
https://doi.org/10.1177/0956797620954449

Psychological Science
2020, Vol. 31(11) 1396 –1408
© The Author(s) 2020
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/0956797620954449
www.psychologicalscience.org/PS

ASSOCIATION FOR
PSYCHOLOGICAL SCIENCEResearch Article

The Cognitive Reflection Test (CRT; Frederick, 2005) is 
the dominant measure of adult individual differences 
in analytic versus intuitive thinking. The test was designed 
to measure a person’s tendency to override an intuitive 
response that is incorrect and engage in reflection that 
leads to a correct response. Consider the well-known 
bat-and-ball item: “A bat and a ball cost $1.10 in total. 
The bat costs $1 more than the ball. How much does the 
ball cost?” Many adults provide the intuitively triggered 
response of 10 cents, defaulting to subtraction. However, 
the correct answer is 5 cents (the bat must cost $1.05 for 
their sum to be $1.10 and their difference to be $1.00), 
and adults who provide that answer have presumably 
engaged in analytic reflection, realizing that the intuitive 
response was incorrect and generating a correct response 
in its place.

Performance on the CRT is a powerful predictor of 
rational thinking, including normative decision-making 
on heuristics-and-biases tasks and normative thinking 

dispositions (Frederick, 2005; Stanovich, West, & Toplak, 
2016; Toplak, West, & Stanovich, 2011). CRT scores also 
predict science understanding (Shtulman & McCallum, 
2014), science acceptance (Gervais, 2015), rejection of 
religious and paranormal ideas (Pennycook, Fugelsang, 
& Koehler, 2015), utilitarian moral reasoning (Royzman, 
Landy, & Leeman, 2015), causal learning (Don, Goldwater, 
Otto, & Livesey, 2016), fake-news detection (Pennycook & 
Rand, 2019), cooperation (Corgnet, Espín, & Hernán-
González, 2015), and avoidance of stereotyping (Hammond 
& Cimpian, 2017). The CRT has thus garnered broad 
utility and interest.

The present research extends the study of cognitive 
reflection to children. Floor effects in adolescent and 
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The Cognitive Reflection Test (CRT) is a widely used measure of adults’ propensity to engage in reflective analytic 
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certain adult populations as well as heavy reliance on 
numeracy suggest that the original CRT is poorly suited 
for child samples (Primi, Morsanyi, Chiesi, Donati, & 
Hamilton, 2016; Thomson & Oppenheimer, 2016). As a 
result, children’s cognitive reflection has not been stud-
ied. A CRT for children could be used to investigate the 
developmental trajectory of cognitive reflection as well 
as its malleability with experience or intervention. Simi-
larly, a developmental measure might help adjudicate 
between competing accounts of cognitive reflection in 
adults (e.g., Stupple, Pitchford, Ball, Hunt, & Steel, 2017; 
Szaszi, Szollosi, Palfi, & Aczel, 2017; Travers, Rolison, & 
Feeney, 2016). We directly considered another contri-
bution: examining the development of important 
domains of thought, such as scientific and mathematical 
reasoning.

We recently developed a CRT for elementary-school-
age children, the CRT–Developmental (CRT–D), which 
consists of nine items similar in structure to the original 
CRT items. Each item has a highly available intuitive 
(but incorrect) lure and a correct response that we 
expected school-age children to be capable of produc-
ing after reflection or analytic thinking. A preliminary 
investigation assessed whether children’s and adults’ 
CRT–D scores predicted performance on a battery of 
heuristics-and-biases tasks and measures of normative 
thinking (Young, Powers, Pilgrim, & Shtulman, 2018). 
For adults, the CRT–D correlated strongly with the origi-
nal CRT and yielded similar correlations with heuristics-
and-biases tasks. For children, the CRT–D predicted 
performance on heuristics-and-biases tasks as well as 
normative thinking dispositions, even after analyses 
adjusted for age. These results provide preliminary sup-
port for the CRT–D as a valid measure of children’s 
cognitive reflection. However, the productivity of this 
construct will depend on its ability to predict reasoning 
beyond the domain of rational thinking and indepen-
dently of other domain-general cognitive abilities.

The present study focused on the predictive utility 
of the CRT–D in science and mathematics, domains 
characterized by conceptual change. Research with 
adults suggests that cognitive reflection supports con-
ceptual change. Shtulman and McCallum (2014) 
found that the CRT explained more variance in col-
lege students’ achievement of conceptual change in 
six domains of science (astronomy, evolution, geol-
ogy, mechanics, perception, and thermodynamics) 
than did science and mathematics coursework; sta-
tistical reasoning ability; and nature-of-science under-
standing combined. Similarly, CRT performance 
predicts students’ understanding of various secondary 
school math concepts (Gómez-Chacón, García-
Madruga, Vila, Elosúa, & Rodríguez, 2014). Here, we 
asked the developmentally parallel question of 

whether the CRT–D predicts school-age children’s 
conceptual understanding of vitalist biology and 
mathematical equivalence.

