Stacking Blocks and Counting Permutations

Hana Mizuno
Occidental College
mizuno@oxy.edu

December 3rd, 2015

Overview

(1) Background
(2) Original Question and Solution

- Pudwell's Constructive Approach to the question
(3) Pudwell's Permutation Patterns
- Definitions

4 Permutation Lemma
(5) Mutual Recurrence on Original Question and Counting Permutations
(6) Conclusion

Background

- A father was helping out his daughter, Julia's middle school math project.
- Middle school level geometry question.
- Relationship between middle school geometry and enumeration problem (Combinatorics)

Original Question

The unit cubes are piled up in triangular form, so that the k th row has $2 k-1$ cubes. Find the surface area $S A(n)$ of a pile of height n, i.e., a pile with n rows.

Although Julia came up with her own constructive approach to this question, we will look at Pudwell's approach.

Pudwell's Constructive Approach

Constructing a pile of height (n) from a pile of height $(n-1)$ (recursive)

Pudwell's Constructive Approach

Constructing a pile of height (n) from a pile of height $(n-1)$ (recursive)
($\mathrm{n}-1$) th solid

(1) Separate the bottom surface of the ($n-1$)st pile

Pudwell's Constructive Approach

Constructing a pile of height (n) from a pile of height $(n-1)$ (recursive)
($\mathrm{n}-1$) th solid

(1) Separate the bottom surface of the ($n-1$)st pile
(2) Construct a "ring" (row of $2 n-1$ cubes without top and bottom faces) \rightarrow $2(2 n-1)+2=4 n-2+2=4 n$

Pudwell's Constructive Approach

Constructing a pile of height (n) from a pile of height $(n-1)$ (recursive)
($\mathrm{n}-1$) th solid

(1) Separate the bottom surface of the ($n-1$)st pile
(2) Construct a "ring" (row of $2 n-1$ cubes without top and bottom faces) \rightarrow $2(2 n-1)+2=4 n-2+2=4 n$
(3) Attach the top and bottoms to the two cubes at the end of the row (Yellow sides) $\rightarrow \mathbf{4 n} \mathbf{+ 4}$

Pudwell's Constructive Approach

Constructing a pile of height (n) from a pile of height $(n-1)$ (recursive)

($\mathrm{n}-1$) th solid

(1) Separate the bottom surface of the ($n-1$)st pile
(2) Construct a " ring" (row of $2 n-1$ cubes without top and bottom faces) \rightarrow $2(2 n-1)+2=4 n-2+2=4 n$
(3) Attach the top and bottoms to the two cubes at the end of the row (Yellow sides) $\rightarrow \mathbf{4 n + 4}$
(9) glue the pile of height $(n-1)$ without a bottom face to the row of $2 n-1$ cubes to form the pile of height (n).

So the surface area increases by $4 n+4$, when we go from a pile of height $(n-1)$ to a pile of height n, thus

$$
S A(n)-S A(n-1)=4 n+4 \text { for } n \geq 2
$$

Using this recurrence and the initial condition $S A(1)=6$, we can prove that

$S A(n)=2 n^{2}+6 n-2$ for $n \geq 1$.

Permutation Patterns -Definitions

- permutation:"string of digits" example) "1224", "53928", "1212", "7948323"
- multiset permutation: "permutations [specifically] with more than one copy of each letter"
example) " 1221 ", " 445599 "
- reduction: a process that "replaces the occurrence of the i th smallest number with the number i."
Example: Reduction of 2571165 to 2351143
- 1 s are replaced by 1
- 2 is replaced by 2
- 5 is replaced by 3
- 6 s are replaced by 4
- 7 is replaced by 5

Permutation Patterns -Definitions

Assume that both p and q are permutations.

- p contains q : p contains q when there exists a subsequence of p that reduces to q.
example)
$p=2671165$ and $q=2321$. In this case, q is contained by p, because p has a subsequence of 6765 , which can be reduced to 2321, which is equal to string q.
- p avoids q : p avoids q when there does not exist a subsequence of p that reduces to q.

Permutation Patterns

$\underline{S_{n}^{2}}$: Set of permutations

- n : number of different digits in each string
- 2: indicates that each digit appears exactly twice in each string.

Example:

- S_{1}^{2} : Set of permutations with two 1 s .

$$
S_{1}^{2}=\{11\}
$$

- S_{2}^{2} : Set of permutations with two 1 s and two 2 s .

$$
S_{2}^{2}=\{1122,1212,1221,2112,2121,2211\}
$$

Let Q be a set of permutations. Let $S_{n}^{2}(Q)$ be the set of permutations that "avoids" each permutation of Q. Example:

$$
S_{2}^{2}(\{112\})=S_{2}^{2}(112)=\{1221,2121,2211\}
$$

Permutation Patterns

Notice,

$$
\begin{aligned}
\mid S_{2}^{2}(132,231,2134) & =6=S A(1) \\
\mid S_{3}^{2}(132,231,2134) & =18=S A(2)
\end{aligned}
$$

