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Continuous Fourier Transform 
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In the Polar coordinate with r=R and θ=wt 

𝑥 𝑡 = 𝑅𝑒𝑖𝑤𝑡 

In the Cartesian coordinate 

𝑥 𝑡 = 𝑅𝑐𝑜𝑠 𝑤𝑡 + 𝑖𝑅𝑠𝑖𝑛(𝑤𝑡) 



The position x  of time t is a periodic function of time. 

(https://youtu.be/LznjC4Lo7lE?t=28s) 

 

Continuous Fourier Transform 
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Continuous Fourier Transform 

If we add enough circles with different sizes and given appropriate angular 
frequency for each circle, we can create any shape [5]. 

(https://www.youtube.com/watch?v=QVuU2YCwHjw) 
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Continuous Fourier Transform 

The path x(t) has n different circles each with unique angular frequency wj,  and radius Rj, can be 
described on the complex plane as a sum of all the circles: 

𝑥 𝑡 = 𝑅𝑗𝑒
𝑖𝑤𝑗𝑡

𝑛

𝑗=1

 

For a non-periodic function x(t), we can assume that its period is approaching infinity, so it is 
represented by an infinite number of circles. 

 

𝑥(𝑡) =  𝑅 𝑤 𝑒𝑖𝑤𝑡𝑑𝑤 
∞

−∞

 

 

𝑅(𝑤) =  𝑥 𝑡 𝑒−𝑖𝑤𝑡𝑑𝑡
∞

−∞

 

The function of angular frequency R(w) is the continuous Fourier transform of the function of 
time x(t). 

Fourier Transform decomposes any function into periodic functions [4]. 
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(1) 

(2) 

(3) 



𝑥(𝑡) =  𝑅(𝑤)𝑒𝑖𝑤𝑡𝑑𝑤
∞

−∞

 

Let x(t) = 𝑆6(x), and R(w) = S(f) 

Continuous Fourier Transform 

 The Gif was originally created by a Wikipedia user, can be found at 
https://en.wikipedia.org/wiki/File:Fourier_transform_time_and_frequency_domains_(small).gif  7 

https://en.wikipedia.org/wiki/File:Fourier_transform_time_and_frequency_domains_(small).gif


Discrete Fourier Transform (DFT) 

Discretizing the continuous Fourier Transform: 

• Let x(Tn) be the nth  element of the finite sequence {xN}, with T as the discrete 
sampling interval between each data point. So 𝑇𝑛 = 𝑇 × 𝑛. 

• X(wk) is the DFT of x(Tn) [1]. 

𝑋 𝑤𝑘 =  𝑥(𝑇𝑛)𝑒
−𝑖𝑤𝑘𝑇𝑛

𝑁−1

𝑛=0

 

with the kth angular frequency wk =
2𝜋𝑘

𝑁𝑇
 

• Substitute wk =
2𝜋𝑘

𝑁𝑇
, and  𝑇𝑛 = 𝑇 × 𝑛, we have: 

𝑋 𝑤𝑘 =  𝑥(𝑇𝑛)𝑒
−
2𝜋𝑖𝑛𝑘
𝑁

𝑁−1

𝑛=0

 

For 0 ≤ 𝑘 < 𝑁 
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(4) 

(5) 



“This is the most important numerical algorithm of our lifetime...”  

– Gilbert Strang (Chauvenet Prize 1977 Recipient) 

 

• Digital signal processing:  spectral analysis of signal (human speech and hearing), 
Frequency Response of Systems (system analysis in frequency domain), 
Convolution via the Frequency Domain [8]. 

 

• Image processing:  image analysis, image filtering, image reconstruction and 
image compression. 

 

• Solving partial differential equation 

Discrete Fourier Transform (DFT) Application 
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Digital signal processing: an analysis of a Blue Whale call [10] 

 

 

 

Discrete Fourier Transform (DFT) Application 
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Fast Fourier Transform (FFT) 

• From (5) on page 8  

𝑋 𝑤𝑘 =  𝑥(𝑇𝑛)𝑒
−
2𝜋𝑖𝑛𝑘
𝑁

𝑁−1

𝑛=0

,   0 ≤ 𝑘 < 𝑁 

• Let the DFT of the 𝑥(𝑇𝑛) data points be written as the sum of an even-indices 
n=2m as 𝐸𝑘 and odd indices n=2m+1 as 𝑂𝑘. 

