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Purpose of Talk

∎ The purpose of this talk is to present various mathematical models
of epidermal wound healing, beginning with the pioneering work
done in the field by Jonathan Sherratt and James Murray (1990)

http://www.macs.hw.ac.uk/jas/ https://www.maths.ox.ac.uk/people/james.murray
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Purpose of Talk

∎ Mathematical models of epidermal wound healing:
Have increased in mathematical/biological complexity over time
Give us insight into a complex biological reaction
Are excellent examples of complex systems of coupled nonlinear
partial differential equations

∎ Coupled nonlinear partial differential equations
are HARD to solve!
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Introduction

What is an Epidermal Wound?

∎ Common ailment that is often
caused by a scrape or burn

∎ Epidermis is injured but the
dermis and flesh beneath the
wound are not harmed

∎ Mathematical modeling can
provide insight into biological
responses

http://www.urgomedical.com/understanding-together-2/skin-and-
wound-healing/
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Introduction

Biology of Epidermal Wound Healing

http://philschatz.com/anatomy-book/contents/m46058.html
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Introduction

What is a mathematical model?

∎ Description of a system in terms of mathematical ideas/language
∎ Use themes and structure of system to produce quantifiable

results
∎ Provide insight into how the system operates

1 State real world problem
2 Convert problem into

mathematical equations
3 Solve/perform analysis on

equations
4 Interpret results
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Mathematical Background

Differential Equation Review

∎ A differential equation is an
equation containing
derivatives

∎ Ordinary differential equations
contain ordinary derivatives

∎ Partial differential equations
contain partial derivatives

Jesse Kreger (Occidental College) Mathematical Models of Epidermal Wounds November 19, 2015 8 / 53



Mathematical Background Ordinary Differential Equations

The Logistic Equation

∎ The logistic equation is a model of population growth first
proposed by Pierre Verhulst in 1840s

∎ It is given by

dP (t)
dt

= rP(1 − P

K
)

where K is the carrying capacity and r is the rate of population
growth

∎ Bernoulli differential equation Ô⇒ directly solvable

P (t) = KP0e
rt

K + P0(ert − 1)

where P0 is the initial population
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Mathematical Background Ordinary Differential Equations

Solutions to the Logistic Equation

http://www.zo.utexas.edu/courses/Thoc/PopGrowth.html
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Mathematical Background Partial Differential Equations

Diffusion Equation

∎ The Fickian diffusion equation models the dynamics of cells
undergoing diffusion (net movement of molecules from a region
of high concentration to a region of low concentration)

∎ It is given by

∂n

∂t
=D∇2n(x⃗, t)

=D (∂
2n

∂x2
1

+ ∂
2n

∂x2
2

+⋯)

http://www.biologycorner.com/bio1/notes diffusion.html
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Mathematical Background Partial Differential Equations

Solutions to Diffusion Equation

∎ Analytic solution methods exist for simple initial/boundary
conditions and geometries

∎ Numerical techniques exist for more complicated initial/boundary
conditions and geometries

http://farside.ph.utexas.edu/teaching/329/lectures/node78.html
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Single Reaction-Diffusion PDE Model

Single Reaction-Diffusion PDE Model

∎ Pioneering work done by Sherratt and Murray (1990)
∎ Convention that wound declared ‘healed’ when surface reaches

80% of original cell density
∎ Model assumptions

Surface of wound contains no epidermal cells
Wound heals as epidermal cells diffuse toward the wound

rate of change of cell density, n(x⃗, t)

= cell migration + mitotic generation
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Single Reaction-Diffusion PDE Model

Single Reaction-Diffusion PDE Model

∎ rate of change of cell density, n =
∂n

∂t

∎ cell migration = D∇[( n
n0

)
p
∇n] (nonlinear Fickian diffusion)

∎ mitotic generation = sn(1 − ( n
n0

)) (logistic growth)

