).

4 Rotating the Pairing Strategies

In Theorem 1, the number of fixed coordinates was basically bounded by avoiding a config-
uration with two full-bins and one heavy-bin or a configuration with four heavy-bins, i.e., a
(F, F,H, ∗) configuration or a (H,H,H,H) configuration. Thus, in Theorem 1, we needed
the number of fixed coordinates to be at most min{2n + n− k, 4(n− k + 1)− 1}.

To see why we wish to avoid a (F, F,H, ∗) configuration, let us return to the Q12 example.
Suppose that we tried to block all 4-dimensional subcubes of Q12, which corresponds to fixing
8 coordinates. When fixing 8 coordinates, we encounter the category (3, 3, 2, 0), which is a
(F, F,H, ∗) configuration. Let us describe a 4-dimensional subcube which is not handled by
BinPS(4, 2). Let S = (∗, 1, 1, 0, 0, 0, 0, 0, 0, ∗, ∗, ∗), which we partition into (∗, 1, 1), (0, 0, 0),
(0, 0, 0), (∗, ∗, ∗). Bins 2 and 3 both need to use bin-set 0. Thus, we need a bin-form from
BinSetsPS(4, 2) of the form (∗,0,0, ∗). However, for each 2-dimensional subcube, PS(4, 2)
contains exactly one edge that is consistent with that subcube. Thus, only (v,0,0,0) has
the form (∗,0,0, ∗). Naturally, we chose S so that its heavy-bin (two fixed coordinates)
is in the first bin which contains v, since v cannot handle every subcube with two fixed
coordinates; and of course, we chose a 1-dimensional subcube of Q3 which is not handled
by v = {(v, 0, 1), (1, v, 0), (0, 1, v)} to be in the first bin of S. Thus, there is no edge in
BinPS(4, 2) that handles S.

We can give a similar argument to explain why we need to avoid a (H,H,H,H) config-
uration. For example, if we let S = (∗, 1, 1, ∗, 1, 1, ∗, 1, 1, ∗, 1, 1), then every bin contains the
1-dimensional subcube (∗, 1, 1) which is not handled by v. Thus, no matter which edge we
use from BinPS(4, 2), our edge will not be consistent with (∗, 1, 1) in the bin where our edge
uses a vector from v. These ideas, of course, generalize to other examples of BinPS(4, 2)
where our bins have size other than 3. Essentially, BinPS(4, 2) cannot handle a situation
where the bin with v is forced to be a heavy-bin.
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However, there is the promise of a workaround for the (F, F,H, ∗) case. The basic idea
is to have different versions of v available which we can rotate through as we glue together
the n-dimensional vectors to form a 4n-dimensional vector.

To illustrate the idea, let us explain how we can construct a Breaker’s win pairing strat-
egy for Q(9, 4) using the rotating pairing strategy idea. For simplicity, we have chosen an
example that is based on v3 = {(v, 0, 1), (1, v, 0), (0, 1, v)} and has only three bins, each of
size three. We will still use 03 and 13. However, we will use four different Breaker’s win pair-
ing strategies for Q(3, 2) that are all distinct from v3. Let v(0) = {(v, 0, 0), (1, v, 1), (0, 1, v)},
let v(1) = {(v, 0, 1), (0, v, 0), (1, 1, v)}, let v(2) = {(v, 1, 0), (0, v, 1), (1, 0, v)}, and let v(3) =
{(v, 1, 1), (1, v, 0), (0, 0, v)}. In BinPS(4, 2), we had to avoid forcing a heavy-bin into the bin
containing v because v could not handle up to n − 1 fixed coordinates, like 0 and 1 can.
However, since v(0) ∪ v(1) ∪ v(2) ∪ v(3) contains every edge in Q3, if we appropriately rotate
through those Breaker’s win pairing strategies we will be able to handle a heavy-bin in the
v-bin, i.e., the bin containing a Breaker’s win pairing strategy for Q(3, 2).

Let us describe one way to rotate through those four Breaker’s win pairing strategies.
If we did a straight analogue of BinPS(4, 2), we would use the three bin-forms (v,0,1),
(1,v,0), (0,1,v) to build our Breaker’s win pairing strategy. We will use edges similar to
those found in these three bin-forms, except our edges will use elements from one of v(0), v(1),
v(2), v(3) in their v-bin. To achieve this, index the elements of 0 and the elements of 1 using
{0, 1, 2, 3}. We could do this in increasing order where each element is viewed as a base 2
representation of a number. For example, 0(0) = (0, 0, 0), 0(1) = (0, 1, 1), 0(2) = (1, 0, 1),
0(3) = (1, 1, 0). Thus, 0(j) is the jth element of 0 according to our fixed indexing. (In the
proof of Theorem 2, we use partitions of 0 and 1 to determine the indices of the elements
in those sets.) We will replace the bin-forms (v,0,1), (1,v,0), (0,1,v) with the bin-forms
(vR,0,1), (1,vR,0), (0,1,vR) which are defined as follows. For example, (0,1,vR) contains
9-dimensional vectors, where the first bin of each vector contains an element of 0, the second
bin of each vector contains an element of 1, and the third bin of each vector contains an
element of some v(j). We determine which bin-set v(j) from the indices of the two vectors
from 0 and 1 that are in the edge. Specifically, each edge in (0,1,vR) will have the form
(~x, ~y, ~z), where ~x ∈ 0 and ~y ∈ 1 and ~z ∈ v(j), where j is equal to the sum of the indices of ~x
and ~y modulo 4. For example, {(0, 1, 1, 1, 0, 0, ~z) : ~z ∈ v(3)} is a subset of (0,1,vR) because
the index of (0, 1, 1) is 1 and the index of (1, 0, 0) is 2. (Again, when we write (0, 1, 1, 1, 0, 0, ~z),
we really mean the 9-dimensional vector that corresponds to that expression.) To help us
write a concise definition of (0,1,vR), let Index(~x) equal the index of ~x, for ~x ∈ 0 or ~x ∈ 1.
For example, Index((0, 1, 1)) = 1 and Index((1, 0, 0)) = 2. Thus,

(0,1,vR) = {(~x, ~y, ~z) : ~x ∈ 0, ~y ∈ 1, ~z ∈ v(j),where j = (Index(~x) + Index(~y)) mod 4}.

We define (vR,0,1) and (1,vR,0) similarly.
To show that (vR,0,1)∪(1,vR,0)∪(0,1,vR) can handle every 4-dimensional subcube S,

we show that every category of five fixed coordinates can be handled, i.e., (3, 2, 0), (3, 1, 1),
and (2, 2, 1).

Suppose S is in category (2, 2, 1) and that S has exactly 1 fixed coordinate in bin i. We
will choose the bin-form with vR in bin i. The other two bins contain bin-sets 0 and 1, which
can each handle any subcube with 2 fixed coordinates. Choose ~x ∈ 0 and ~y ∈ 1 which are
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consistent with S in the other two bins. Suppose j = (Index(~x)+Index(~y)) mod 4. Since v(j)

is a Breaker’s win pairing strategy for Q(3, 2), we can find ~z ∈ v(j) that is consistent with S
in bin i. The edge which is formed by gluing together ~x, ~y and ~z (with each 3-dimensional
vector in the correct bin) is an edge in our Breaker’s win pairing strategy and handles S.