Vitalist biology is a culturally widespread theory of 
life that develops from ages 5 to 12 years (Inagaki & 
Hatano, 2002). According to this theory, living organ-
isms are systems that use vital substances (e.g., food, 
air, and water) to produce energy and sustain life, 
health, and growth. Prior to gaining awareness of vital-
ist biology, children conceive of life in terms of agency 
and animism. For example, young children may judge 
nonliving animate entities (e.g., the sun, an airplane) 
as alive and living inanimate entities (e.g., plants) as 
not alive (Zaitchik, Iqbal, & Carey, 2014). In addition, 
children lacking a mature theory of vitalist biology 
often report that body parts have single independent 
functions (e.g., the stomach is for storing food), failing 
to conceive of those functions as interrelated and life 
sustaining (Slaughter & Lyons, 2003).

Mathematical equivalence is the principle that two 
sides of an equation are interchangeable and represent 
the same value. Understanding of mathematical equiva-
lence promotes math achievement (McNeil, Hornburg, 
Devlin, Carrazza, & McKeever, 2019) and is foundational 
to formal algebra (Knuth, Stephens, McNeil, & Alibali, 
2006). However, narrow experience with standard-
format equations (e.g., 2 + 7 = __) leads many children 
to an entrenched misconception of the equal sign as 
an operational symbol (i.e., put the answer or add all 
the numbers) rather than a relational symbol (McNeil 
& Alibali, 2005). As a consequence, 60% to 88% of 
children in the United States between the ages of 7 and 
11 years solve problems with operations on both sides 
of the equal sign (e.g., 2 + 7 = 6 + __) incorrectly, usu-
ally by adding all the numbers or adding all the num-
bers before the equal sign (Hornburg, Wang, & McNeil, 
2018).

In this study, we measured school-age children’s per-
formance on the CRT–D and understanding of vitalist 
biology and mathematical equivalence. We additionally 
measured children’s executive functions, including 
exogenous and endogenous set shifting, inhibitory con-
trol, and working memory. Research with adults sug-
gests that the CRT’s predictive strength is largely 
independent of executive functions (Toplak et  al., 
2011), although this may not be true of children. Fur-
ther, executive functions play a critical role in children’s 
construction of vitalist biology (Bascandziev, Tardiff, 
Zaitchik, & Carey, 2018; Zaitchik et al., 2014) and devel-
opment of mathematics proficiency (Cragg & Gilmore, 
2014). Finally, we measured children’s performance on 
a small number of rational-thinking tasks, measuring 
their reliance on heuristics and biases and their disposi-
tion toward normative-thinking strategies because such 
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tasks are also implicated in science and mathematics 
reasoning (e.g., Sinatra, Southerland, McConaughy, & 
Demastes, 2003; Wong, 2018). We asked whether the 
CRT–D is a useful predictor of vitalist-biology and 
mathematical-equivalence understanding after adjusting 
for children’s age, executive functions, and rational 
thinking.

Method

Participants

One hundred fifty-two elementary school children par-
ticipated (M = 8 years, 2 months; SD = 1 year, 11 months; 
85 female, 67 male). We recruited children between the 
ages of 5 and 12 years who were in kindergarten 
through sixth grade (see Fig. 1 for the age distribution). 
We recruited children at public playgrounds and a chil-
dren’s museum during two academic terms, using the 
end of the second term as the predetermined stopping 
point for data collection. Thus, the sample size was 
determined by the practicalities of participant recruit-
ment. The final sample is 58% larger than the prelimi-
nary study of the CRT–D (Young et al., 2018), which 
generally found moderate to large correlations between 
the CRT–D and other measures (median r = .30). This 

sample size was sufficient for examining the predictive 
utility of the CRT–D given our analytic approach (i.e., 
Bayesian estimation, regularizing priors, and cross-
validation; see below).

Measures

Study materials are available on OSF at https://osf.io/
e72ka/.

CRT–Developmental. Children answered nine child-
friendly cognitive-reflection items similar in structure to 
those in the original CRT for adults (Table 1). Three items 
(Questions 1–3) were adapted from the nonnumerical 
CRT developed by Thomson and Oppenheimer (2016). 
The remaining items were found by searching for chil-
dren’s “brain teasers” online or developed by the research-
ers. We used the number of correct responses as children’s 
score; higher scores indicated greater cognitive reflec-
tion. The McDonald’s ωtotal of the scale was .77, and Cron-
bach’s α was .56. McDonald’s ωtotal is an estimate of the 
total reliability of a test. It is a less biased estimate of 
reliability than Cronbach’s α in most circumstances and 
equivalent to Cronbach’s α when the latter’s often unre-
alistic assumptions are met (Zinbarg, Revelle, Yovel, & Li, 
2005).

Executive-function tasks.
Toolbox Dimensional Change Card Sort. Children com-

plet ed the tablet-based Dimensional Change Card Sort 
(DCCS) from the NIH Toolbox Cognition Battery (Zelazo 
et al., 2013; iPad Version 1.11). This test measures cogni-
tive flexibility in the context of exogenously cued set shift-
ing, requiring children to match multidimensional pictures 
first by one dimension (e.g., shape) and then by another 
(e.g., color). The Toolbox DCCS consists of four blocks: 
practice (four trials for each dimension), preswitch (five 
trials for the first dimension), postswitch (five trials for the 
second dimension), and mixed (30 trials shifting between 
dimensions). Scoring of the Toolbox DCCS is based on 
both accuracy and reaction time (Zelazo et al., 2013). We 
used uncorrected standardized scores (M = 100, SD = 15), 
which reflect the overall level of performance relative to 
the entire NIH Toolbox normative sample, regardless of 
age or other demographic factors (test-retest intraclass 
correlation coefficient [ICC] = .92). Higher scores indicate 
better performance.