∎ Thus the governing equation for the model is

∂n

∂t
=D∇[( n

n0
)
p
∇n] + sn(1 − ( n

n0
)) (1)

with initial condition n(x,0) = 0 for x ∈ Ω (where Ω is the wounded area)
and boundary condition n(x, t) = n0 for x ∈ ∂Ω
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Single Reaction-Diffusion PDE Model The Linear Diffusion Case

The Linear Diffusion Case

∎ In the linear diffusion case, we set p = 0

∂n

∂t
=D∇ ⋅ [( n

n0
)

0
⋅ ∇n] + sn(1 − ( n

n0
))

=D∇ ⋅ (∇n) + sn(1 − ( n
n0

))

=D∇2n + sn(1 − ( n
n0

)) (2)

∎ We can then scale out (non-dimensionalize) s and n0 such that
s, n0 = 1

∎ This leaves us with

∂n

∂t
=D∇2n + n(1 − n) (3)

with initial condition n(x,0) = 0 for x ∈ Ω and boundary condition n(x, t) = 1 for
x ∈ ∂Ω
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Single Reaction-Diffusion PDE Model The Linear Diffusion Case

Fisher-Kolmogorov Equation

∎ The Fisher-Kolmogorov equation has known traveling wave
solutions

A traveling wave is a wave front that propagates through a medium
with constant speed
Traveling wave solutions represent a front of epidermal cells
diffusing into the wound
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Single Reaction-Diffusion PDE Model The Linear Diffusion Case

Numerical Solutions to Fisher-Kolmogorov Equation

∎ Start with 1-D Fisher-Kolmogorov equation

∂n

∂t
=D∂

2n

∂x2
+ n(1 − n) (4)

∎ Discretize in space and time

nj+1
i − nji

∆t
=D 1

(∆x)2
(nji−1 − 2nji + n

j
i+1) + n

j
i (1 − n

j
i ) (5)

∎ Solve for next time step

nj+1
i =D ∆t

(∆x)2
(nji−1 − 2nji + n

j
i+1) +∆tnji (1 − n

j
i ) + n

j
i (6)

with 0 ≤ x ≤ 1 and t ≥ 0
∎ We can now use a Forward Euler marching scheme to compute solution

curves at each successive time step (O(∆t) +O(∆x)2)

D
∆t

(∆x)2
≤ 1

2
(7)
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Single Reaction-Diffusion PDE Model The Linear Diffusion Case

Numerical Solutions to Fisher-Kolmogorov Equation
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Single Reaction-Diffusion PDE Model The Linear Diffusion Case

Time versus Wound Radius Plot
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Single Reaction-Diffusion PDE Model The Nonlinear Diffusion Case

The Nonlinear Diffusion Case

∎ Recall that we were originally interested in the equation

∂n

∂t
=D∇ ⋅ [( n

n0
)
p
⋅ ∇n] + sn(1 − ( n

n0
)) (8)

∎ Sherratt and Murray were interested in the case when p = 4, so we
have

∂n

∂t
=D∇ ⋅ [( n

n0
)

4
⋅ ∇n] + sn(1 − ( n

n0
)) (9)

with initial condition n(x,0) = 0 for x ∈ Ω and boundary condition
n(x, t) = n0 for x ∈ ∂Ω

∎ This is a nonlinear partial differential equation Ô⇒ hard to
analyze

Jesse Kreger (Occidental College) Mathematical Models of Epidermal Wounds November 19, 2015 20 / 53



Single Reaction-Diffusion PDE Model The Nonlinear Diffusion Case

The Nonlinear Diffusion Case

∎ Non-dimensionalizing the equation we have

∂n

∂t
=D∇ ⋅ [np ⋅ ∇n] + n(1 − n) (10)

with initial condition n(x,0) = 0 for x ∈ Ω and boundary condition
n(x, t) = 1 for x ∈ ∂Ω
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Single Reaction-Diffusion PDE Model The Nonlinear Diffusion Case

Numerical Solutions to the Nonlinear Diffusion Case
∎ Discretize in time and space

nj+1
i − nj

i

∆t
= D 1

∆x
[(np ∂n

∂x
)j
i+1/2

− (np ∂n

∂x
)j
i−1/2

] + nj
i (1 − nj

i )