 

𝐸𝑘 =  𝑥(𝑇2𝑚)𝑒
−
2𝜋𝑖𝑘(2𝑚)
𝑁

𝑁/2−1

𝑚=0

 𝑎𝑛𝑑 𝑂𝑘 =  𝑥(𝑇2𝑚+1)𝑒
−2𝜋𝑖𝑘(2𝑚)
𝑁

𝑁/2−1

𝑚=0

 

 

𝑋 𝑤𝑘 =  𝑥(𝑇2𝑚)𝑒
−
2𝜋𝑖𝑘(2𝑚)
𝑁

𝑁/2−1

𝑚=0

+  𝑥(𝑇2𝑚+1)𝑒
−2𝜋𝑖𝑘(2𝑚+1)

𝑁

𝑁/2−1

𝑚=0

 

 =                  𝐸𝑘                         +                   𝑒
−𝑖2𝜋𝑘

𝑁 𝑂𝑘 
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(6) 

(7) 

(8) 



Fast Fourier Transform (FFT) 

𝑋 𝑤𝑘 = 𝐸𝑘 + 𝑒
−𝑖2𝜋𝑘
𝑁 𝑂𝑘 

Since the even and odd indices DFT is periodic over N/2, so 𝐸𝑘 =𝐸𝑘±𝑁
2

 and 𝑂𝑘 = 𝑂𝑘±𝑁
2

 

We can write 𝑋 𝑤𝑘  such that k can be reduced in half, from 0 to N/2: 

𝑋 𝑤𝑘 = 𝐸𝑘 + 𝑒
−𝑖2𝜋𝑘

𝑁 𝑂𝑘   for 0 ≤ 𝑘 <
𝑁

2
 

𝑋 𝑤𝑘 = 𝐸𝑘− 𝑁
2

+ 𝑒
−𝑖2𝜋𝑘

𝑁 𝑂
𝑘− 
𝑁

2

  for 
𝑁

2
≤ 𝑘 < 𝑁 

 

Also since  𝑒
−𝑖2𝜋(𝑘+

𝑁
2)

𝑁  = 𝑒
−𝑖2𝜋𝑘

𝑁
−𝑖𝜋 = 𝑒−𝑖𝜋𝑒

−𝑖2𝜋𝑘

𝑁 = −𝑒
−𝑖2𝜋𝑘

𝑁   

 

𝑋(𝑤
𝑘+
𝑁
2
) =  𝐸

𝑘+
𝑁
2
+ 𝑒
−𝑖2𝜋 𝑘+

𝑁
2

𝑁 𝑂
𝑘+
𝑁
2
= 𝐸𝑘 − 𝑒

−𝑖2𝜋𝑘
𝑁 𝑂𝑘 
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(11) 

(8) 

(9) 

(10) 



Fast Fourier Transform (FFT) 

The FFT algorithm recursively break the DFT into even and odd indices DFT 𝐸𝑘 and 𝑂𝑘  then 
calculate these smaller DFT  

𝑋 𝑤𝑘 = 𝐸𝑘 + 𝑒
−𝑖2𝜋𝑘
𝑁 𝑂𝑘 

 

𝑋(𝑤
𝑘+
𝑁
2
) =  𝐸𝑘 − 𝑒

−𝑖2𝜋𝑘
𝑁 𝑂𝑘 

with 0 ≤ 𝑘 <
𝑁

2
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(11) 

(9,10) 



Time Complexity  

• “Complexity can be viewed as the maximum number of primitive operations that 
a program may execute. Regular operations are single additions, multiplications, 
assignments etc. We may leave some operations uncounted and concentrate on 
those that are performed the largest number of times” [2]. 

• Time complexity can be described in Big-O notation. 

14 

O(1): It takes the algorithm the 
same amount of time to compute, 
with different variables.  

int a=1; 
X= a+a; 
 

O(N): The computation time 
depend linearly on variable N.  

For (i=0, i<N, i++) 
Print i; 

 

O(𝑁2): The computation time depend on the 
quadratic of N. 