Permutation Patterns

Thus, we ask does

$$
\left|S_{n+1}^{2}(132,231,2134)\right|=S A(n) \text { for all } n \geq 1 ?
$$

Permutation Patterns

Thus, we ask does

$$
\left|S_{n+1}^{2}(132,231,2134)\right|=S A(n) \text { for all } n \geq 1 ?
$$

Indeed, Pudwell proved that

$$
\left|S_{n+1}^{2}(132,231,2134)\right|=2 n^{2}+6 n-2=S A(n) \text { for all } n \geq 1
$$

$S A(n)$ and Permutation Patterns

Theorem
 $\left|S_{n+1}^{2}(132,231,2134)\right|=2 n^{2}+6 n-2=S A(n)$ for $n \geq 1$

$S A(n)$ and Permutation Patterns

Theorem

$\left|S_{n+1}^{2}(132,231,2134)\right|=2 n^{2}+6 n-2=S A(n)$ for $n \geq 1$

- We have found that $S A(n)=S A(n-1)+4 n+4$ for $n \geq 2$ and $S A(1)=6$.

$S A(n)$ and Permutation Patterns

Theorem

$\left|S_{n+1}^{2}(132,231,2134)\right|=2 n^{2}+6 n-2=S A(n)$ for $n \geq 1$

- We have found that $S A(n)=S A(n-1)+4 n+4$ for $n \geq 2$ and $S A(1)=6$.
- Now, we will find the same recurrence in Pudwell's Permutation Patterns.

$S A(n)$ and Permutation Patterns

Theorem

$\left|S_{n+1}^{2}(132,231,2134)\right|=2 n^{2}+6 n-2=S A(n)$ for $n \geq 1$

- We have found that $S A(n)=S A(n-1)+4 n+4$ for $n \geq 2$ and $S A(1)=6$.
- Now, we will find the same recurrence in Pudwell's Permutation Patterns.
- Let $B_{n}=S_{n}^{2}(132,231,2134)$.

$$
\left|B_{n+1}\right|=\left|B_{n}\right|+4 n+4, n \geq 2 \text { and }\left|B_{2}\right|=6
$$

A permutation lemma

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

A permutation lemma

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$
Let $A_{n}=S_{n}^{2}(132,231,213)$. We begin by proving that

A permutation lemma

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$
Let $A_{n}=S_{n}^{2}(132,231,213)$. We begin by proving that

$$
\left|A_{n}\right|=\left|A_{n-1}\right|+2, \text { for } n \geq 2
$$

1122
331122
313122
311322
311232
311223
133122
131322
131232
131223
113322
113232
113223
112332
112323
112233
1221221
313221
312321
312231
312213
133221
13231
132231
132213
123321

1212331212

 313212

 312312

 312132

 312123

 133212

 132312

 132132

 132123

 123312

 123132

 123123

 121332

 121323

 121233
 2112332112

 323112

 321312

 321132

 321123

 233112

 231312

 231132

 231123

 213312

 213132

 213123
 \(211332 \quad 221331\)
 \(211323 \quad 221313\)
 211233221133
 | 1122 | 331122 | 1212 | 331212 | 2121 | 332121 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 313122 | | 313212 | | 323121 |
| | 311322 | | 312312 | | 321321 |
| | 311232 | | 312132 | | 321231 |
| | 311223 | | 312123 | | 321213 |
| | 133122 | | 133212 | | 233121 |
| | 131322 | | 132312 | | 231321 |
| | 131232 | | 132132 | | 231231 |
| | 131223 | | 132123 | | 231213 |
| | 113322 | | 123312 | | 213321 |
| | 113232 | | 123132 | | 213231 |
| | 113223 | | 123123 | | 213213 |
| | 112332 | | 121332 | | 212331 |
| | 112323 | | 121323 | | 212313 |
| | 112233 | | 121233 | | 212133 |
| 1221 | 331221 | 2112 | 332112 | 2211 | 332211 |
| | 313221 | | 323112 | | 323211 |
| | 312321 | | 321312 | | 322311 |
| | 312231 | | 321132 | | 322131 |
| | 312213 | | 321123 | | 322113 |
| | 133221 | | 233112 | | 233211 |
| | 132321 | | 231312 | | 232311 |
| | 132231 | | 231132 | | 232131 |
| | 132213 | | 231123 | | 232113 |
| | 123321 | | 213312 | | 223311 |
| | 123231 | | 213132 | | 223131 |
| | 123213 | | 213123 | | 223113 |
| | 122331 | | 211332 | | 221331 |
| | 122313 | | 211323 | | 221313 |
| | 122133 | | 211233 | | 221133 |

1122	331122	1212	331212	2121	332121
	313122		313212		323121
	311322		312312		321321
	311232		312132		321231
	311223		312123		321213
	133122		133212		233121
	131322		132312		231321
	131232		132132		231231
	131223		132123		231213
	113322		123312		213321
	113232		123132		213231
	113223		123123		213213
	112332		121332		212331
	112323		121323		212313
	112233		121233		212133
1221	331221	2112	332112	2211	332211
	313221		323112		323211
	312321		321312		322311
	312231		321132		322131
	312213		321123		322113
	133221		233112		233211
	132321		231312		232311
	132231		231132		232131
	132213		231123		232113
	123321		213312		223311
	123231		213132		223131
	123213		213123		223113
	122331		211332		221331
	122313		211323		221313
	122133		211233		221133