Suppose S is in category (3, 1, 1) and S has three coordinates fixed in bin i. Observe that
S|bin i is a vertex in Q3. Choose the bin-form from (vR,0,1), (1,vR,0), (0,1,vR) whose
bin-set in bin i matches the parity of S|bin i. The other two bins of S have only 1 coordinate
fixed. Since v(j),0,1 can each handle any subcube of Q3 with 1 fixed coordinate, there is an
edge in our Breaker’s win pairing strategy that handles S.

Suppose S is in category (3, 2, 0) and S has three coordinates fixed in bin i, and two
coordinates fixed in bin k. Thus, S|bin i is a vertex in Q3 and S|bin k is an edge in Q3. Again,
choose the bin-form from (vR,0,1), (1,vR,0), (0,1,vR) whose bin-set (0 or 1) in bin i
matches the parity of S|bin i. If this bin-form has bin-set 0 or 1 in bin k, then our Breaker’s
win pairing strategy can handle S, since 0 and 1 can each handle subcubes of Q3 with 2
fixed coordinates. However, if the bin-form has vR in bin k, then we have to more carefully
find an edge that handles S. Since S|bin k is an edge in Q3 and v(0)∪v(1)∪v(2)∪v(3) contains
every edge in Q3, there is a Breaker’s win pairing strategy v(j) that contains S|bin k. In
the bin with no fixed coordinates, we choose an element ~x of 0 or 1 (whichever the case
happens to be) so that (Index(S|bin i) + Index(~x)) mod 4 = j. We can choose such a vector
~x because S has no fixed coordinates in the bin containing ~x, thus, any ~x is consistent with
S in that bin. Therefore, our Breaker’s win pairing strategy can handle S. As an example,
suppose that S = (1, 0, ∗, 1, 0, 1, ∗, ∗, ∗). Bins 1 and 2 have two and three coordinates fixed,
respectively. We have (1, 0, 1) ∈ 0 in bin 2, thus, we must find an edge in (vR,0,1) to
handle S. We have (1, 0, ∗) in bin 1, thus, we need to use a Breaker’s win pairing strategy
v(j) which contains edge (1, 0, v). We observe that (1, 0, v) ∈ v(2). We have (∗, ∗, ∗) in
bin 3, so any ~x ∈ 1 will be consistent with S in bin 3. However, we must choose ~x so that
(Index(~x) + Index((1, 0, 1))) mod 4 = 2. Since Index((1, 0, 1)) = 2, we choose ~x = (0, 0, 1)
because Index((0, 0, 1)) = 0. Thus, (1, 0, v, 1, 0, 1, 0, 0, 1) ∈ (vR,0,1) handles S.

Now that we have presented an example which illustrates the idea behind rotating pairing
strategies, let us define our new Breaker’s win pairing strategy in general. Suppose we have
a set of matchings {v(0), . . . ,v(m)} such that each v(j) is a Breaker’s win pairing strategy
for Q(n, k) and

⋃
j v(j) equals the set of edges of Qn. Also suppose that we partition 0 into

0(0), . . . ,0(m−1) and 1 into 1(0), . . . ,1(m−1). For ~x ∈ 0(j) or ~x ∈ 1(j), let Index(~x) = j, i.e.,
the index of the set which contains ~x. Let

BinSetsPSR(4, 2) = {(vR,0,0,0), (0,vR,1,0), (0,0,vR,1), (0,1,0,vR),

(vR,1,1,1), (1,vR,0,1), (1,1,vR,0), (1,0,1,vR)},

where, for example,

(0,0,vR,1) = {(~x, ~y, ~z, ~w) : ~x ∈ 0, ~y ∈ 0, ~z ∈ v(j), ~w ∈ 1,

where j = (Index(~x) + Index(~y) + Index(~w)) mod m}.

Let

BinPSR(4, 2) =(vR,0,0,0) ∪ (0,vR,1,0) ∪ (0,0,vR,1) ∪ (0,1,0,vR)
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∪ (vR,1,1,1) ∪ (1,vR,0,1) ∪ (1,1,vR,0) ∪ (1,0,1,vR).

We now prove the following theorem.

Theorem 2 Suppose there exists a set of matchings {v(0), . . . ,v(m−1)} such that each v(j)

is a Breaker’s win pairing strategy for Q(n, k) and
⋃

j v(j) equals the set of edges of Qn.
Moreover, suppose that there is a partition of 0n (and a partition of 1n) of size m such that
every subcube of Qn of dimension n − k + 2 contains at least one vertex from each of the
sets in the partition. Then there exists a Breaker’s win pairing strategy for Q(4n, b), where
b = max{4k − 3, n + 1}.

Proof of Theorem 2: We partition the 4n coordinates into four bins and define full-bins,
heavy-bins, light-bins, 0 and 1 exactly as we did in the proof of Theorem 1.

Let 0(0), . . . ,0(m−1) and 1(0), . . . ,1(m−1) be the partitions of 0n and 1n, respectively, where
every subcube of Qn of dimension n − k + 2 contains at least one vertex from 0(j) and at
least one vertex from 1(j) for 0 ≤ j ≤ m− 1. For ~x ∈ 0(j) or ~x ∈ 1(j), let Index(~x) = j. We
use BinPSR(4, 2) as our Breaker’s win pairing strategy.

Let b = max{4k − 3, n + 1}, and let S be a b-dimensional subcube of Q4n. Then there
are 4n− b fixed coordinates in S. Since 4n− b ≤ 4n− 4k + 3, there is at least one light bin.
Since 4n− b ≤ 4n− (n + 1) = 3n− 1, there are at most two full-bins.

We can follow the proof of Theorem 1 for the cases when S has no full-bins or S has
exactly one full-bin.

Suppose that S has exactly two full-bins, namely, bin i1 and bin i2. Thus, S|bin i1 and
S|bin i2 are both vertices in Qn. Since PS(4, 2) is a Breaker’s win pairing strategy for Q(4, 2),
there is a bin-form A ∈ BinSetsPSR(4, 2) whose bin-set (0 or 1) in bin i1 matches the parity
of S|bin i1 and whose bin-set (0 or 1) in bin i2 matches the parity of S|bin i2 . There are at
most n − 1 other fixed coordinates in S. If both of the other two remaining bins are light,
then they can each be handled by any bin-set 0,1, or v(j). Suppose instead that one bin, say
bin i3, is heavy and the other, bin i4, is light. If the bin-form A has a 0 or 1 in bin i3, then
A handles S. Suppose instead that A has vR in bin i3, and w.l.o.g., A has 0 in bin i4. Since⋃

j v(j) equals the set of edges of Qn and S|bin i3 has at most n− 1 fixed coordinates, there is

a bin-set v(j) which contains an edge that can handle S|bin i3 . Let c ∈ {0, . . . ,m− 1} satisfy
(Index(S|bin i1) + Index(S|bin i2) + c) mod m = j. Since every subcube of Qn of dimension
n − k + 2 contains at least one vertex from 0(c), there is a vertex ~x ∈ 0(c) which handles
S|bin i4 as long as S|bin i4 has at most k− 2 fixed coordinates. Since bin i3 is heavy and there
are at most n−1 fixed coordinates distributed between bin i3 and bin i4, S|bin i4 has at most
k − 2 fixed coordinates. Therefore, we can find an edge in A that handles S. �

For Theorem 2 to be useful, we need to exhibit a set of Breaker’s win pairing strategies
for Q(n, k) whose union is the set of edges of Qn where k < n/3 + 1. Otherwise, there will
be no improvement over the results obtained from Theorem 1. We will use Theorem 2 to
prove that for d ≥ 0, there is a Breaker’s win pairing strategy for Q(4d+1, 4d + 1).

