
An Introduction and Analysis
of the Fast Fourier Transform

Thao Nguyen

Mentor: Professor Ron Buckmire

Outline

1. Outline of the Talk

2. Continuous Fourier Transform
(CFT)

• Visualization of the CFT

• Mathematical description

3. Discrete Fourier Transform

• Theory (developed from CFT)

• Applications and an example

4. Fast Fourier Transform
• Theory (splitting DFT into 2 recursively)

5. Time Complexity
• Definition
• DFT
• Cooley-Tukey’s FFT

6. Examples comparing real time complexity
• DFT
• FFT

7. FFT application on Solar Array data
8. Conclusion

2

Continuous Fourier Transform

3

In the Polar coordinate with r=R and θ=wt

𝑥 𝑡 = 𝑅𝑒𝑖𝑤𝑡

In the Cartesian coordinate

𝑥 𝑡 = 𝑅𝑐𝑜𝑠 𝑤𝑡 + 𝑖𝑅𝑠𝑖𝑛(𝑤𝑡)

The position x of time t is a periodic function of time.

(https://youtu.be/LznjC4Lo7lE?t=28s)

Continuous Fourier Transform

4

Continuous Fourier Transform

If we add enough circles with different sizes and given appropriate angular
frequency for each circle, we can create any shape [5].

(https://www.youtube.com/watch?v=QVuU2YCwHjw)

5

Continuous Fourier Transform

The path x(t) has n different circles each with unique angular frequency wj, and radius Rj, can be
described on the complex plane as a sum of all the circles:

𝑥 𝑡 = 𝑅𝑗𝑒
𝑖𝑤𝑗𝑡

𝑛

𝑗=1

For a non-periodic function x(t), we can assume that its period is approaching infinity, so it is
represented by an infinite number of circles.

𝑥(𝑡) = 𝑅 𝑤 𝑒𝑖𝑤𝑡𝑑𝑤
∞

−∞

𝑅(𝑤) = 𝑥 𝑡 𝑒−𝑖𝑤𝑡𝑑𝑡
∞

−∞

The function of angular frequency R(w) is the continuous Fourier transform of the function of
time x(t).

Fourier Transform decomposes any function into periodic functions [4].

 6

(1)

(2)

(3)

𝑥(𝑡) = 𝑅(𝑤)𝑒𝑖𝑤𝑡𝑑𝑤
∞

−∞

Let x(t) = 𝑆6(x), and R(w) = S(f)

Continuous Fourier Transform

 The Gif was originally created by a Wikipedia user, can be found at
https://en.wikipedia.org/wiki/File:Fourier_transform_time_and_frequency_domains_(small).gif 7

https://en.wikipedia.org/wiki/File:Fourier_transform_time_and_frequency_domains_(small).gif

Discrete Fourier Transform (DFT)

Discretizing the continuous Fourier Transform:

• Let x(Tn) be the nth element of the finite sequence {xN}, with T as the discrete
sampling interval between each data point. So 𝑇𝑛 = 𝑇 × 𝑛.

• X(wk) is the DFT of x(Tn) [1].

𝑋 𝑤𝑘 = 𝑥(𝑇𝑛)𝑒
−𝑖𝑤𝑘𝑇𝑛

𝑁−1

𝑛=0

with the kth angular frequency wk =
2𝜋𝑘

𝑁𝑇

• Substitute wk =
2𝜋𝑘

𝑁𝑇
, and 𝑇𝑛 = 𝑇 × 𝑛, we have:

𝑋 𝑤𝑘 = 𝑥(𝑇𝑛)𝑒
−
2𝜋𝑖𝑛𝑘
𝑁

𝑁−1

𝑛=0

For 0 ≤ 𝑘 < 𝑁

8

(4)

(5)

“This is the most important numerical algorithm of our lifetime...”

– Gilbert Strang (Chauvenet Prize 1977 Recipient)

• Digital signal processing: spectral analysis of signal (human speech and hearing),
Frequency Response of Systems (system analysis in frequency domain),
Convolution via the Frequency Domain [8].

• Image processing: image analysis, image filtering, image reconstruction and
image compression.

• Solving partial differential equation

Discrete Fourier Transform (DFT) Application

9

Digital signal processing: an analysis of a Blue Whale call [10]

Discrete Fourier Transform (DFT) Application

10

Fast Fourier Transform (FFT)

• From (5) on page 8

𝑋 𝑤𝑘 = 𝑥(𝑇𝑛)𝑒
−
2𝜋𝑖𝑛𝑘
𝑁

𝑁−1

𝑛=0

, 0 ≤ 𝑘 < 𝑁

• Let the DFT of the 𝑥(𝑇𝑛) data points be written as the sum of an even-indices
n=2m as 𝐸𝑘 and odd indices n=2m+1 as 𝑂𝑘.