1122	331122	1212	331212	2121	332121
	313122		313212		323121
	311322		312312		321321
	311232		312132		321231
	311223		312123		321213
	133122		133212		233121
	131322		132312		231321
	131232		132132		231231
	131223		132123		231213
	113322		123312		213321
	113232		123132		213231
	113223		123123		213213
	112332		121332		212331
	112323		121323		212313
	112233		121233		212133
1221	331221	2112	332112	2211	332211
	313221		323112		323211
	312321		321312		322311
	312231		321132		322131
	312213		321123		322113
	133221		233112		233211
	132321		231312		232311
	132231		231132		232131
	132213		231123		232113
	123321		213312		223311
	123231		213132		223131
	123213		213123		223113
	122331		211332		221331
	122313		211323		221313
	122133		211233		221133

Case of A_{2} to A_{3}

1122	331122	1212	331212	2121	332121
	313122		313212		323121
	311322		312312		321321
	311232		312132		321231
	311223		312123		321213
	133122		133212		233121
	131322		132312		231321
	131232		132132		231231
	131223		132123		231213
	113322		123312		213321
	113232		123132		213231
	113223		123123		213213
	112332		121332		212331
	112323		121323		212313
	112233		121233		212133
1221	331221	2112	332112	2211	332211
	313221		323112		323211
	312321		321312		322311
	312231		321132		322131
	312213		321123		322113
	133221		233112		233211
	132321		231312		232311
	132231		231132		232131
	132213		231123		232113
	123321		213312		223311
	123231		213132		223131
	123213		213123		223113
	122331		211332		221331
	122313		211323		221313
	122133		211233		221133

Case of A_{2} to A_{3}

1122	331122	1212	331212	2121	332121
	313122		313212		323121
	311322		312312		321321
	311232		312132		321231
	311223		312123		321213
	133122		133212		233121
	131322		132312		231321
	131232		132132		231231
	131223		132123		231213
	113322		123312		213321
	113232		123132		213231
	113223		123123		213213
	112332		121332		212331
	112323		121323		212313
	112233		121233		212133
1221	331221	2112	332112	2211	332211
	313221		323112		323211
	312321		321312		322311
	312231		321132		322131
	312213		321123		322113
	133221		233112		233211
	132321		231312		232311
	132231		231132		232131
	132213		231123		232113
	123321		213312		223311
	123231		213132		223131
	123213		213123		223113
	122331		211332		221331
	122313		211323		221313
	122133		211233		221133

Case of A_{2} to A_{3}

1122	331122	1212	331212	2121	332121
	313122		313212		323121
	311322		312312		321321
	311232		312132		321231
	311223		312123		321213
	133122		133212		233121
	131322		132312		231321
	131232		132132		231231
	131223		132123		231213
	113322		123312		213321
	113232		123132		213231
	113223		123123		2132131
	112332		121332		212331
	112323		121323		212313
	112233		121233		212133
1221	331221	2112	332112	2211	332211
	313221		323112		323211
	312321		321312		322311
	312231		321132		322131
	312213		321123		322113
	133221		233112		233211
	132321		231312		232311
	132231		231132		232131
	132213		231123		232113
	123321		213312		223311
	123231		213132		223131
	123213		213123		223113
	122331		211332		221331
	122313		211323		221313
	122133		211233		221133

Case of A_{2} to A_{3}

1122	331122	1212	331212	2121	332121
	313122		313212		323121
	311322		312312		321321
	311232		312132		321231
	311223		312123		321213
	133122		133212		233121
	131322		132312		231321
	131232		132132		231231
	131223		132123		231213
	113322		123312		213321
	113232		123132		213231
	113223		123123		213213
	112332		121332		212331
	112323		121323		212313
	112233		121233		212133
1221	331221	2112	332112	2211	332211
	313221		323112		323211
	312321		321312		322311
	312231		321132		322131
	312213		321123		322113
	133221		233112		233211
	132321		231312		232311
	132231		231132		232131
	132213		231123		232113
	123321		213312		223311
	123231		213132		223131
	123213		213123		223113
	122331		211332		221331
	122313		211323		221313
	122133		211233		221133

Case of A_{2} to A_{3}

Every $p \in A_{n}$ can be obtained from some $p^{\prime} \in A_{n-1}$

Every $p \in A_{n}$ can be obtained from some $p^{\prime} \in A_{n-1}$

- Let $p \in A_{n}$, and let p^{\prime} be obtained from p by removing the two copies of n contained in p.

Every $p \in A_{n}$ can be obtained from some $p^{\prime} \in A_{n-1}$

- Let $p \in A_{n}$, and let p^{\prime} be obtained from p by removing the two copies of n contained in p.
- Notice, $p^{\prime} \in A_{n-1}$, because if $p^{\prime} \notin A_{n-1}$, then some subsequence s_{i} of p^{\prime} reduces to a sequence in $\{132,231,213\}$. But s_{i} is also a subsequence of p. This contradicts the fact that $p \in A_{n}$.

Every $p \in A_{n}$ can be obtained from some $p^{\prime} \in A_{n-1}$

- Let $p \in A_{n}$, and let p^{\prime} be obtained from p by removing the two copies of n contained in p.
- Notice, $p^{\prime} \in A_{n-1}$, because if $p^{\prime} \notin A_{n-1}$, then some subsequence s_{i} of p^{\prime} reduces to a sequence in $\{132,231,213\}$. But s_{i} is also a subsequence of p. This contradicts the fact that $p \in A_{n}$.