Toolbox Flanker Inhibitory Control and Attention Test.  
Children completed the tablet-based Flanker Test from 
the NIH Toolbox Cognition Battery (Zelazo et al., 2013; 
iPad Version 1.11). The test measures both attention and 
inhibitory control, requiring children to indicate the left-
right orientation of a middle stimulus while inhibiting 
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attention to four flanking stimuli. On congruent trials, all 
stimuli are pointing in the same direction, whereas on 
incongruent trials, the flanking stimuli are pointing in the 
opposite direction from the middle stimulus. Children 8 
years of age and older completed four practice trials and 
20 test trials with arrows as the stimuli. Children younger 
than 8 years completed the same number of trials with fish 
as stimuli. Younger children who missed no more than 
one congruent and one incongruent trial also completed 
the arrow test block. Scoring of the Toolbox Flanker is 
based on both accuracy and reaction time (Zelazo et al., 
2013). As with the Toolbox DCCS, we used uncorrected 
standardized scores based on the NIH Toolbox normative 
sample (M = 100, SD = 15; test-retest ICC = .92).

Verbal fluency. Children completed a verbal fluency 
task, in which they named as many animals as they could 
without repetition in 1 min (Bascandziev et  al., 2018; 
Munakata, Snyder, & Chatham, 2012). This task requires 
identifying relevant semantic categories, accessing the 
items within those categories, and switching to new cat-
egories when needed. To be successful, children must 
detect the need to switch (e.g., when they cannot think 
of more pets) and select what to switch to (e.g., farm ani-
mals or zoo animals). This task is considered a measure 
of self-directed cognitive flexibility, requiring endogenous 
set shifting and proactive executive planning (Munakata 
et  al., 2012). Children’s responses were audio-recorded 
and transcribed. We used the total number of unique ani-
mals generated as children’s score (Bascandziev et  al., 

2018). The first author and a research assistant scored 
each transcription (there was no interrater disagreement).

Backward digit span. Children completed a backward-
digit-span task that required both maintenance and mani-
pulation of items in working memory (adapted from the 
study by Alloway, Gathercole, Kirkwood, & Elliott, 2009). 
The experimenter read a sequence of numbers at a pace 
of one per second. Children were then asked to repeat 
the numbers in reverse order. Children were given a 
practice trial of three digits and then test trials starting 
at two digits, increasing by one digit after every two tri-
als. The task ended when children failed both trials of a 
given length or at the conclusion of the eight-digit trials. 
We used the highest span with at least one correct trial as 
children’s score (test-retest reliability = .86; Alloway et al., 
2009). Scores could range from 1 to 8 (a score of 1 was 
assigned if a child failed both two-digit trials).

Heuristics-and-biases tasks.
Denominator neglect. Children completed a tablet-

based denominator-neglect task adapted from the study 
by Toplak, West, and Stanovich (2014). This task mea-
sures probabilistic reasoning and miserly information 
processing in the context of whether children attend to 
the absolute number of a particular kind of outcome (the 
numerator) without considering the total number of pos-
sible events (the denominator). Children were shown 
trays of black marbles and white marbles and told that 
black marbles were the winners (i.e., that the goal of the 

Table 1. Cognitive Reflection Test–Developmental (CRT–D) Questions and Percentages of 
Response Types

Question Correct
Intuitive 
incorrect

Other 
incorrect

1.  If you’re running a race and you pass the person in second 
place, what place are you in? (correct: second; intuitive: first)

17.8 70.4 11.8

2.  Emily’s father has three daughters. The first two are named 
Monday and Tuesday. What is the third daughter’s name? 
(correct: Emily; intuitive: Wednesday or other days of the week)

7.9 87.5 4.6

3.  A farmer has 5 sheep, all but 3 run away. How many are 
left? (correct: three; intuitive: two)

20.4 65.8 13.8

4.  If there are 3 apples and you take away 2, how many do 
you have? (correct: two; intuitive: one)

50.0 40.8 9.2

5. What do cows drink? (correct: water; intuitive: milk) 37.5 61.2 1.3
6.  What weighs more, a pound of rocks or a pound of 

feathers? (correct: same weight; intuitive: rocks)
7.9 85.5 6.6

7.  What hatches from a butterfly egg? (correct: caterpillar/
larva; intuitive: baby butterfly)

63.8 24.3 11.8

8.  Who makes Christmas presents at the North Pole? (correct: 
elves, parents, or no one; intuitive: Santa)

25.0 73.7 1.3

9.  Anna is playing foursquare with her three friends: Eeny, 
Meeny, and Miny. Who is the fourth player? (correct: Anna; 
intuitive: Mo)

19.7 66.4 13.8
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game was to select a black marble at random). They were 
then asked to choose between (a) a smaller tray that con-
tained fewer winning marbles but a higher probability of 
winning and (b) a larger tray with more winning marbles 
and a lower probability of winning (e.g., 1:9 vs. 9:91). 
Children completed six trials of varying ratios, along with 
three filler trials in which the larger tray also had a higher 
probability of winning (Stanovich et al., 2016). We used 
the number of highest probability selections as children’s 
score; higher scores indicated more resistance to denom-
inator neglect (Stanovich et  al., 2016). The ωtotal of the 
task was .84, and Cronbach’s α was .84.