We have already established the case d = 0 via PS(4, 2). To establish the case d = 1, we
will need to introduce the following Breaker’s win pairing strategies:

PS0(4, 2) = {(v, 0, 0, 0), (0, v, 1, 0), (0, 0, v, 1), (0, 1, 0, v),
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(v, 1, 1, 1), (1, v, 0, 1), (1, 1, v, 0), (1, 0, 1, v)},

PS1(4, 2) = {(v, 0, 1, 1), (0, v, 0, 1), (0, 0, v, 0), (0, 1, 1, v),

(v, 1, 0, 0), (1, v, 1, 0), (1, 1, v, 1), (1, 0, 0, v)},

PS2(4, 2) = {(v, 1, 0, 1), (0, v, 1, 1), (0, 1, v, 0), (0, 0, 0, v),

(v, 0, 1, 0), (1, v, 0, 0), (1, 0, v, 1), (1, 1, 1, v)},

PS3(4, 2) = {(v, 1, 1, 0), (0, v, 0, 0), (0, 1, v, 1), (0, 0, 1, v),

(v, 0, 0, 1), (1, v, 1, 1), (1, 0, v, 0), (1, 1, 0, v)}.

One can check that these matchings partition the set of edges of Q4, and each PSj(4, 2) is
a Breaker’s win pairing strategy for Q(4, 2) for 0 ≤ j ≤ 3. We can let v(j) = PSj(4, 2) for
0 ≤ j ≤ 3, then apply Theorem 2 to obtain a Breaker’s win pairing strategy for Q(16, 5),
i.e., case d = 1. However, to establish the case d = 2, we will need 16 Breaker’s win pairing
strategies for Q(16, 5) whose union is the set of edges of Q16. To do this, we define the
following sets of bin-forms based on PSj(4, 2) for 0 ≤ j ≤ 3. For example, when j = 0, let

BinSetsPS
R(s)
0 (4, 2) = {(vR(s),0,0,0), (0,vR(s),1,0), (0,0,vR(s),1), (0,1,0,vR(s)),

(vR(s),1,1,1), (1,vR(s),0,1), (1,1,vR(s),0), (1,0,1,vR(s))},

and

BinPS
R(s)
0 (4, 2) =(vR(s),0,0,0) ∪ (0,vR(s),1,0) ∪ (0,0,vR(s),1) ∪ (0,1,0,vR(s))

∪ (vR(s),1,1,1) ∪ (1,vR(s),0,1) ∪ (1,1,vR(s),0) ∪ (1,0,1,vR(s)),

where, for example,

(0,0,vR(s),1) = {(~x, ~y, ~z, ~w) : ~x ∈ 0, ~y ∈ 0, ~z ∈ v(j), ~w ∈ 1,

where j = (s + Index(~x) + Index(~y) + Index(~w)) mod m},

so that the indices used in the v-bin are “shifted by s.” Note that when s = 0, we obtain
(0,0,vR(0),1) = (0,0,vR,1). We claim that BinPS

R(s)
j (4, 2) is a Breaker’s win pairing

strategy for Q(16, 5) for 0 ≤ j ≤ 3 and 0 ≤ s ≤ 3, and that the Breaker’s win pairing

strategies BinSetsPS
R(s)
j (4, 2) form a partition of the edges of Q16 if we use 04, 14, and

v(j) = PSj(4, 2) in the definitions of our bin-forms. However, at this point let us state and
prove the theorem in general.

Theorem 3 For each d ≥ 0, there exist 4d+1 disjoint Breaker’s win pairing strategies for
Q(4d+1, 4d + 1) with equal cardinalities which partition the set of edges of Q4d+1.

Proof of Theorem 3: We proceed by induction on d. The Breaker’s win pairing strategies
PSj(4, 2) for 0 ≤ j ≤ 3 handle the case d = 0. Let d ≥ 1. By the inductive hypothesis, there

exist 4d disjoint Breaker’s win pairing strategies v(0), . . . ,v(4d−1) forQ(4d, 4d−1+1) with equal

12



cardinalities which partition the set of edges of Q4d . We will show that BinPS
R(s)
j (4, 2) is a

Breaker’s win pairing strategy for Q(4d+1, 4d + 1) for 0 ≤ j ≤ 3 and 0 ≤ s ≤ 4d − 1, where
we use 04d , 14d , and the Breaker’s win pairing strategies v(j) from the inductive hypothesis
in the definitions of the bin-forms. Moreover, we will show that the Breaker’s win pairing
strategies BinPS

R(s)
j (4, 2) form a partition of the edges of Q4d+1 .

We will apply a few minor modifications to the proof of Theorem 2 in order to see that
BinPS

R(s)
j (4, 2) is a Breaker’s win pairing strategy for Q(4d+1, 4d + 1). Let n = m = 4d and

k = 4d−1 + 1. We use v(0), . . . ,v(4d−1) as the Breaker’s win pairing strategies for Q(n, k). We
apply Lemma 2 (see below) to conclude that there is a partition of 04d (and a partition of
14d) of size m such that every subcube of Qn of dimension 1

2
4d+1 contains at least one vertex

from each of the sets in the partition. Since n− k + 2 = 3
4
4d + 1 ≥ 1

2
4d + 1, the hypotheses

for Theorem 2 are satisfied. We can substitute BinPS
R(s)
j (4, 2) for BinPSR(4, 2) throughout

the proof and reach the conclusion that BinPS
R(s)
j (4, 2) is a Breaker’s win pairing strategy

for Q(4d+1, 4d + 1). The only minor change we make is to state, “let c ∈ {0, . . . ,m − 1}
satisfy (s + Index(S|bin i1) + Index(S|bin i2) + c) mod m = j.”

Let E(Q4d+1) be the set of edges of Q4d+1 . We will show that

E(Q4d+1) ⊆
⋃
j,s

BinPS
R(s)
j (4, 2),

which implies
⋃

j,s BinPS
R(s)
j (4, 2) = E(Q4d+1).