Thus, every p_{n} can be obtained by adding 2 copies of n to some $p^{\prime} \in A_{n-1}$.

Ways to insert two n 's into p^{\prime}.

Ways to insert two n 's into p^{\prime}.

(1) "between" the digits of p^{\prime}

Ways to insert two n 's into p^{\prime}.

(1) "between" the digits of p^{\prime}
(2) two n 's in the beginning of p^{\prime}

Ways to insert two n's into p^{\prime}.

(1) "between" the digits of p^{\prime}
(2) two $n^{\prime} s$ in the beginning of p^{\prime}
(3) two n 's at the end of p^{\prime}

Ways to insert two n 's into p^{\prime}.

(1) "between" the digits of p^{\prime}
(2) two n 's in the beginning of p^{\prime}
(3) two n 's at the end of p^{\prime}
(9) one n in the beginning and the other at the end of p^{\prime}

1) "between" the digits of p^{\prime}

In the case where at least one n has a digit of p^{\prime} to its left and a digit of p^{\prime} to its right. Let a, b and c each represent a digit in p^{\prime}.

There are six different cases to consider.

1) "between" the digits of p^{\prime}

Case 1: $a<b$

1) "between" the digits of p^{\prime}

Case 1: $a<b$

1) "between" the digits of p^{\prime}

Case 1: $a<b$

1) "between" the digits of p^{\prime}

Case 1: $a<b$

1) "between" the digits of p^{\prime}

Case 1: $a<b$

1) "between" the digits of p^{\prime}

Case 2: $a>b$

1) "between" the digits of p^{\prime}

Case 2: $a>b$

1) "between" the digits of p^{\prime}

Case 2: $a>b$

1) "between" the digits of p^{\prime}

Case 2: $a>b$

1) "between" the digits of p^{\prime}

1) "between" the digits of p^{\prime}

Forbidden Patterns

Case 3:a=b>c

Case 4: $a=b<c$

Case 5: $a<b=c$

Case 6:a>b=c

1) "between" the digits of p^{\prime}

Forbidden Patterns

Case 3:a=b>c

Case 5: $a<b=c$

Case 6: $a>b=c$

1) "between" the digits of p^{\prime}

Forbidden Patterns

Case 3:a $=b>c$

Case 4: $a=b<c$

Case 5: $a<b=c$

Case 6: $a>b=c$

1) "between" the digits of p^{\prime}

Forbidden Patterns

Case 3:a=b>c

Case 4: $a=b<c$

Case 5: $a<b=c$

Case 6: $a>b=c$

\rightarrow Never generates a member of A_{n}.
2) two n's in the beginning of p^{\prime}

Let $p^{\prime} \in A_{n-1}$ and let p be obtained from p^{\prime} by placing two n 's at the beginning of p^{\prime}.
We show that $p \in A_{n}$.
There are two parts to look at:

1) Subsequences which contain n 's
2) Subsequences without n's

2) two n 's in the beginning of p^{\prime}

Subsequences which contain n :
Any subsequence contains exactly one n will typically be reduced to a sequence r which begins with a 3 , thus, $r \notin\{132,231,213\}$. (A subsequence which contains both n's will be reduced to 221.)

2) two n's in the beginning of p^{\prime}

Subsequences which contain n :
Any subsequence contains exactly one n will typically be reduced to a sequence r which begins with a 3 , thus, $r \notin\{132,231,213\}$. (A subsequence which contains both n's will be reduced to 221.)

2) two n's in the beginning of p^{\prime}

Subsequences which contain n :
Any subsequence contains exactly one n will typically be reduced to a sequence r which begins with a 3 , thus, $r \notin\{132,231,213\}$. (A subsequence which contains both n's will be reduced to 221.)

2) two n's in the beginning of p^{\prime}

Subsequences which contain n :
Any subsequence contains exactly one n will typically be reduced to a sequence r which begins with a 3 , thus, $r \notin\{132,231,213\}$. (A subsequence which contains both n's will be reduced to 221.)

2) two n's in the beginning of p^{\prime}

Subsequences which contain n :
Any subsequence contains exactly one n will typically be reduced to a sequence r which begins with a 3 , thus, $r \notin\{132,231,213\}$. (A subsequence which contains both n's will be reduced to 221.)

2) two n's in the beginning of p^{\prime}

Subsequences which contain n :
Any subsequence contains exactly one n will typically be reduced to a sequence r which begins with a 3 , thus, $r \notin\{132,231,213\}$. (A subsequence which contains both n's will be reduced to 221.)

2) two n's in the beginning of p^{\prime}

Subsequences which contain n :
Any subsequence contains exactly one n will typically be reduced to a sequence r which begins with a 3 , thus, $r \notin\{132,231,213\}$. (A subsequence which contains both n's will be reduced to 221.)

2) two n 's in the beginning of p^{\prime}

Subsequences which contain n :
Any subsequence contains exactly one n will typically be reduced to a sequence r which begins with a 3 , thus, $r \notin\{132,231,213\}$. (A subsequence which contains both n's will be reduced to 221.)