Base-rate sensitivity. Children completed a base-rate-
sensitivity task composed of five causal base-rate prob-
lems for children (Toplak et al., 2014). These problems 
measure the tendency to rely on large-sample or expert-
provided statistical evidence over concrete personal 
information (Stanovich et al., 2016). An example scenario 
is as follows:

Erica wants to go to a baseball game to try to 
catch a fly ball. She calls the main office and 
learns that almost all fly balls have been caught 
in section 43. Just before she chooses her seats, 
she learns that her friend Jimmy caught a fly ball 
last week sitting in section 10. Which section is 
most likely to give Erica the best chance to catch 
a fly ball?

There were four response choices for each problem: 
two responses supporting the correct statistical/aggre-
gate choice (e.g., definitely section 43 or probably sec-
tion 43) and two responses supporting the incorrect 
concrete/personal choice (e.g., definitely section 10 or 
probably section 10). We used the total number of 
statistical/aggregate responses as children’s score. The 
ωtotal of the task was .62, and Cronbach’s α was .44.

Thinking-disposition scales.
Need for Cognition. Children completed a Need for Cog-

nition scale developed and validated for children (Keller 
et  al., 2019). This scale measures children’s tendency to 
engage in and enjoy effortful cognitive activities. Examples 
from the 14-item child scale are “Thinking is fun for me” 
and “I like learning new things.” Children responded on a 
4-point agreement scale (1 = really disagree to 4 = really 
agree). We used children’s average rating as their score; 
higher values indicated greater motive to engage in effort-
ful cognitive activities (Keller et al., 2019). The ωtotal of the 
scale was .87, and Cronbach’s α was .85.

Actively open-minded thinking. Children responded 
to a modified version of a seven-item scale assessing 

actively open-minded thinking (Haran, Ritov, & Mellers, 
2013). This scale measures the tendency to weigh new 
evidence against a favored belief and to consider the 
opinions of other people in forming one’s own. We mod-
ified items to be child friendly. However, internal reliabil-
ity for the scale was very poor (ωtotal = .45 and Cronbach’s 
α = .03), so we did not consider it for further analyses.

Vitalist-biology understanding.
Body-parts knowledge. Children completed a short-

ened version of the Body Parts Interview (Bascandziev 
et  al., 2018; Zaitchik et  al., 2014). We asked about the 
function of five body parts: the brain, heart, lungs, stom-
ach, and blood (e.g., “What is the brain for?”). Chil-
dren’s responses were audio-recorded and transcribed. 
We scored responses using a coding scheme from prior 
research (Bascandziev et al., 2018; Zaitchik et al., 2014). 
For a given body part, children could receive 0 to 3 
points: 1 point for knowing the organ’s function, 1 point 
for relating the organ’s function to another bodily func-
tion or biological goal, and 1 point for mentioning that 
the organ is needed to stay alive. Scores could thus range 
from 0 to 15; higher scores indicated greater body-parts 
knowledge. Both authors scored the transcriptions. Inter-
rater reliability was high (94.8% agreement for individual 
body-part codes; ICC = .91 for total scores).

Living-things knowledge. Children completed the living-
things judgment task (Bascandziev et al., 2018; Zaitchik 
et  al., 2014). Children were asked to make judgments 
(e.g., “Is an X alive; is it a living thing?”) for 20 entities 
from four categories (animals, plants, natural phenom-
ena, and artifacts). We scored the task in terms of com-
pletely correct categories. That is, if a child misjudged the 
living status of any entity within a category, the category 
was scored as incorrect. Our analyses considered both 
the number of correct categories and the accuracy of cat-
egories individually.

Vitalist-biology composite. Following prior research 
(Bascandziev et al., 2018; Zaitchik et al., 2014), we cre-
ated a composite vitalist-biology score by averaging z 
scores for the body-parts-knowledge measure and living-
things-knowledge measure (number of correct catego-
ries).

Mathematical equivalence. Children in the second 
grade and above solved four mathematical-equivalence 
problems (adapted from the study by McNeil et al., 2019) 
with operations on both sides of the equal sign (1 + 5 = 
__ + 2; 2 + 7 = 6 + __; 7 + 1 + 4 = __+ 4; 3 + 5 + 6 = 3 + 
__). We scored problems as correct or incorrect. The ωtotal 
of the test was .91, and Cronbach’s α was .90. Following 
prior research, we coded children who solved any of the 
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problems correctly as demonstrating some understanding 
of mathematical equivalence because a major shift in 
conceptual understanding is required to solve just one 
problem correctly (McNeil et al., 2019).

Procedure

Children completed the study one on one with trained 
research assistants on-site. Depending on the task and 
children’s ability to read independently, research assis-
tants either read each question aloud or had children 
read it themselves. Children responded verbally or via 
iPad touch screen depending on the task.

Children completed the tasks described above in the 
following order: verbal fluency, body-parts knowledge, 
Toolbox DCCS, Toolbox Flanker, CRT–D, denominator 
neglect, base-rate sensitivity, actively open-minded 
thinking, living-things knowledge, backward digit span, 
and Need for Cognition. Children in the second grade 
and above completed the mathematical-equivalence 
problems between the living-things and backward-
digit-span tasks.