Let S ∈ E(Q4d+1). Suppose that S|bin i1 , S|bin i2 , S|bin i3 are all vertices in Q4d and
S|bin i4 is an edge in Q4d . Let ~x be the edge in Q4 which satisfies the following: coordinate
i` of ~x matches the parity of S|bin i` for 1 ≤ ` ≤ 3, and coordinate i4 of ~x is v. Let j
satisfy ~x ∈ PSj(4, 2). We know such a j exists because PS0(4, 2), PS1(4, 2), PS2(4, 2),

PS3(4, 2) partition the set of edges of Q4. We claim that S ∈ BinPS
R(s)
j (4, 2) for some

0 ≤ s ≤ 4d−1. We know that BinSetsPS
R(s)
j (4, 2) contains a bin-form As which corresponds

to ~x for each 0 ≤ s ≤ 4d − 1. For example, if S = (0, v, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1),
then S|bin 1 = (0, v, 1, 1) ∈ E(Q4), S|bin 2 = (0, 1, 1, 1) ∈ 1, S|bin 3 = (0, 1, 0, 0) ∈ 1, and

S|bin 4 = (1, 1, 1, 1) ∈ 0. Thus, ~x = (v, 1, 1, 0) ∈ PS3(4, 2) and BinSetsPS
R(s)
3 (4, 2) contains

As = (v(R(s)),1,1,0).
We have to prove that there exists a value of 0 ≤ s ≤ 4d − 1 such that S ∈ As. Suppose

that S|bin i4 ∈ v(k). We know that such a k exists because v(0), . . . ,v(4d−1) partition E(Q4d).
Let s ∈ {0, . . . , 4d − 1} satisfy

(s + Index(S|bin i1) + Index(S|bin i2) + Index(S|bin i3)) mod 4d = k.

Thus, As contains the set of edges B whose entry in bin i` equals S|bin i` for 1 ≤ ` ≤ 3 and
whose entry in bin i4 is an element of v(k). Since S ∈ B, S ∈ As. Therefore, E(Q4d+1) ⊆⋃

j,s BinPS
R(s)
j (4, 2), and |E(Q4d+1)| =

∣∣∣⋃j,s BinPS
R(s)
j (4, 2)

∣∣∣ .
Since each v(j) has the same cardinality and v(0), . . . ,v(4d−1) partition E(Q4d), which has

cardinality 4d(24d−1), |v(j)| = 24d−1 for 0 ≤ j ≤ 4d − 1. Each BinSetsPS
R(s)
j (4, 2) contains

eight bin-forms. Since |0| = |1| = 24d−1, each bin-form has cardinality
(

24d−1
)3

(24d−1).
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Thus,
∣∣∣BinPS

R(s)
j (4, 2)

∣∣∣ ≤ 8
(

24d−1
)4

= 24d+1−1, and∣∣∣∣∣⋃
j,s

BinPS
R(s)
j (4, 2)

∣∣∣∣∣ ≤∑
j,s

∣∣∣BinPS
R(s)
j (4, 2)

∣∣∣ ≤ 4d+124d+1−1 = |E(Q4d+1)| .

Therefore, it must be the case that
∣∣∣BinPS

R(s)
j (4, 2)

∣∣∣ = 24d+1−1 for each 0 ≤ j ≤ 3 and

0 ≤ s ≤ 4d − 1, and the Breaker’s win pairing strategies BinPS
R(s)
j (4, 2) form a partition of

E(Q4d+1). �

Lemma 2 For all k ≥ 1, the sets 02k and 12k can be partitioned into subsets A1, . . . , A2k

and B1, . . . , B2k , respectively, so that every subcube S of Q2k of dimension 2k−1 + 1 satisfies
V (S) ∩ Aj 6= ∅ and V (S) ∩Bj 6= ∅ for each j ∈ [2k], where V (S) is the set of vertices of S.

Proof of Lemma 2: We proceed by induction on k. The case k = 1 is trivial. Let k ≥ 2. By
the inductive hypothesis, there exists a partition of 02k−1 into A1, . . . , A2k−1 and a partition
of 12k−1 into B1, . . . , B2k−1 so that every subcube S of Q2k−1 of dimension 2k−2 + 1 satisfies
V (S) ∩ Aj 6= ∅ and V (S) ∩Bj 6= ∅ for each j ∈ [2k−1].

For X, Y ⊆ {0, 1}n, let (X, Y ) = {(~x, ~y) : ~x ∈ X, ~y ∈ Y }, where (~x, ~y) represents the 2n-
dimensional vector whose first n coordinates equal the coordinates of ~x and last n coordinates
equal the coordinates of ~y. For each ` ∈ [2k−1], let

G` =
⋃

(i,j)∈X`

(Ai, Aj),

let
H` =

⋃
(i,j)∈X`

(Bi, Bj),

let
I` =

⋃
(i,j)∈X`

(Ai, Bj),

let
J` =

⋃
(i,j)∈X`

(Bi, Aj),

where
X` = {(i, j) ∈ [2k−1]2 : i + j ≡ ` (mod 2k−1)}.

We claim that {G1, . . . , G2k−1 , H1, . . . , H2k−1} is the desired partition of 02k and {I1, . . . , I2k−1 ,
J1, . . . , J2k−1} is the desired partition of 12k .

We will only prove that {G1, . . . , G2k−1 , H1, . . . , H2k−1} is the desired partition of 02k .
Proving the result for 12k is similar. It is straightforward to check that {G1, . . . , G2k−1 ,
H1, . . . , H2k−1} is a partition of 02k . For example, if i 6= j, then Gi ∩ Gj = ∅ because if
~x ∈ Gi and ~y ∈ Gj, then ~x ∈ (Ai1 , Ai2) where i1 + i2 ≡ i (mod 2k−1) and ~y ∈ (Aj1 , Aj2)
where j1 + j2 ≡ j (mod 2k−1). Since i 6= j and {i, j} ⊆ [2k−1], i1 + i2 6≡ j1 + j2 (mod 2k−1).
Thus, i1 6= j1 or i2 6= j2. W.l.o.g., i2 6= j2, in which case Ai2 ∩ Aj2 = ∅ and ~x does not equal
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~y because they are not equal in their last 2k−1 coordinates. We can use similar arguments
to show that the sets in {G1, . . . , G2k−1 , H1, . . . , H2k−1} are pairwise disjoint.

To show that G1 ∪ · · · ∪ G2k−1 ∪ H1 ∪ · · · ∪ H2k−1 = 02k , suppose that ~x ∈ 02k . Let
~x1 be ~x restricted to its first 2k−1 coordinates, and let ~x2 be ~x restricted to its last 2k−1

coordinates, so that we can write ~x = (~x1, ~x2) with a slight abuse of notation. Since ~x ∈ 02k ,
either {~x1, ~x2} ⊆ 02k−1 or {~x1, ~x2} ⊆ 12k−1 . Since A1, . . . , A2k−1 is a partition of 02k−1 and
B1, . . . , B2k−1 is a partition of 12k−1 , either ~x ∈ (Ai, Aj) or ~x ∈ (Bi, Bj) for some i, j ∈ [2k−1].