For (i=0, i<N,i++) 
       For(j=10, j<N+10,j++) 
 print i+j;  
 

O(log2𝑁) : The computation time started with N, 
then get cut in half for each iteration loop 

x=N; 
Do{  
      X=x/2; 
 } while (x>0) 



Time complexity of DFT (Matlab) 

function output = dft(input) 

  t1= now; 

  N = length(input); 

  output = zeros(size(input)); 

  for k = 0 : N - 1  

 s = 0; 

        for t = 0 : N - 1  

s = s + input(t + 1) * exp(-2i *pi*t * k / N); 

    end 

    output(k + 1) = s; 

  end 

  t2 = now; 

  disp(t2-t1); 

end 

+O(1) 

+O(1) 

+O(1) 

+O(1) 

+O(N) 

          *O(1) 

          +O(N) 

                    *O(1) 

          +O(1) 

+O(1) 

+O(1) 

=O(1+1+1+1+N*(1+N*1+1)+1+1) 

=O(𝑁2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

 

 

 

 

=O(𝑁2) 

Code taken from http://www.nayuki.io/page/how-to-implement-the-discrete-fourier-transform 
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Time complexity of FFT (C++) 

void fft(CArray& x) 

{const size_t N = x.size(); 

if (N <= 1)  

    return; 

 

CArray even = x[std::slice(0, N/2, 2)]; 

CArray  odd = x[std::slice(1, N/2, 2)]; 

fft(even); 

fft(odd); 

     

for (size_t k = 0; k < N/2; ++k) 

    {   Complex t = std::polar(1.0, -2 * PI * k / N) * odd[k]; 

        x[k    ]      = even[k] + t; 

        x[k+N/2] = even[k] - t; 

    } 

} 

 

+O(1) 

+O(1) 

          *O(1) 

+O(1) 

+O(1) 

+O(𝑁log2𝑁) 

 

+O(N) 

          *O(1) 

          +O(1) 

          +O(1) 

  =O(𝑁log2𝑁) 

Code taken from http://rosettacode.org/wiki/Fast_Fourier_transform#C.2B.2B  
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Time complexity of DFT vs. FFT 

 a N =2𝑎 Run time DFT Run time FFT 

13 8192 1.88 × 10−4 0 

14 16384 7.80 × 10−4 4.63 × 10−8 

15 32768 39 × 10−4 4.62 × 10−8 

16 65536 50 × 10−4 9.27 × 10−8 

17 

• Let N =2𝑎, with a ∈ {13, 14, 15, 16} 

• The time interval is from -100 to 100 with sample t=200/N 

• The original sequence x(tn) = Sin(tn), with n is from 0 to N-1 and tn = nt  



Time complexity of DFT vs. FFT 
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Time complexity of DFT vs. FFT 

a N =2𝑎 Run time DFT 
Run time 

FFT 

13 8192 3.16 × 10−4 0 

14 16384 14 × 10−4 0 

15 32768 56 × 10−4 1.15 × 10−8 

16 65536 196 × 10−4 2.32 × 10−8 
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• Let N =2𝑎, with a ∈ {13, 14, 15, 16} 

• The time interval is from -100 to 100 with sample t=200/N 

• The original sequence x(tn) = 𝑡𝑛
3, with n is from 0 to N-1 and tn = nt  



Time complexity of DFT vs. FFT 
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Application of FFT on Solar Array data 

The discrete data of efficiency as a function of time looks like a periodic 
function. 
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Application of FFT on Solar Array data 

The DFT of the efficiency confirms our observation that the data has a 
period of a year/ annually. 

22 



Application of FFT on Solar Array data 

The DFT of the efficiency is similar in shape with the DFT of function 
Cos(x) 
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Conclusion 

• We showed that the periodic signal of time can be represent as other primitive 
periodic function 

• The application of the DFT in mathematics and engineering is very important as 
demonstrated through an example: whale signal. 

• Since the DFT algorithm has a time complexity O(𝑁2), it is very time consuming 
for processing large amount of data. 

• The FFT algorithm gives the same result as the DFT much faster, but with time 
complexity  O(𝑁log2𝑁), allowing the run time for large amount of data to be 
more reasonable. 
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