𝐸𝑘 = 𝑥(𝑇2𝑚)𝑒
−
2𝜋𝑖𝑘(2𝑚)
𝑁

𝑁/2−1

𝑚=0

 𝑎𝑛𝑑 𝑂𝑘 = 𝑥(𝑇2𝑚+1)𝑒
−2𝜋𝑖𝑘(2𝑚)
𝑁

𝑁/2−1

𝑚=0

𝑋 𝑤𝑘 = 𝑥(𝑇2𝑚)𝑒
−
2𝜋𝑖𝑘(2𝑚)
𝑁

𝑁/2−1

𝑚=0

+ 𝑥(𝑇2𝑚+1)𝑒
−2𝜋𝑖𝑘(2𝑚+1)

𝑁

𝑁/2−1

𝑚=0

 = 𝐸𝑘 + 𝑒
−𝑖2𝜋𝑘

𝑁 𝑂𝑘

 11

(6)

(7)

(8)

Fast Fourier Transform (FFT)

𝑋 𝑤𝑘 = 𝐸𝑘 + 𝑒
−𝑖2𝜋𝑘
𝑁 𝑂𝑘

Since the even and odd indices DFT is periodic over N/2, so 𝐸𝑘 =𝐸𝑘±𝑁
2

 and 𝑂𝑘 = 𝑂𝑘±𝑁
2

We can write 𝑋 𝑤𝑘 such that k can be reduced in half, from 0 to N/2:

𝑋 𝑤𝑘 = 𝐸𝑘 + 𝑒
−𝑖2𝜋𝑘

𝑁 𝑂𝑘 for 0 ≤ 𝑘 <
𝑁

2

𝑋 𝑤𝑘 = 𝐸𝑘− 𝑁
2

+ 𝑒
−𝑖2𝜋𝑘

𝑁 𝑂
𝑘−
𝑁

2

 for
𝑁

2
≤ 𝑘 < 𝑁

Also since 𝑒
−𝑖2𝜋(𝑘+

𝑁
2)

𝑁 = 𝑒
−𝑖2𝜋𝑘

𝑁
−𝑖𝜋 = 𝑒−𝑖𝜋𝑒

−𝑖2𝜋𝑘

𝑁 = −𝑒
−𝑖2𝜋𝑘

𝑁

𝑋(𝑤
𝑘+
𝑁
2
) = 𝐸

𝑘+
𝑁
2
+ 𝑒
−𝑖2𝜋 𝑘+

𝑁
2

𝑁 𝑂
𝑘+
𝑁
2
= 𝐸𝑘 − 𝑒

−𝑖2𝜋𝑘
𝑁 𝑂𝑘

 12

(11)

(8)

(9)

(10)

Fast Fourier Transform (FFT)

The FFT algorithm recursively break the DFT into even and odd indices DFT 𝐸𝑘 and 𝑂𝑘 then
calculate these smaller DFT

𝑋 𝑤𝑘 = 𝐸𝑘 + 𝑒
−𝑖2𝜋𝑘
𝑁 𝑂𝑘

𝑋(𝑤
𝑘+
𝑁
2
) = 𝐸𝑘 − 𝑒

−𝑖2𝜋𝑘
𝑁 𝑂𝑘

with 0 ≤ 𝑘 <
𝑁

2

13

(11)

(9,10)

Time Complexity

• “Complexity can be viewed as the maximum number of primitive operations that
a program may execute. Regular operations are single additions, multiplications,
assignments etc. We may leave some operations uncounted and concentrate on
those that are performed the largest number of times” [2].

• Time complexity can be described in Big-O notation.

14

O(1): It takes the algorithm the
same amount of time to compute,
with different variables.

int a=1;
X= a+a;

O(N): The computation time
depend linearly on variable N.

For (i=0, i<N, i++)
Print i;

O(𝑁2): The computation time depend on the
quadratic of N.

For (i=0, i<N,i++)
 For(j=10, j<N+10,j++)
 print i+j;

O(log2𝑁) : The computation time started with N,
then get cut in half for each iteration loop

x=N;
Do{
 X=x/2;
 } while (x>0)

Time complexity of DFT (Matlab)

function output = dft(input)

 t1= now;

 N = length(input);

 output = zeros(size(input));

 for k = 0 : N - 1

 s = 0;

 for t = 0 : N - 1

s = s + input(t + 1) * exp(-2i *pi*t * k / N);

 end

 output(k + 1) = s;

 end

 t2 = now;

 disp(t2-t1);

end

+O(1)

+O(1)

+O(1)

+O(1)

+O(N)

 *O(1)

 +O(N)

 *O(1)

 +O(1)

+O(1)

+O(1)

=O(1+1+1+1+N*(1+N*1+1)+1+1)

=O(𝑁2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

=O(𝑁2)

Code taken from http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
 15

http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform
http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform

Time complexity of FFT (C++)

void fft(CArray& x)

{const size_t N = x.size();

if (N <= 1)

 return;

CArray even = x[std::slice(0, N/2, 2)];