Let S be a subcube of Q2k of dimension 2k−1 + 1. Similar to what we did in our previous
proofs, divide the coordinates of S into two bins, so that bin 1 contains coordinates 1, . . . , 2k−1

and bin 2 contains coordinates 2k−1 + 1, . . . , 2k. Since S has dimension 2k−1 + 1, there are
(2k−1 + 1) ∗’s distributed between bin 1 and bin 2. Thus, S|bin 1 and S|bin 2 both have
dimension at least 1. Additionally, exactly one of S|bin 1 and S|bin 2 has dimension at least
2k−2 + 1. W.l.o.g., S|bin 1 has dimension at least 2k−2 + 1. Thus, V (S|bin 1) ∩ Ai 6= ∅ and
V (S|bin 1) ∩ Bi 6= ∅ for each i ∈ [2k−1]. Since S|bin 2 has dimension at least 1, V (S|bin 2) ∩
02k−1 6= ∅ and V (S|bin 2) ∩ 12k−1 6= ∅. Thus, V (S|bin 2) ∩ Aj0 6= ∅ for some j0 ∈ [2k−1] and
V (S|bin 2) ∩ Bj1 6= ∅ for some j1 ∈ [2k−1]. Therefore, V (S) ∩G` 6= ∅ and V (S) ∩H` 6= ∅ for
each ` ∈ [2k−1]. �

5 Pairing Strategies for Specific Values of n and k

Both Theorems 1 and 2 require the existence of a Breaker’s win pairing strategy for a game
played on the vertices of Qn to construct a Breaker’s win pairing strategy for a game played
on the vertices of Q4n. The following two lemmas allow us to construct Breaker’s win pairing
strategies for games played on the vertices of Qd where d is not divisible by 4.

Lemma 3 ([23]) If there is a Breaker’s win pairing strategy for the Maker–Breaker game
played on Q(n, k), then there is a Breaker’s win pairing strategy for the Maker–Breaker game
played on Q(n + 1, k + 1).

Lemma 4 If there exists a matching which is a Breaker’s win pairing strategy for the Maker–
Breaker game played on Q(N, k), then there is a matching which is a Breaker’s win pairing
strategy for the Maker–Breaker game played on Q(n, k) for all n ≤ N .

Both lemmas are fairly easy to justify. For a full proof of Lemma 3, see [23]. To under-
stand the idea behind Lemma 4, for example, observe that there is a natural correspondence
between the set of k-dimensional subcubes of Qn and the set of k-dimensional subcubes of
QN whose last N − n coordinates are fixed at 0. The set of edges from our Breaker’s win
pairing strategy which handles those k-dimensional subcubes must also have their last N−n
coordinates fixed at 0. If we truncate each of those edges after their nth coordinate, we will
obtain a Breaker’s win pairing strategy for the set of k-dimensional subcubes of Qn.

So far we have exhibited Breaker’s win pairing strategies for Q(3, 2), Q(4, 2) and Q(9, 4).
Let us provide a Breaker’s win pairing strategy for Q(6, 3) in order to help us construct
Breaker’s win pairing strategies for other values of n and k.
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To construct a Breaker’s win pairing strategy for Q(6, 3), we will use sets of edges that
resemble cyclic permutations. For example, let

〈(v, 0, 1, 0, 0, 0)〉 = {(v, 0, 1, 0, 0, 0),

(0, v, 0, 1, 0, 0),

(0, 0, v, 0, 1, 0),

(0, 0, 0, v, 0, 1),

(1, 0, 0, 0, v, 0),

(0, 1, 0, 0, 0, v)}.

Then,
〈(v, 0, 1, 0, 0, 0)〉 ∪ 〈(v, 1, 0, 1, 1, 1)〉 ∪ 〈(v, 0, 1, 1, 0, 0)〉 ∪ 〈(v, 1, 0, 0, 1, 1)〉 (2)

is a Breaker’s win pairing strategy for Q(6, 3) consisting of 24 edges (verified by computer).
If we start with our Breaker’s win pairing strategy for Q(6, 3) and repeated apply Corol-

lary 1(b), then we obtain a Breaker’s win pairing strategy for Q(6 ·4n, 2 ·4n +1) for all n ≥ 0.
Likewise, if we start with our Breaker’s win pairing strategy for Q(9, 4) and repeated apply
Corollary 1(b), then we obtain a Breaker’s win pairing strategy for Q(9 · 4n, 3 · 4n + 1) for all
n ≥ 0. Theorem 3 states that there is a Breaker’s win pairing strategy for Q(4n+1, 4n + 1)
for all n ≥ 0.

For each n ≥ 0, there remain three intervals for which we have not yet described a
Breaker’s win pairing strategy, namely, for games played on the vertices of Qd where 4n+1 <
d < 6 · 4n, or 6 · 4n < d < 9 · 4n, or 9 · 4n < d < 4n+2. To establish the existence of Breaker’s
win pairing strategies for these values of d, we can use Lemmas 3 and 4. We use the same
approach for each interval. Specifically, for an interval of the form N1 < d < N2, we have a
Breaker’s win pairing strategy for Q(N1, k1) and Q(N2, k2). When d = N1+j for 1 ≤ j ≤ 4n,
we use Lemma 3 and our Breaker’s win pairing strategy for Q(N1, k1) to obtain a Breaker’s
win pairing strategy for Q(N1 + j, k1 + j). When d = N1 + j for 4n + 1 ≤ j < N2, we use
Lemma 4 and our Breaker’s win pairing strategy for Q(N2, k2) to obtain a Breaker’s win
pairing strategy for Q(N1 + j, k2).

After applying this technique to all three intervals, we obtain Breaker’s win pairing
strategies for

Q(4n+1 + j, 4n + 1 + j), 1 ≤ j ≤ 4n,

Q(4n+1 + j, 2 · 4n + 1), 4n + 1 ≤ j ≤ 2 · 4n,

Q(6 · 4n + j, 2 · 4n + 1 + j), 1 ≤ j ≤ 4n,

Q(6 · 4n + j, 3 · 4n + 1), 4n + 1 ≤ j ≤ 3 · 4n,

Q(9 · 4n + j, 3 · 4n + 1 + j), 1 ≤ j ≤ 4n,

Q(9 · 4n + j, 4n+1 + 1), 4n + 1 ≤ j ≤ 7 · 4n.

Using the results stated in this section, we have established the existence of a non-trivial
Breaker’s win pairing strategy for Q(N,K) for each N ≥ 3. When N = 4n+1, we have that
K is N/4 + 1. When N = 6 · 4n or N = 9 · 4n, we have that K is N/3 + 1. We can ask the
following question. What is the largest value that the ratio K/N attains using the results
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above? We observe that as N increases from 4n+1 to 5 · 4n, the ratio K/N increases from
1
4

+ 1
N

to 2
5

+ 1
N

. As N increases from 5 · 4n to 6 · 4n, K/N decreases from 2
5

+ 1
N

to 1
3

+ 1
N

.
As N increases from 6 · 4n to 7 · 4n, K/N increases from 1

3
+ 1

N
to 3

7
+ 1

N
. As N increases

from 7 · 4n to 9 · 4n, K/N decreases from 3
7

+ 1
N

to 1
3

+ 1
N

. As N increases from 9 · 4n to
10 · 4n, K/N increases from 1

3
+ 1

N
to 2

5
+ 1

N
. As N increases from 10 · 4n to 4n+2, K/N

decreases from 2
5

+ 1
N

to 1
4

+ 1
N

. The largest value K/N achieves is 3
7

+ 1
N

, when N = 7 · 4n

and K = 3 · 4n + 1. One can check that for each N ≥ 3, there is a Breaker’s win pairing
strategy for K =

⌊
3
7
N
⌋

+1. We present the values of N and K corresponding to the (locally)
minimum and (locally) maximum values achieved by K/N in the following table.