Results

Descriptive statistics

Forty-one of 152 children provided incomplete data, 
resulting in missing values for 4.7% of the entire data 
set (not including actively open-minded thinking and 
the vitalist-biology composite). Twenty-four children 
were missing scores from one (18 children) or both (six 
children) NIH Toolbox tasks because of equipment fail-
ure or experimenter error. Eleven children were missing 
values from one (six children) or both (five children) 
of the Body Parts Interview and verbal fluency task 
because of audio-recording failures. Three children did 
not want to attempt the mathematical-equivalence 
problems. Two parents did not provide age information 
for their children. Finally, nine children did not com-
plete the session because of fatigue or parent interrup-
tion and thus were missing multiple measures. Table 2 
presents summary statistics of and bivariate Pearson 
correlations among our variables.

Children’s CRT–D performance was as expected. For 
each item, the vast majority of children generated either 
the correct or the intuitive incorrect response (Table 
1). Additionally, children at every age generated fewer 
other incorrect responses than intuitive incorrect 
responses for each item. There was a single exception—
5-year-olds generated more other incorrect responses 
than intuitive incorrect responses for Question 3 (i.e., 
“A farmer has 5 sheep, all but 3 run away. How many 
are left?”). Thus, the CRT–D followed the fundamental 
structure of the original CRT for each age group. Further, 

as an individual-differences measure, CRT–D scores 
demonstrated considerable variability within age (Fig. 
1). Mean CRT–D scores increased by approximately 2.5 
items from ages 5 to 12 years. With the exception of 
Questions 1 and 4, correct responding on individual 
CRT–D items was weakly to moderately correlated with 
age (rs = .18–.43). Unlike adult CRT scores, CRT–D 
scores showed no gender difference (female: M = 2.52, 
male: M = 2.48).

CRT–D performance was moderately to strongly cor-
related with age, Toolbox DCCS, Toolbox Flanker, ver-
bal fluency, backward digit span, denominator neglect, 
base-rate sensitivity, vitalist-biology composite, body-
parts knowledge, living-things knowledge, and math-
ematical equivalence (i.e., all measures except for Need 
for Cognition; Table 2). In addition, every other predic-
tor variable was also moderately to strongly correlated 
with one or more of the vitalist-biology and mathematical-
equivalence outcomes (Table 2).

Regression analyses

We used Bayesian estimation to examine the predictive 
utility of children’s cognitive reflection for conceptual 
understanding of vitalist biology and mathematical 
equivalence. Among other advantages, Bayesian analy-
sis provided a common framework to take advantage 
of information from children with partial missing data 
(i.e., jointly modeling missing predictor data; McElreath, 
2016) and evaluate predictive performance (e.g., regu-
larizing priors, Bayesian leave-one-out [LOO] cross-
validation, and projective predictive selection; see 
below). Full details of our Bayesian analyses can be 
found in the Supplemental Material available online. 
General results were replicated using classical frequen-
tist methods (see the Supplemental Material). Data and 
R scripts to reproduce all analyses are available at 
https://osf.io/e72ka/.

We fitted Bayesian regression models for each out-
come measure. All predictor variables, the vitalist-
biology composite score, and the body-parts-knowledge 
score were scaled to have a mean of 0 and a standard 
deviation of 1. We used regularizing weakly informative 
priors for all regression parameters. Weakly informative 
priors contain enough information to rule out unreason-
able parameter values but are not strong enough to rule 
out parameter values that might be relevant. For linear 
regression, we used normal(μ = 0, σ = 1) as the prior 
for beta coefficients. Thus, we expected that a 1-standard-
deviation change in x would plausibly predict somewhere 
between a −2-standard-deviation and +2-standard-
deviation change in outcome y (because roughly 95% of the 
prior distribution’s probability mass lies between ±2). For 
logistic regression, we used normal(μ = 0, σ = 2.5) as the 
prior for beta coefficients. This prior reflects disciplinary 

https://osf.io/e72ka/
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knowledge that logistic regression coefficients are almost 
always between −5 and 5 on the logit scale (i.e., from 
proba bilities .01 to .99).

For each outcome measure, we fitted a full model that 
included all predictor variables (i.e., CRT–D, age, Tool-
box DCCS, Toolbox Flanker, verbal fluency, backward 
digit span, denominator neglect, base-rate sensitivity, and 
Need for Cognition). We report 95% credible intervals 
and median posterior point estimates for the coefficients 
of the full models. For a given model and data, we can 
be 95% certain that the true value of a parameter is 
contained within its 95% credible interval.

We additionally fitted control models that included 
all predictor variables besides CRT–D. We compared the 
predictive performance of the full and control models 
using an efficient Bayesian approximation of LOO cross-
validation (Vehtari, Gelman, & Gabry, 2017). LOO 
cross-validation gives an (almost) unbiased estimate of 
predictive error for each model and, furthermore, allows 
us to compute the difference in predictive performance 
(with standard error) between two models. We report 
differences between models and their standard errors 
on the deviance scale (called leave-one-out information 
criterion [LOOIC]). Analogous to other difference statis-
tics, a difference of less than 1 standard error suggests 
that the models have roughly similar predictive perfor-
mance, whereas a difference of more than 2 standard 
errors suggests that one model is expected to have bet-
ter predictive performance than the other.