CArray odd = x[std::slice(1, N/2, 2)];

fft(even);

fft(odd);

for (size_t k = 0; k < N/2; ++k)

 { Complex t = std::polar(1.0, -2 * PI * k / N) * odd[k];

 x[k] = even[k] + t;

 x[k+N/2] = even[k] - t;

 }

}

+O(1)

+O(1)

 *O(1)

+O(1)

+O(1)

+O(𝑁log2𝑁)

+O(N)

 *O(1)

 +O(1)

 +O(1)

 =O(𝑁log2𝑁)

Code taken from http://rosettacode.org/wiki/Fast_Fourier_transform#C.2B.2B
 16

http://rosettacode.org/wiki/Fast_Fourier_transformC.2B.2B

Time complexity of DFT vs. FFT

 a N =2𝑎 Run time DFT Run time FFT

13 8192 1.88 × 10−4 0

14 16384 7.80 × 10−4 4.63 × 10−8

15 32768 39 × 10−4 4.62 × 10−8

16 65536 50 × 10−4 9.27 × 10−8

17

• Let N =2𝑎, with a ∈ {13, 14, 15, 16}

• The time interval is from -100 to 100 with sample t=200/N

• The original sequence x(tn) = Sin(tn), with n is from 0 to N-1 and tn = nt

Time complexity of DFT vs. FFT

18

Time complexity of DFT vs. FFT

a N =2𝑎 Run time DFT
Run time

FFT

13 8192 3.16 × 10−4 0

14 16384 14 × 10−4 0

15 32768 56 × 10−4 1.15 × 10−8

16 65536 196 × 10−4 2.32 × 10−8

19

• Let N =2𝑎, with a ∈ {13, 14, 15, 16}

• The time interval is from -100 to 100 with sample t=200/N

• The original sequence x(tn) = 𝑡𝑛
3, with n is from 0 to N-1 and tn = nt

Time complexity of DFT vs. FFT

20

Application of FFT on Solar Array data

The discrete data of efficiency as a function of time looks like a periodic
function.

21

Application of FFT on Solar Array data

The DFT of the efficiency confirms our observation that the data has a
period of a year/ annually.

22

Application of FFT on Solar Array data

The DFT of the efficiency is similar in shape with the DFT of function
Cos(x)

23

Conclusion

• We showed that the periodic signal of time can be represent as other primitive
periodic function

• The application of the DFT in mathematics and engineering is very important as
demonstrated through an example: whale signal.

• Since the DFT algorithm has a time complexity O(𝑁2), it is very time consuming
for processing large amount of data.

• The FFT algorithm gives the same result as the DFT much faster, but with time
complexity O(𝑁log2𝑁), allowing the run time for large amount of data to be
more reasonable.

24

References

1. A. V. Anand, “A Brief study of Discrete and Fast Fourier Transform.”

2. Codility Ltd. https://codility.com/media/train/1-TimeComplexity.pdf.

3. D. Morin, “Fourier Analysis,” in unpublished, ch. 3. 2009.

4. F. A. Farris, “Wheels on Wheels-Surprisingly Symmetry,” in Mathematics Magazine, vol. 69, No.3, June 1996.

5. N. R. Hanson, “The Mathematical Power of Epicyclical Astronomy.” in Isis, Vol. 51, No. 2 (Jun., 1960), pp. 150-
158, University of Chicago Press, September 2011.
http://www.u.arizona.edu/~aversa/scholastic/Mathematical%20Power%20of%20Epicyclical%20Astronomy%20
(Hanson).pdf

6. J. W. Cooley, J. W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series,” 1965.

7. S. G. Johnson and M. Frigo, "Implementing FFTs in practice," in Fast Fourier Transforms (C. S. Burrus, ed.), ch.
11, Rice University, Houston TX: Connexions, September 2008.

8. S. W. Smith, “Applications of the DFT,” in The Scientist and Engineer's Guide to Digital Signal Processing, ch. 9,
California Technical Publishing, 1997-2011.

9. Strang, Gilbert, "Wavelets," American Scientist 82 (3): 253S.

10. The MathWorks, Inc, “Fast Fourier Transform (FFT).” http://www.mathworks.com/help/matlab/math/fast-
fourier-transform-fft.html.

25

https://codility.com/media/train/1-TimeComplexity.pdf
https://codility.com/media/train/1-TimeComplexity.pdf
https://codility.com/media/train/1-TimeComplexity.pdf
http://www.u.arizona.edu/~aversa/scholastic/Mathematical Power of Epicyclical Astronomy (Hanson).pdf
http://www.u.arizona.edu/~aversa/scholastic/Mathematical Power of Epicyclical Astronomy (Hanson).pdf
http://www.u.arizona.edu/~aversa/scholastic/Mathematical Power of Epicyclical Astronomy (Hanson).pdf
http://cnx.org/content/m16336/
http://www.jstor.org/stable/29775194
http://www.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://www.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://www.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://www.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://www.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://www.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://www.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html