N K

4n N/4 + 1
6 · 4n N/3 + 1
9 · 4n N/3 + 1
5 · 4n (2/5)N + 1
10 · 4n (2/5)N + 1
7 · 4n (3/7)N + 1

6 Extra Results

In Lemma 5, we state a generalization of Lemma 2. The proof of Lemma 5 is a fairly straight-
forward generalization of the proof of Lemma 2, but we include the proof for completeness.

Lemma 5 For all n ≥ 1 and all c ≥ 2, the sets 0cn and 1cn can each be partitioned into
(2c−1)n subsets so that every subcube S of Qcn of dimension cn − cn−1 + 1 contains a vertex
from each subset in each partition.

Proof of Lemma 5: We proceed by induction on n. The case n = 1 is trivial. Let
n ≥ 2. By the inductive hypothesis, there exists a partition of 0cn−1 into A1, . . . , A(2c−1)n−1

and a partition of 1cn−1 into B1, . . . , B(2c−1)n−1 so that every subcube S of Qcn−1 of dimension
cn−1 − cn−2 + 1 satisfies V (S) ∩ Aj 6= ∅ and V (S) ∩Bj 6= ∅ for each j ∈ [(2c−1)n−1].

Suppose Xi ⊆ {0, 1}N for i ∈ [c]. Let (X1, . . . , Xc) = {(~x1, . . . , ~xc) : ~xi ∈ Xi for each i ∈
[c]}, where (~x1, . . . , ~xc) represents the cN -dimensional vector whose coordinates in positions
(j − 1)N + 1 through jN equal the coordinates of ~xj for each j ∈ [c]. For each vector
(b1, . . . , bc) ∈ {0, 1}c and each vector of indices (i1, . . . , ic) ∈ [(2c−1)n−1]c, define the set
(Di1 , . . . , Dic) where Dij = Aij if bj = 0 and Dij = Bij if bj = 1. For example, if c = 3 and
n = 2, we could have (1, 1, 0) ∈ {0, 1}3 and (4, 1, 2) ∈ [4]3 which result in the set (B4, B1, A2).

Then for each ~b ∈ 0c and each ` ∈ [(2c−1)n−1], we define the set

A(~b,`) =
⋃

(i1,...,ic)∈I`

(Di1 , . . . , Dic),

where
I` = {(i1, . . . , ic) ∈ [(2c−1)n−1]c : i1 + · · ·+ ic ≡ ` (mod (2c−1)n−1)}.
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For example, in the case c = 3, we define 4n sets

A((0,0,0),`) =
⋃

(i1,i2,i3)∈I`

(Ai1 , Ai2 , Ai3), 1 ≤ ` ≤ 4n−1,

A((0,1,1),`) =
⋃

(i1,i2,i3)∈I`

(Ai1 , Bi2 , Bi3), 1 ≤ ` ≤ 4n−1,

A((1,0,1),`) =
⋃

(i1,i2,i3)∈I`

(Bi1 , Ai2 , Bi3), 1 ≤ ` ≤ 4n−1,

A((1,1,0),`) =
⋃

(i1,i2,i3)∈I`

(Bi1 , Bi2 , Ai3), 1 ≤ ` ≤ 4n−1,

where
I` = {(i1, i2, i3) ∈ [4n−1]3 : i1 + i2 + i3 ≡ ` (mod 4n−1)}.

For each ~b ∈ 1c and each ` ∈ [(2c−1)n−1], we define (2c−1)n sets B(~b,`) similarly. We claim that

the (2c−1)n sets A(~b,`) partition 0cn and the (2c−1)n sets B(~b,`) partition 1cn . (We will only

prove results for the sets A(~b,`) since the corresponding proofs for the sets B(~b,`) are similar.)

Suppose that (~b1, `1) 6= (~b2, `2). We claim this implies A(~b1,`1)
∩ A(~b2,`2)

= ∅. If ~b1 6= ~b2, it

should be fairly obvious that A(~b1,`1)
∩A(~b2,`2)

= ∅. Indeed, if ~b1 differs from ~b2 in coordinate
k, then one of A(~b1,`1)

and A(~b2,`2)
will have Aik in coordinate k and the other will have Bi′k

in coordinate k. Now suppose ~b1 = ~b2 but `1 6= `2. In this case, I`1 ∩ I`2 = ∅. Thus, for every
(Di1 , . . . , Dic) ⊆ A(~b,`1)

and every (Di′1
, . . . , Di′c) ⊆ A(~b,`2)

, there exists a coordinate k where

ik 6= i′k. Thus, Dik ∩Di′k
= ∅, because the Ai are pairwise disjoint and the Bi are pairwise

disjoint, by the inductive hypothesis.
To show that ⋃

(~b,`)∈0c×[(2c−1)n−1]

A(~b,`) = 0cn ,

suppose that ~x ∈ 0cn . As we have done before, let us partition the coordinates of ~x into
c bins of size cn−1 and write ~x = (~x1, . . . , ~xc), where ~xj is ~x restricted to bin j. Let bj be
the parity of ~xj for each j ∈ [c]. Since ~x ∈ 0cn , (b1, . . . , bc) ∈ 0c. Since

⋃
Ai = 0cn−1 and⋃

Bi = 1cn−1 , there exists an ` ∈ [(2c−1)n−1] such that ~x ∈ A((b1,...,bc),`).
Let S be a subcube of Qcn of dimension cn − cn−1 + 1. Partition the coordinates of S

into c bins each of size cn−1. There are (cn − cn−1 + 1) ∗’s distributed amongst the c bins.
Since cn − cn−1 + 1 = (c− 1)cn−1 + 1, S|bin j has dimension at least 1 for each j ∈ [c]. Since
cn − cn−1 + 1 = c(cn−1 − cn−2) + 1, S|bin j has dimension at least cn−1 − cn−2 + 1 for some
j ∈ [c]. W.l.o.g., S|bin c has dimension at least cn−1 − cn−2 + 1. Thus, V (S|bin c) ∩ Ai 6= ∅
and V (S|bin c) ∩ Bi 6= ∅ for each i ∈ [(2c−1)n−1]. For each j ∈ [c − 1], since S|bin j has
dimension at least 1, V (S|bin j) ∩ 0cn−1 6= ∅ and V (S|bin j) ∩ 1cn−1 6= ∅. Thus, for each
j ∈ [c − 1], V (S|bin j) ∩ Aij 6= ∅ for some ij ∈ [(2c−1)n−1] and V (S|bin j) ∩ Bi′j

6= ∅ for some

i′j ∈ [(2c−1)n−1].
Let (b1, . . . , bc) ∈ 0c and ` ∈ [(2c−1)n−1] both be arbitrary. W.l.o.g., suppose that bc = 1.