Finally, we used projective predictive selection to 
identify and fit submodels that demonstrated similar (or 
better) out-of-sample predictive performance than the 
full reference models (Piironen & Vehtari, 2017). This 
method uses posterior information from a reference 
(full) model to find smaller candidate models with pre-
dictive distributions as close to the reference predictive 
distribution as possible (in terms of Kullback-Leibler 
divergence). The method first performs a forward 
search through the model space, starting from an empty 
model and at each step adding the variable that mini-
mizes the predictive discrepancy between the submodel 
and reference model (conditional on previously entered 
variables). Next, LOO cross-validation and a decision 
criterion are used to select the final size of the sub-
model. Here, we first looked for the smallest submodel 
with better out-of-sample predictive performance than 
the reference model (i.e., ΔLOOIC more than 2 SEs 
above 0). If there was no better performing model, we 
selected the smallest submodel with predictive perfor-
mance similar to that of the reference model (i.e., 
ΔLOOIC within 1 SE of 0). Overall, a submodel identi-
fied via projective predictive selection can give us an 
idea of how important the CRT–D is as a predictor rela-
tive to the other measured variables.

Vitalist-biology composite

We fitted linear regression models for children’s biology-
composite scores. Figure 2a displays the estimates of 
the full model. There was a positive effect of CRT–D: 
A 1-standard-deviation increase in CRT–D predicted a 
0.28-standard-deviation increase in biology composite 
score, 95% credible interval = [0.12, 0.43]. CRT–D mod-
erately improved the out-of-sample predictive perfor-
mance of the full model in comparison with the control 
model (ΔLOOIC = 10.59, SE = 6.98). Projective predic-
tive selection suggested a submodel with age, CRT–D, 
Toolbox DCCS, verbal fluency, Toolbox Flanker, and 
base-rate sensitivity, in order of their relative predictive 
importance. The submodel provided moderately better 
predictive performance than the full model (ΔLOOIC = 
3.96, SE = 2.56). These results indicate that children’s 
CRT–D performance had a positive effect on vitalist-
biology understanding over and above the other mea-
sured variables. Further, conditional on children’s age, 
CRT–D performance is likely the best predictor of over-
all vitalist-biology understanding among the other mea-
sured variables. We now look at the CRT–D’s contribution 
to the subcomponents of vitalist biology—body-parts 
knowledge and living-things knowledge—individually.

Body-parts knowledge

We fitted linear regression models for children’s body-
parts knowledge. Figure 2b displays the estimates of 
the full model. There was a positive effect of CRT–D: 
A 1-standard-deviation increase in CRT–D predicted a 
0.21-standard-deviation increase in body-parts knowl-
edge, 95% credible interval = [0.05, 0.36]. CRT–D slightly 
improved the out-of-sample predictive performance of 
the full model in comparison with the control model 
(ΔLOOIC = 5.14, SE = 5.59). Projective predictive selec-
tion suggested a submodel with age, verbal fluency, 
CRT–D, and Toolbox DCCS (ordered by relative predic-
tive importance). The submodel provided better predic-
tive performance than the full model (ΔLOOIC = 9.04, 
SE = 2.49). These results indicate that children’s CRT–D 
performance had a positive effect on body-parts knowl-
edge over and above the other measured variables and, 
further, that CRT–D performance is among the minimal 
set of most relevant predictors.

Living-things knowledge

For children’s living-things knowledge, we fitted logistic 
multilevel models with varying intercepts for participant 
and category (i.e., animals, plants, natural phenomena, 
artifacts). Figure 2c displays the estimates of the full 
model. There was a positive effect of CRT–D: A 1-standard-
deviation increase in CRT–D predicted a 0.43-log-odds 



1404 Young, Shtulman

Need For
Cognition

Base-Rate
Sensitivity

Denominator
Neglect

Backward
Digit Span

Verbal
Fluency

Toolbox
Flanker

Toolbox
DCCS

Age

CRT−D

Need For
Cognition

Base-Rate
Sensitivity

Denominator
Neglect

Backward
Digit Span

Verbal
Fluency

Toolbox
Flanker

Toolbox
DCCS

Age

CRT−D

Need For
Cognition

Base-Rate
Sensitivity

Denominator
Neglect

Backward
Digit Span

Verbal
Fluency

Toolbox
Flanker

Toolbox
DCCS

Age

CRT−D

Need For
Cognition

Base-Rate
Sensitivity

Denominator
Neglect

Backward
Digit Span

Verbal
Fluency

Toolbox
Flanker

Toolbox
DCCS

Age

CRT−D

−0.50 −0.25 −0.50 −0.250.00 0.25 0.50

Coefficient Estimate (SD)

Biology Composite

0.00 0.25 0.50

Coefficient Estimate (SD)

Body-Parts Knowledge

−1.0 −0.5 0.0 0.5 1.0
Coefficient Estimate (log odds)

−4 −2 0 2 4
Coefficient Estimate (log odds)