2) two n's in the beginning of p^{\prime}

No subsequence which contains an n will reduce to $\{132,231,213\}$

2) two n's in the beginning of p^{\prime}

Subsequences without n 's:

Since $p^{\prime} \in A_{n-1}$, no subsequence of p^{\prime} reduces to a sequence from $\{132,231,213\}$.

2) two n's in the beginning of p^{\prime}

Neither subsequences with n's nor subsequences without n's reduce to a sequence from $\{132,231,213\}$. Therefore $p \in A_{n}$.
\rightarrow Always create a member of A_{n}.
3) two $n^{\prime} s$ at the end of p^{\prime}
4) one n in the beginning and the other at the end of p^{\prime}

1122331122
313122
311322
311232
$\frac{311223}{133122}$
131322
131232
131223
113322
113232
113223
112332
112323
112233

- These cases will create members of A_{n} only when all of the digits of p^{\prime} are in nondecreasing order.
- Both cases have at least one n at the end of p^{\prime}.
- The only forbidden pattens with the biggst digit at the end is 213.
- If p^{\prime} is not in nondecreasing order, then there will always be 21 subsequence in p^{\prime}, which results in generating 213 subsequence in p.
- For each $p^{\prime} \in A_{n-1}$, placing two n 's at the beginning of p^{\prime} generates a $p \in A_{n}$.

1122	331122	1212	331212	2121	332121
	313122		313212		323121
	311322		312312		321321
	311232		312132		321231
	311223		312123		321213
	133122		133212		233121
	131322		132312		231321
	131232		132132		231231
	131223		132123		231213
	113322		123312		213321
	113232		123132		213231
	113223		123123		213213
	112332		121332		212331
	112323		121323		212313
	112233		121233		212133
1221	331221	2112	332112	2211	332211
	313221		323112		323211
	312321		321312		322311
	312231		321132		322131
	312213		321123		322113
	133221		233112		233211
	132321		231312		232311
	132231		231132		232131
	132213		231123		232113
	123321		213312		223311
	123231		213132		223131
	123213		213123		223113
	122331		211332		221331
	122313		211323		221313
	122133		211233		221133

- For each $p^{\prime} \in A_{n-1}$, placing two n 's at the beginning of p^{\prime} generates a $p \in A_{n}$.
- There is exactly one permutation $p^{\prime} \in A_{n-1}$ whose digits are in nondecreasing order. Placing two n 's at the end of p^{\prime} or "surrounding" p^{\prime} with one n on each side generates two more permutations from A_{n}.

1122	331122	1212	331212	2121	332121
	313122		313212		323121
	311322		312312		321321
	311232		312132		321231
	311223		312123		321213
	133122		133212		233121
	131322		132312		231321
	131232		132132		231231
	131223		132123		231213
	113322		123312		213321
	113232		123132		213231
	113223		123123		213213
	112332		121332		212331
	112323		121323		212313
	112233		121233		212133
1221	331221	2112	332112	2211	332211
	313221		323112		323211
	312321		321312		322311
	312231		321132		322131
	312213		321123		322113
	133221		233112		233211
	132321		231312		232311
	132231		231132		232131
	132213		231123		232113
	123321		213312		223311
	123231		213132		223131
	123213		213123		223113
	122331		211332		221331
	122313		211323		221313
	122133		211233		221133

Therefore,

$$
\left|A_{n}\right|=\left|A_{n-1}\right|+2
$$

We have seen that $A_{2}=6$. Therefore, $\left|A_{3}\right|=6+2=8$ and $\left|A_{4}\right|=8+2=10$. This indicates that $\left|A_{n}\right|$ grows linearly, so

$$
\left|A_{n}\right|=2 n+2, \text { for } n \geq 2
$$

Recurrence in Pudwell's Permutation

Let's look at the $B_{n}=S_{n}^{2}(132,231,2134)$.
Similar to $A_{n}=S_{n}^{2}(132,231,213)$, each $q \in B_{n+1}$ can be generated by inserting two copies of $(\mathrm{n}+1)$ into some $q^{\prime} \in B_{n}$.
(1) "between" the digits of q^{\prime}
(2) two $(n+1)$'s in the beginning of q^{\prime}
(3) two $(n+1)$'s at the end of q^{\prime}
(3) one $(n+1)$ in the beginning and the other at the end of q^{\prime}

Let $A_{n}=S_{n}^{2}(132,231,213)$ and let $B_{n}=S_{n}^{2}(132,231,2134)$.

A3	B3		
331122	331122	112233	311223
331212	331212	121233	312123
331221	331221	122133	312213
332112	332112	211233	321123
332121	332121	212133	321213
332211	332211	221133	322113
311223			
112233			

A4
44331122
44331212
44331221
44332112
44332121
44332211
44311223
44112233
41122334
11223344

Let $A_{n}=S_{n}^{2}(132,231,213)$ and let $B_{n}=S_{n}^{2}(132,231,2134)$.