Then, for each i ∈ [(2c−1)n−1], let (D1, . . . , Dc−1, Bi) satisfy Dj = Aij if bj = 0 and Dj = Bi′j
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if bj = 1 for each j ∈ [c − 1], i.e., we choose Dj to be the appropriate set Aij or Bi′j
from

above which intersects V (S|bin j). Observe that V (S) ∩ (D1, . . . , Dc−1, Bi) 6= ∅ for each
i ∈ [(2c−1)n−1], since V (S|bin c) intersects every set Bi. Let E = {j ∈ [c − 1] : bj = 0}
and let F = {j ∈ [c − 1] : bj = 1}. Let i ∈ [(2c−1)n−1] satisfy i +

∑
j∈E ij +

∑
j∈F i′j ≡ `

(mod (2c−1)n−1). For this value of i, (D1, . . . , Dc−1, Bi) ⊆ A((b1,...,bc),`). Since (b1, . . . , bc) and

` were arbitrary, V (S) ∩ A(~b,`) 6= ∅ for all (~b, `) ∈ 0c × [(2c−1)n−1]. �
In Theorem 4, we state a modified version of Theorem 3 for Q3d+1 . The proof of Theorem 4

and its setup, is essentially the same as the proof of Theorem 3.
We begin by introducing the following Breaker’s win pairing strategies:

PS0(3, 2) = {(v, 0, 0), (1, v, 1), (0, 1, v)},

PS1(3, 2) = {(v, 0, 1), (0, v, 0), (1, 1, v)},

PS2(3, 2) = {(v, 1, 0), (0, v, 1), (1, 0, v)},

PS3(3, 2) = {(v, 1, 1), (1, v, 0), (0, 0, v)}.

In our example at the beginning of Section 4, we observed that these matchings partition
the set of edges of Q3, and each PSj(3, 2) is a Breaker’s win pairing strategy for Q(3, 2) for
0 ≤ j ≤ 3. We define the following sets of bin-forms based on PSj(3, 2) for 0 ≤ j ≤ 3. For
example, when j = 0, let

BinSetsPS
R(s)
0 (3, 2) = {(vR(s),0,0), (1,vR(s),1), (0,1,vR(s))},

and
BinPS

R(s)
0 (3, 2) = (vR(s),0,0) ∪ (1,vR(s),1) ∪ (0,1,vR(s)),

where, for example,

(0,1,vR(s)) = {(~x, ~y, ~z) : ~x ∈ 0, ~y ∈ 1, ~z ∈ v(j),

where j = (s + Index(~x) + Index(~y)) mod m}.

These definitions will assume that we have 4d matchings v(j) (of equal cardinality) which
partition the edges of Q3d and each v(j) is a Breaker’s win pairing strategy for Q(3d, 3d−1+1)
in order to produce 4d+1 Breaker’s win pairing strategies for Q(3d+1, 3d + 1).

Theorem 4 For each d ≥ 0, there exist 4d+1 disjoint Breaker’s win pairing strategies for
Q(3d+1, 3d + 1) with equal cardinalities which partition the set of edges of Q3d+1.

Proof of Theorem 4: We proceed by induction on d. The Breaker’s win pairing strategies
PSj(3, 2) for 0 ≤ j ≤ 3 handle the case d = 0. Let d ≥ 1. By the inductive hypothesis, there

exist 4d disjoint Breaker’s win pairing strategies v(0), . . . ,v(4d−1) forQ(3d, 3d−1+1) with equal

cardinalities which partition the set of edges of Q3d . We will show that BinPS
R(s)
j (3, 2) is a

Breaker’s win pairing strategy for Q(3d+1, 3d + 1) for 0 ≤ j ≤ 3 and 0 ≤ s ≤ 4d − 1, where
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we use 03d , 13d , and the Breaker’s win pairing strategies v(j) from the inductive hypothesis
in the definitions of the bin-forms. Moreover, we will show that the Breaker’s win pairing
strategies BinPS

R(s)
j (3, 2) form a partition of the edges of Q3d+1 .

Let S be a (3d + 1)-dimensional subcube of Q3d+1 . We partition the coordinates of S
into three bins each of size 3d, so that bin j contains coordinates 1 + (j − 1)3d through
j3d for j ∈ [3]. Suppose S|bin j has f fixed coordinates. Bin j is full if f = 3d, heavy if
3d− 3d−1 ≤ f ≤ 3d− 1, and light if 0 ≤ f ≤ 3d− 3d−1− 1. The subcube S has 3d+1− 3d− 1
fixed coordinates. Since 3d+1 − 3d − 1 = 3(3d − 3d−1) − 1, at least one bin is light. Since
3d+1 − 3d − 1 = 2 · 3d − 1, at most one bin is full. Thus, there are three cases to consider:
(F,L, L), (H,H,L), and (F,H,L).

Suppose bin i1 is full, and bins i2 and i3 are light. Let A ∈ BinSetsPS
R(s)
j (3, 2) be a

bin-form which contains a bin-set in bin i1 that matches the parity of S|bin i1 . Since the
other two bins are light, they can be handled by any bin-set. Thus, A handles S.

Suppose bins i1 and i2 are heavy, and bin i3 is light. Let A ∈ BinSetsPS
R(s)
j (3, 2) contain

vR(s) in bin i3. Since bin i3 of S is light, vR(s) can handle S|bin i3 . In each of the other bins,
A has either a 0 or a 1. Since each of 0 and 1 can handle any non-full-bin, A handles S.

Suppose bin i1 is full, bin i2 is heavy, and bin i3 is light. Let A ∈ BinSetsPS
R(s)
j (3, 2)

contain a bin-set in bin i1 that matches the parity of S|bin i1 . If A contains 0 or 1 in bin i2,
then A handles S. So, we may assume A contains vR(s) in bin i2. Since v(0), . . . ,v(4d−1)

partition the set of edges of Q3d and S|bin i2 has dimension at least 1, there is a bin-set
v(k) which contains an edge that can handle S|bin i2 . Let c ∈ {0, . . . , 4d − 1} satisfy (s +
Index(S|bin i1)+c) mod 4d = k. W.l.o.g., suppose A contains 0 in bin i3. By Lemma 5, there
is a partition of 03d into 4d subsets such that every subcube of Q3d of dimension 3d−3d−1 +1
contains at least one vertex from each of the sets in the partition. Since bin i1 is full and bin i2
is heavy, there are at most 3d−1− 1 fixed coordinates in bin i3, i.e., S|bin i3 has dimension at
least 3d− 3d−1 + 1. Thus, there is a vertex ~x ∈ 0(c) which handles S|bin i3 . Therefore, we can
find an edge in A that handles S.

Let E(Q3d+1) be the set of edges of Q3d+1 . We will show that

E(Q3d+1) ⊆
⋃
j,s

BinPS
R(s)
j (3, 2),

which implies
⋃

j,s BinPS
R(s)
j (3, 2) = E(Q3d+1).

Let S ∈ E(Q3d+1). Suppose that S|bin i1 and S|bin i2 are both vertices in Q3d and S|bin i3

is an edge in Q3d . Let ~x be the edge in Q3 which satisfies the following: coordinate i` of
~x matches the parity of S|bin i` for ` ∈ {1, 2}, and coordinate i3 of ~x is v. Let j satisfy
~x ∈ PSj(3, 2). We know such a j exists because PS0(3, 2), PS1(3, 2), PS2(3, 2), PS3(3, 2)

partition the set of edges of Q3. We claim that S ∈ BinPS
R(s)
j (3, 2) for some 0 ≤ s ≤ 4d− 1.