Mathematical EquivalenceLiving-Things Knowledge

a

c

b

d

Fig. 2. Coefficient estimate (posterior median) for each variable included in the full model for (a) the biology composite, (b) body-parts 
knowledge, (c) living-things knowledge, and (d) mathematical equivalence. Error bars show 95% credible intervals. CRT–D = Cognitive 
Reflection Test–Developmental; DCCS = Dimensional Change Card Sort.
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increase in correct living-things knowledge, 95% cred-
ible interval = [0.14, 0.72]. CRT–D moderately improved 
the out-of-sample predictive performance of the full 
model in comparison with the control model (ΔLOOIC = 
7.04, SE = 6.01). Projective predictive selection sug-
gested a submodel with CRT–D, Toolbox Flanker, and 
backward digit span (ordered by relative predictive 
importance). The submodel provided better predictive 
performance than the full model (ΔLOOIC = 10.09, SE = 
3.52). These results indicate that children’s CRT–D per-
formance had a positive effect on living-things knowl-
edge over and above the other measured variables and, 
further, that CRT–D performance is likely the single 
best predictor of performance on the living-things judg-
ment task among all other measures.

Mathematical equivalence

We fitted logistic regression models for children’s math-
ematical-equivalence performance. We used generation 
of at least one correct strategy as the outcome because 
a major shift in conceptual understanding of the equal 
sign is required to solve just one problem correctly 
(McNeil et  al., 2019). Descriptively, 45% of children 
solved all four problems incorrectly, 27% solved one to 
three problems correctly, and 28% solved all problems 
correctly. Figure 2d displays the estimates of the full 
model. There was a positive effect of CRT–D: A 1-standard-
deviation increase in CRT–D predicted a 0.83-log-odds 
increase in generating a correct strategy, 95% credible 
interval = [0.18, 1.51]. CRT–D slightly improved the out-
of-sample predictive performance of the full model in 
comparison with the control model (ΔLOOIC = 3.46,  
SE = 6.21). Projective predictive selection suggested a 
submodel with Toolbox DCCS, CRT–D, and Need for 
Cognition (ordered by relative predictive importance). 
The submodel provided better predictive performance 
than the full model (ΔLOOIC = 11.87, SE = 4.06). These 
results indicate that children’s CRT–D performance had a 
positive effect on mathematical-equivalence performance 

over and above the other measured variables and, further, 
that CRT–D performance is among the minimal set of most 
relevant predictors.

Table 3 provides a summary of model comparisons.

Discussion

In this research, we examined whether a recent mea-
sure of school-age children’s cognitive reflection, the 
CRT–D, predicts conceptual understanding in science 
and mathematics. To do so, we measured children’s 
CRT–D performance, executive functions, rational 
thinking, and conceptual understanding of vitalist biol-
ogy and mathematical equivalence, critical domains of 
early science and mathematics in which conceptual 
change is protracted and hard won. We found that 
CRT–D performance was a strong predictor of children’s 
conceptual understanding in both domains, even when 
adjusting for age, executive functions, and rational 
thinking. Further, in both domains, the CRT–D was 
among the most important variables for out-of-sample 
prediction. Our findings suggest that the CRT–D suc-
cessfully measures children’s cognitive reflection and 
that cognitive reflection is a valuable construct in the 
study of conceptual development.

Our results are consistent with two explanations of 
how cognitive reflection supports children’s conceptual 
understanding. First, cognitive reflection may facilitate 
children’s expression of counterintuitive concepts, as 
executive-function skills have been shown to do 
(Vosniadou et al., 2018). The ability to reflect on and 
override an intuitive response almost certainly supports 
children’s biological reasoning (in which animism con-
flicts with vitalism) and mathematical-equivalence 
problem solving (in which operational conceptions of 
the equal sign conflict with relational ones).

A second possibility is that cognitive reflection facili-
tates children’s initial learning of counterintuitive sci-
entific and mathematical ideas. Children with greater 
cognitive reflection may respond to counterintuitive 

Table 3. Model Comparisons for Each Outcome Measure

Outcome

Control model Full model Submodel

Selected variablesLOOIC LOOIC LOOIC

Vitalist-biology composite 341.32 (19.75) 330.75 (18.48) 326.78 (18.28) Age, CRT–D, Toolbox DCCS, verbal fluency, 
Toolbox Flanker, base-rate sensitivity

Body-parts knowledge 360.56 (15.74) 355.42 (15.43) 346.38 (15.76) Age, verbal fluency, CRT–D, Toolbox DCCS
Living-things knowledge 585.61 (25.41) 578.58 (25.63) 568.49 (24.90) CRT–D, Toolbox Flanker, backward digit 

span
Mathematical equivalence 116.77 (10.82) 113.32 (11.21) 101.45 (9.46) Toolbox DCCS, CRT–D, Need for Cognition

Note: Standard errors are given in parentheses. A lower leave-one-out information criterion (LOOIC) reflects better out-of-sample prediction. 
Submodel variables are listed by order of selection entry (i.e., conditional improvement of out-of-sample prediction). CRT–D = Cognitive 
Reflection Test–Developmental; DCCS = Dimensional Change Card Sort.
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experience or instruction differently from less reflective 
children. Previous research demonstrates that executive-
function skills are involved in both the expression and 
the construction of children’s science and math con-
cepts (Bascandziev et al., 2018; Cragg & Gilmore, 2014), 
and we suspect that cognitive reflection plays both roles 
as well. Indeed, we have found that cognitive reflection 
predicts children’s learning of counterintuitive scientific 
concepts, even after adjusting for baseline conceptual 
knowledge (Young & Shtulman, 2020).