A1	B1		
11	11		
A2	B2		
1122	1122		
1212	1212		
1221	1221		
2112	2112		
2121	2121		
2211	2211		
A3	B3		
331122	331122	112233	311223
331212	331212	121233	312123
331221	331221	122133	312213
332112	332112	211233	321123
332121	332121	212133	321213
332211	332211	221133	322113
$\begin{aligned} & 311223 \\ & 112233 \end{aligned}$			
A4 B4			
44331122	44331122	33112244	43311224
44331212	44331212	33121244	43312124
44331221	44331221	33122144	43312214
44332112	44332112	33211244	43321124
44332121	44332121	33212144	43321214
44332211	44332211	33221144	43322114
44311223	44112233	31122344	43112234
44112233	44121233	11223344	41122334
41122334	44122133		
11223344	44211233		
	44212133		
	44221133		
	44311223		
	44312123		
	44312213		
	44321123		
	44321213		
	44322113		

$$
\text { - }\left|B_{4}\right|=\left|B_{3}\right|+2\left|A_{3}\right|
$$

A1	B1		
11	11		
A2	B2		
1122	1122		
1212	1212		
1221	1221		
2112	2112		
2121	2121		
2211	2211		
A3	$\mathrm{B3}$ -		
331122	331122	112233	311223
331212	331212	121233	312123
331221	331221	122133	312213
332112	332112	211233	321123
332121	332121	212133	321213
332211	332211	221133	322113
$\begin{aligned} & 311223 \\ & 112233 \end{aligned}$	$\underbrace{1 / A_{3 / * 2}}$		
A4	B4		
44331122	44331122	33112244	43311224
44331212	44331212	33121244	43312124
44331221	44331221	33122144	43312214
44332112	44332112	33211244	43321124
44332121	44332121	33212144	43321214
44332211	44332211	33221144	43322114
44311223	44112233	31122344	43112234
44112233	44121233	11223344	41122334
41122334	44122133		
11223344	44211233		
	44212133		
	44221133		
	44311223		
	44312123		
	44312213		
	44321123		
	44321213		
	44322113		

- $\left|B_{4}\right|=\left|B_{3}\right|+2\left|A_{3}\right|$
- $\left|B_{n+1}\right|=\left|B_{n}\right|+2\left|A_{n}\right|$

A1	B1		
11	11		
A2	B2		
1122	1122		
1212	1212		
1221	1221		
2112	2112		
2121	2121		
2211	2211		
A3	B3		
331122	331122	112233	311223
331212	331212	121233	312123
331221	331221	122133	312213
332112	332112	211233	321123
332121	332121	212133	321213
332211	332211	221133	322113
$\begin{aligned} & 311223 \\ & 112233 \end{aligned}$	$\underbrace{1 / 3_{3} / *_{2}}$		
A4	B4		
44331122	44331122	33112244	43311224
44331212	44331212	33121244	43312124
44331221	44331221	33122144	43312214
44332112	44332112	33211244	43321124
44332121	44332121	33212144	43321214
44332211	44332211	33221144	43322114
44311223	44112233	31122344	43112234
44112233	44121233	11223344	41122334
41122334	44122133		
11223344	44211233		
	44212133		
	44221133		
	44311223		
	44312123		
	44312213		
	44321123		
	44321213		
	44322113		

- $\left|B_{4}\right|=\left|B_{3}\right|+2\left|A_{3}\right|$
- $\left|B_{n+1}\right|=\left|B_{n}\right|+2\left|A_{n}\right|$
- $\left|A_{n}\right|=2 n+2$
(From Lemma 1)

Recurrence

Theorem

$\left|S_{n+1}^{2}(132,231,2134)\right|=2 n^{2}+6 n-2=S A(n)$ for $n \geq 1$

- $S A(n)=S A(n-1)+4 n+4$ for $n \geq 2$ and $S A(1)=6$.
- $B_{n}=S_{n}^{2}(132,231,2134)$.
- $\left|B_{n+1}\right|=\left|B_{n}\right|+4 n+4, n \geq 2$ and $\left|B_{2}\right|=6$

Conclusion

- Relationship between middle school geometry and Combinatorics
- Application of discrete math to geometry question
- This is just a part of Pudwell's study on permutation that avoids other permutations, so it would be interesting to read and investigate other Enumeration of Words with Forbidden Patterns studies.

References

Pudwell, Lara K.,"Stacking Blocks and Counting Permutations",Mathematics Magazine,83.4,(2008),297-302.
直 Burstein, Alexander,"Enumeration of Words with Forbidden Patterns", Dissertation, University of Pennsylvania, 1998.

Acknowledgements

- Professor Sundberg
- Professor Buckmire
- Megan Liu
- Kristin Oberiano
- all of my friends

Backup

Original Solution

- a pile of height $(n-1)$ glued together with a row of ($\mathbf{2 n} \mathbf{- 1}$)cubes

Original Solution

- a pile of height $(n-1)$ glued together with a row of ($\mathbf{2 n} \mathbf{n} \mathbf{1}$)cubes