We know that BinSetsPS
R(s)
j (3, 2) contains a bin-form As which corresponds to ~x for each

0 ≤ s ≤ 4d − 1.
We have to prove that there exists a value of 0 ≤ s ≤ 4d − 1 such that S ∈ As. Suppose

that S|bin i3 ∈ v(k). We know that such a k exists because v(0), . . . ,v(4d−1) partition E(Q3d).
Let s ∈ {0, . . . , 4d − 1} satisfy

(s + Index(S|bin i1) + Index(S|bin i2)) mod 4d = k.
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Thus, As contains the set of edges B whose entry in bin i` equals S|bin i` for ` ∈ {1, 2} and
whose entry in bin i3 is an element of v(k). Since S ∈ B, S ∈ As. Therefore, E(Q3d+1) ⊆⋃

j,s BinPS
R(s)
j (3, 2), and |E(Q3d+1)| =

∣∣∣⋃j,s BinPS
R(s)
j (3, 2)

∣∣∣ .
Since each v(i) has the same cardinality and v(0), . . . ,v(4d−1) partition E(Q3d), which has

cardinality 3d(23d−1), |v(i)| = 3d2(3d−2d−1) for 0 ≤ i ≤ 4d − 1. Each BinSetsPS
R(s)
j (3, 2) con-

tains three bin-forms. Since |0| = |1| = 23d−1, each bin-form has cardinality
(

23d−1
)2

(3d2(3d−2d−1)).

Thus,
∣∣∣BinPS

R(s)
j (4, 2)

∣∣∣ ≤ 3(22·3d−2)(3d2(3d−2d−1)) = 3d+123d+1−2(d+1)−1, and∣∣∣∣∣⋃
j,s

BinPS
R(s)
j (3, 2)

∣∣∣∣∣ ≤∑
j,s

∣∣∣BinPS
R(s)
j (3, 2)

∣∣∣ ≤ 3d+123d+1−1 = |E(Q3d+1)| .

Therefore, it must be the case that
∣∣∣BinPS

R(s)
j (3, 2)

∣∣∣ = 3d+123d+1−2(d+1)−1 for each 0 ≤ j ≤ 3

and 0 ≤ s ≤ 4d−1, and the Breaker’s win pairing strategies BinPS
R(s)
j (3, 2) form a partition

of E(Q3d+1). �

7 Conclusion

Let ps(n) be the smallest value of k such that Breaker wins the positional game on Q(n, k) by
using a pairing strategy. We have proven the following upper bounds. If n ∈ {4d+1 : d ∈ N},
then ps(n) ≤ n

4
+ 1. If n ∈ {3d+1 : d ∈ N} ∪ {6 · 4d : d ∈ N} ∪ {9 · 4d : d ∈ N}, then

ps(n) ≤ n
3

+ 1. In general, for all n ≥ 3, ps(n) ≤ 3
7
n + 1. To obtain a lower bound on ps(n),

we cite Proposition 9 in [14], which implies that ps(n) > ln(n). Thus, there is a large gap
between the upper and lower bounds on ps(n) for most values of n. It would be interesting
to improve any of these bounds. With regards to small specific values of n, because Maker
has a winning strategy for Q(5, 2) (see [23]) and Q(2, 1), we know that ps(3) = ps(4) = 2
and ps(5) = ps(6) = 3. It would be nice to also determine the exact values of, say, ps(7)
and ps(8).

We note that there is no direct analogue to Theorems 3 and 4 for Q(cd+1, cd +1) for c ≥ 5
using our proof method. Indeed, Theorems 3 and 4 rely on the Breaker’s win pairing strate-
gies for Q(4, 2) and Q(3, 2) in order to create BinSetsPS

R(s)
j (4, 2) and BinSetsPS

R(s)
j (3, 2).

Since Maker has a winning strategy for Q(n, 2) for all n ≥ 5, there are no Breaker’s win pair-

ing strategies for Q(n, 2) from which we would create the bin-forms for BinSetsPS
(s)
j (n, 2)

for all n ≥ 5.
As a final note, we mention that some of our results can be viewed as being related to a

Turán-type problem on Qn. Let ex(G,H) be the maximum number of edges in a subgraph
of G which does not contain a copy of H. In [15], Erdős discussed some problems that he
believed deserved more attention, including determining ex(Qn, C4), which he conjectured
to be (1

2
+ o(1))|E(Qn)|. Much work has been done related to determining ex(Qn, C2t), see

for example, Alon, Radoiǒić, Sudakov, and Vondraák [2], Axenovich and Martin [3], Balogh,
Hu, Lidický, and Liu [4], Bialostocki [7], Brass, Harborth, and Nienborg [8], Brouwer, Dejter,
and Thomassen [9], Chung [11], Conder [12], Conlon [13], Füredi and Özkahya [17, 18], and
Thomason and Wagner [27].
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In [1], Alon, Krech, and Szabó change the focus to studying ex(Qn, Qd). In particular, let
c(n, d) be the minimum number of edges that must be deleted from Qn so that no copy of Qd

remains, and let cd = limn→∞ c(n, d)/|E(Qn)|. (For a study of c(n, d) in a computer science
context, see Graham, Harary, Livingston, and Stout [20].) In their approach, Alon, Krech,
and Szabó used a “Ramsey-type framework,” which involved studying d-polychromatic col-
orings of the edges of Qn, i.e., colorings in which every d-dimensional subcube of Qn contains
an edge from every color class. They define pc(n, d) to be the largest integer p such that there
exists a d-polychromatic coloring of the edges of Qn in p colors, and pd = limn→∞ pc(n, d).
They also define higher-dimensional analogues, where the definition of pc(`)(n, d) is based on
coloring each `-dimensional subcube of Qn so that each d-dimensional subcube contains an
`-dimensional subcube of each color. Thus, pc(n, d) is the special case ` = 1. They proved

upper and lower bounds for pd for all d ≥ 1 and that p
(0)
d = d+1 for all d ≥ 0. In [24], Offner

proved that pd equals the lower bound given by Alon, Krech, and Szabó. Much work related
to polychromatic colorings on the hypercube has been done, for example, Chen [10], Gold-
wasser, Lidický, Martin, Offner, Talbot, and Young [19], Han and Offner [21], Offner [25],
and Özkahya and Stanton [26].

We note that Theorems 4 and 3 provide a (3d +1)-polychromatic proper coloring of Q3d+1

and a (4d + 1)-polychromatic proper coloring of Q4d+1 for all d ≥ 0, both using 4d+1 colors,
i.e., each color class forms a matching. It would be interesting to determine for which values
of n and d there exists a d-polychromatic proper coloring of Qn.

We also note that Lemma 5 provides a (cn−cn−1+1)-polychromatic coloring of the vertices
of Qcn using (2c−1)n colors and only vertices from 0cn (or 1cn). If we let A1, . . . , A(2c−1)n be the
partition of 0cn and B1, . . . , B(2c−1)n be the partition of 1cn , then A1∪B1, . . . , A(2c−1)n∪B(2c−1)n

works as a sort of (cn − cn−1 + 1)-polychromatic double-coloring of the vertices of Qcn using
(2c−1)n colors, i.e., every (cn − cn−1 + 1)-dimensional subcube contains two vertices from
each color class. It could be interesting to ask for which values of n, d, and p do there exist
d-polychromatic double-colorings of Qn using p colors.
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