One potential limitation to our study is that certain 
CRT–D items require factual knowledge relevant to our 
conceptual measures. For example, Question 5 (“What 
do cows drink?”) requires factual biological knowledge 
potentially relevant to vitalist biology, and Question 3 
(“A farmer has 5 sheep, all but 3 run away. How many 
are left?”) requires mathematical knowledge potentially 
relevant to mathematical equivalence. It is possible that 
the CRT–D’s predictive power was driven by a few 
domain-relevant items and not the CRT–D more broadly. 
Reanalysis of the vitalist-biology outcomes using a mod-
ified CRT–D without the biology-relevant Questions 5 
and 6 and the mathematical-equivalence outcome using 
a modified CRT–D without the math-relevant Questions 
3 and 4 yielded similar results (see the Supplemental 
Material). Thus, the predictive utility of the CRT–D was 
not restricted to domain-relevant items. However, future 
research would benefit from measuring and controlling 
for children’s factual knowledge of the relevant domains.

Performance on the adult CRT is correlated with 
executive-function skills; however, the predictive power 
of the CRT is often separable from these abilities (e.g., 
Toplak et al., 2011). The present findings extend this 
pattern, showing that the predictive utility of the CRT–D 
extends beyond executive function and rational think-
ing, at least as operationalized in the current study. 
What may account for the CRT–D’s surprisingly unique 
predictive power?

Ongoing research with adults is focused on specify-
ing the processes and components that underlie cogni-
tive reflection. Whether cognitive reflection is a set of 
cognitive abilities, dispositions, acquired knowledge, 
or some combination thereof is a matter of controversy 
and active debate. Popular accounts of what the CRT 
captures include (a) cognitive miserliness, or an unwill-
ingness to go beyond heuristic processing and invest 
cognitive effort (Stanovich et al., 2016); (b) a general 
disposition toward analytic thinking (Pennycook et al., 
2015); and (c) ignorance of the relevant rules, strate-
gies, or beliefs that facilitate correct responding (Szaszi 
et  al., 2017). Recent research has also revealed that 
some individuals never consider an intuitive response 
to CRT items (Bago & De Neys, 2019; Szaszi et al., 2017). 
Such intuitively logical individuals generate a correct 

response under cognitive load and time pressure but 
generate correct justifications only after deliberation 
(Bago & De Neys, 2019). Thus, cognitive reflection may 
be used to override an inaccurate intuitive response or 
to look for an explicit justification supporting a correct 
response (De Neys & Pennycook, 2019). The present 
study was not designed to decide among these accounts, 
but programmatic research on the development of cog-
nitive reflection will help adjudicate debates over its 
underlying mechanisms.

Broadly, this study highlights the value and potential 
of extending the study of cognitive reflection from 
adults to children. For adults, the CRT is a unique pre-
dictor of a broad range of outcomes and behaviors. If 
children’s cognitive reflection is continuous with that of 
adults, the CRT–D may prove useful in examining the 
development of domains as far-ranging as stereotyping 
(Hammond & Cimpian, 2017), moral reasoning (Royzman 
et  al., 2015), and evidence evaluation (Pennycook & 
Rand, 2019). Children’s cognitive reflection may also 
prove to be an effective target for intervention.

That said, the CRT–D used in the present research 
should not be viewed as a fixed scale but one open to 
revision. We took a conservative approach and retained 
all CRT–D items because they matched the response 
structure of the original CRT across our age range. The 
observed discrepancy between a relatively modest 
Cronbach’s α and satisfactory McDonald’s ωtotal suggests 
that the CRT–D, like the original CRT, may be psycho-
metrically complex (Stanovich, 2018; Stupple et  al., 
2017). Still, additional research is needed to verify that 
our CRT–D items function as intended across the tar-
geted age range. For example, only about 8% of chil-
dren in the present study responded that a pound of 
rocks weighs the same as a pound of feathers (Question 
6). Younger children may have lacked the knowledge 
required to answer correctly, whereas older children 
may have failed to detect and override the intuitive 
response. A related concern is that certain items in the 
present CRT–D might not function well in other cultures 
or languages. Various methods have been used to 
address such issues with adult CRTs, including chrono-
metric analysis (Stupple et  al., 2017; Travers et  al., 
2016), protocol analysis (Szaszi et al., 2017), and item-
response theory (Primi et  al., 2016). Future research 
with larger and more diverse samples should apply 
such methods to better understand the psychometric 
properties of the CRT–D and guide revision of the scale.

Conclusion

The CRT is the predominant measure of adult individual 
differences in analytic versus intuitive thinking. Here, 
we examined a CRT for school-age children, the CRT–D, 
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and found that it was a strong and unique predictor of 
children’s conceptual understanding in science and 
mathematics. These findings demonstrate, for the first 
time, the theoretical and practical importance of chil-
dren’s cognitive reflection. We anticipate that the CRT–
D will allow future researchers to investigate not only 
individual differences in cognitive abilities among chil-
dren but also the development, malleability, and con-
sequences of cognitive reflection more generally.
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