Original Solution

- a pile of height $(n-1)$ glued together with a row of $\mathbf{(2 n - 1}$)cubes

$$
4(2 n-1)+2=8 n-2
$$

Original Solution

- a pile of height $(n-1)$ glued together with a row of ($\mathbf{2 n} \mathbf{n} \mathbf{1}$)cubes

$$
4(2 n-1)+2=8 n-2
$$

- $2 n-3$ sides of cubes overlap

$$
(8 n-2)-2(2 n-3)=4 n+4
$$

Original Solution

- a pile of height $(n-1)$ glued together with a row of ($\mathbf{2 n} \mathbf{n} \mathbf{1}$)cubes

$$
4(2 n-1)+2=8 n-2
$$

- $2 n-3$ sides of cubes overlap

$$
(8 n-2)-2(2 n-3)=4 n+4
$$

So the surface area increases by $4 n+4$, when we go from a pile of height $(n-1)$ to a pile of height n, thus

$$
S A(n)-S A(n-1)=4 n+4 \text { for } n \geq 2
$$

Using this recurrence and the initial condition $S A(1)=6$, we can prove that

$$
S A(n)=2 n^{2}+6 n-2 \text { for } n \geq 1
$$

Original Solution (Inductive Proof)

Proof by Induction:
Prove: $S A(n)=2 n^{2}+6 n-2$ for $n \geq 1$

Basis: $\mathrm{n}=1$

$$
\begin{aligned}
2(1)^{2}+6(1)-2 & =2+6-2 \\
& =6 \\
& =S A(1) \checkmark
\end{aligned}
$$

Original Solution (Inductive Proof)

Let's apply our recurrence $(S A(n)-S A(n-1)=4 n+4)$ to $S A(n+1)-S A(n)$,
i.e.,

$$
S A(n+1)-S A(n)=4(n+1)+4
$$

thus,

$$
S A(n+1)=S A(n)+4(n+1)+4
$$

By induction, $S A(n)=2 n^{2}+6 n-2$, thus,

$$
\begin{aligned}
S A(n+1) & =2 n^{2}+6 n-2+(4(n+1)+4) \\
& =2 n^{2}+6 n-2+4 n+4+4 \\
& =2 n^{2}+4 n+2+6 n+6-2 \\
& =2(n+1)^{2}+6(n+1)-2
\end{aligned}
$$

therefore, by the Principle of Mathematical Induction, $S A(n)=2 n^{2}+6 n-2$ for $n \geq 1$.

Permutation Patterns

For example, $S_{n}^{2}(\{132,231,2134\})=S_{n}^{2}(132,231,2134)$ will be: When $n=2$

$$
S_{2}^{2}(132,231,2134)=\{1122,1212,1221,2112,2121,2211\}
$$

When $n=3$

$$
\begin{aligned}
S_{3}^{2}(132,231,2134) & =\{112233,121233,122133,211233,212133 \\
& 221133,311223,312123,312213,321123,332211 \\
& 321213,322113,331122,331212,331221,332112 \\
& 332121\}
\end{aligned}
$$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 3: $a=b>c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 3: $a=b>c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 3: $a=b>c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 3: $a=b>c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 3: $a=b>c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 4: $a=b<c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 4: $a=b<c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 4: $a=b<c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 4: $a=b<c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 4: $a=b<c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 5: $a<b=c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 5: $a<b=c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 5: $a<b=c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 5: $a<b=c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 5: $a<b=c$

1) "between" the digits of p^{\prime}

$$
\text { LEMMA 1: }\left|S_{n}^{2}(132,231,213)\right|=2 n+2 \text { for } n \geq 2
$$

Case 6: $a>b=c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 6: $a>b=c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 6: $a>b=c$

1) "between" the digits of p^{\prime}

$$
\text { LEMMA 1: }\left|S_{n}^{2}(132,231,213)\right|=2 n+2 \text { for } n \geq 2
$$

Case 6: $a>b=c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 6: $a>b=c$

1) "between" the digits of p^{\prime}

LEMMA 1: $\left|S_{n}^{2}(132,231,213)\right|=2 n+2$ for $n \geq 2$

Case 6: $a>b=c$

All the permutations is avoided by the forbitten patterns.

3) two n's at the end of p^{\prime}

There are two different parts to look at:
a) Subsequences with n's.

3) two n's at the end of p^{\prime}

There are two different parts to look at:
a) Subsequences with n 's.

3) two n's at the end of p^{\prime}

There are two different parts to look at:
a) Subsequences with n 's.

3) two n's at the end of p^{\prime}

There are two different parts to look at:
a) Subsequences with n 's.

3) two n's at the end of p^{\prime}

There are two different parts to look at:
a) Subsequences with n 's.

3) two n's at the end of p^{\prime}

There are two different parts to look at:
a) Subsequences with n 's.

3) two n's at the end of p^{\prime}

There are two different parts to look at:
b) Subsequences without n 's.

Because $p^{\prime} \in A_{n-1}$, no subsequence of p^{\prime} reduces to a sequence from $\{132,231,213\}$.

\rightarrow Create member of A_{n}.

4) one n in the beginning and one at the end of p^{\prime}

There are 3 parts to look at:
a) Subsequences end with n.
n is the biggest digit in the permutation, so every single subsequences ends with 3 . The only sequence in $\{132,231,213\}$ that ends with 3 is 213. However, the permutation has all the digits placed in increasing order; thereofre, it is impossible to have any subsequences reduce to 213 .

4) one n in the beginning and one at the end of p^{\prime}

There are 3 parts to look at:
a) Subsequences end with n.
n is the biggest digit in the permutation, so every single subsequences ends with 3 . The only sequence in $\{132,231,213\}$ that ends with 3 is 213. However, the permutation has all the digits placed in increasing order; thereofre, it is impossible to have any subsequences reduce to 213 .

4) one n in the beginning and one at the end of p^{\prime}

There are 3 parts to look at:
a) Subsequences end with n.
n is the biggest digit in the permutation, so every single subsequences ends with 3 . The only sequence in $\{132,231,213\}$ that ends with 3 is 213. However, the permutation has all the digits placed in increasing order; thereofre, it is impossible to have any subsequences reduce to 213 .

4) one n in the beginning and one at the end of p^{\prime}

There are 3 parts to look at:
a) Subsequences end with n.
n is the biggest digit in the permutation, so every single subsequences ends with 3 . The only sequence in $\{132,231,213\}$ that ends with 3 is 213. However, the permutation has all the digits placed in increasing order; thereofre, it is impossible to have any subsequences reduce to 213 .

4) one n in the beginning and one at the end of p^{\prime}

There are 3 parts to look at:
a) Subsequences end with n.
n is the biggest digit in the permutation, so every single subsequences ends with 3 . The only sequence in $\{132,231,213\}$ that ends with 3 is 213. However, the permutation has all the digits placed in increasing order; thereofre, it is impossible to have any subsequences reduce to 213 .

4) one n in the beginning and one at the end of p^{\prime}

b) Subsequences start with n. Same argument as 2). (two n in the beginning)

4) one n in the beginning and one at the end of p^{\prime}

b) Subsequences start with n. Same argument as 2). (two n in the beginning)

4) one n in the beginning and one at the end of p^{\prime}

b) Subsequences start with n. Same argument as 2). (two n in the beginning)

4) one n in the beginning and one at the end of p^{\prime}

b) Subsequences start with n.

Same argument as 2). (two n in the beginning)

4) one n in the beginning and one at the end of p^{\prime}

b) Subsequences start with n. Same argument as 2). (two n in the beginning)

4) one n in the beginning and one at the end of p^{\prime}

c) Subsequences without any n 's.

Because $p^{\prime} \in A_{n-1}$, no subsequence of p^{\prime} reduces to a sequence from $\{132,231,213\}$.

\rightarrow Create a member of A_{n}.

Bijection

Similar to our proof of Lemma 1,

- "between" the digits of p^{\prime} / q^{\prime}
\rightarrow always yields a subsequence which reduces to 132 or 231.

Bijection

Similar to our proof of Lemma 1,

- "between" the digits of p^{\prime} / q^{\prime}
\rightarrow always yields a subsequence which reduces to 132 or 231.
- two $(n+1)$'s in the beginning
\rightarrow always creates $q \in S_{n+1}^{2}(132,231,2134)$.

Bijection

- two $(n+1)$'s at the end of p^{\prime}
- one $(n+1)$ in the beginning and the other at the end of p^{\prime}
- None of permutations with one n in the beginning reduces to one of $\{132,231,2134\}$.
- 2134 is the only permutation with biggest digit at the end

Bijection

- two $(n+1)$'s at the end of p^{\prime}
- one $(n+1)$ in the beginning and the other at the end of p^{\prime}
- None of permutations with one n in the beginning reduces to one of $\{132,231,2134\}$.
- 2134 is the only permutation with biggest digit at the end

Bijection

- two $(n+1)$'s at the end of p^{\prime}
- one $(n+1)$ in the beginning and the other at the end of p^{\prime}
- None of permutations with one n in the beginning reduces to one of $\{132,231,2134\}$.
- 2134 is the only permutation with biggest digit at the end
- $p^{\prime} \in A_{n-1}$ has no subsequence of 213 .
\rightarrow Always create a member of $S_{n+1}^{2}(132,231,2134)$.

Bijection

- two $(n+1)$'s at the end of p^{\prime}
- one $(n+1)$ in the beginning and the other at the end of p^{\prime}
- None of permutations with one n in the beginning reduces to one of $\{132,231,2134\}$.
- 2134 is the only permutation with biggest digit at the end
- $p^{\prime} \in A_{n-1}$ has no subsequence of 213 .
\rightarrow Always create a member of $S_{n+1}^{2}(132,231,2134)$.
- For these cases, $\left|A_{n-1}\right|$ is the number of permutations.

Bijection

($\mathrm{n}+1$) pile

Bijection

$$
(\mathrm{n}+1) \text { pile }
$$

- two ($\mathrm{n}+1$)'s in the beginning
\rightarrow Always creates a member of p

Bijection

$$
(\mathrm{n}+1) \text { pile }
$$

- two ($\mathrm{n}+1$)'s in the beginning
\rightarrow Always creates a member of p
- two ($\mathrm{n}+1$)'s at the end
- one $(n+1)$ in the beginning and one at the end
\rightarrow Sometimes creates a member of p

summary

As a result, we have established a recursive bijection between the triangular piles of cubes and the member of
$S_{n+1}^{2}(132,231,2134)$.
Earier, we have found that $S A(n)=2 n^{2}+6 n-2$ for $n \geq 1$. Therefore,

$$
\begin{aligned}
& \text { Theorem } \\
& \left|S_{n+1}^{2}(132,231,2134)\right|=2 n^{2}+6 n-2=S A(n)
\end{aligned}
$$

Bijection