= D 1

∆x
((nj

i+1/2)p
nj
i+1 − nj

i

∆x
− (nj

i−1/2)p
nj
i − nj

i−1
∆x

) + nj
i (1 − nj

i )

= D 1

(∆x)2 [(n
j
i+1 + nj

i

2
)p(nj

i+1 − nj
i ) − (n

j
i + nj

i−1
2

)p(nj
i − nj

i−1)]

+ nj
i (1 − nj

i ) (11)

∎ Solve for nj+1
i

nj+1
i =D ∆t

(∆x)2
[(
nj
i+1 + n

j
i

2
)p(nj

i+1 − n
j
i ) − (

nj
i + n

j
i−1

2
)p(nj

i − n
j
i−1)]

+ (∆t)nj
i (1 − n

j
i ) + n

j
i (12)

∎ We can now use a Forward Euler marching scheme to compute solution curves
at each successive time step (O(∆t) +O(∆x)2)

D
∆t

(∆x)2
≤ 1

2
(13)
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Single Reaction-Diffusion PDE Model The Nonlinear Diffusion Case

Numerical Solutions to the Nonlinear Diffusion Case
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Single Reaction-Diffusion PDE Model The Nonlinear Diffusion Case

Time versus Wound Radius Plot
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Single Reaction-Diffusion PDE Model The Nonlinear Diffusion Case

Drawbacks to the Single PDE Model

∎ The single reaction-diffusion PDE model:

Not an ideal fit to experimental data
Speed of wave fronts were slightly off
Lacked characteristic ‘lag then linear phase’

∎ But all is not lost, as this led to improvements in the model
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A Pair of Reaction-Diffusion Equations The Model

An Improved Model

∎ Because of the pitfalls of the previous model, Sherratt and Murray
became convinced of the need for a biochemical regulatory
mechanism (1991)

∎ This mechanism includes both a mitosis activating chemical and a
mitosis inhibiting chemical

rate of change
of cell density, n(x⃗, t) = cell

migration + mitotic
generation − natural

loss

rate of change
of chemical concentration,

c(x⃗, t)
= diffusion

of c
+ production

of c
−

decay
of

chemical
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A Pair of Reaction-Diffusion Equations The Model

Cell Density Equation

∎ cell migration = D∇2n

∎ natural loss = kn, where k is a positive constant

∎ mitotic generation = s(c) ⋅ n ⋅ (2 − n

n0
), where s(c) is a function of

chemical concentration
For activator, s(c)=k ⋅ 2cm(h − β)c

c2m + c2
+ β

For inhibitor, s(c)=
(h − 1)c + hc0
2(h − 1)c + c0

⋅ k

β = c
2
0 + c2m − 2hc0cm

(c0 − cm)2
h is a constant that corresponds to the max of s(c)
k is the coefficient of natural loss
cm is a constant parameter that corresponds to the maximum level of
chemical activation of mitosis, c0 is the initial chemical concentration
Note that s(c0) = k which makes mitotic generation - natural loss
logistic in the unwounded state
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A Pair of Reaction-Diffusion Equations The Model

Chemical Concentration Equation

∎ diffusion of c = Dc∇2c

∎ decay of active chemical = λc where λ is a positive constant

∎ production of c by cells = f(n)

For activator, f(n) = λc0 ⋅
n

n0
⋅ (n

2
0 + α2

n2 + α2
)

For inhibitor, f(n) = λc0
n0

⋅ n

With no cells there will be no production of c and thus f(0) = 0
in the unwounded condition there is no chemical in the first place,
and thus f(n0) = λc0 to cancel out the
decay of the active chemical term
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A Pair of Reaction-Diffusion Equations The Model

An Improved Model

∎ Full model given by

∂n

∂t
= D∇2n + s(c) ⋅ n ⋅ (2 − n

n0
) − kn (14)

∂c

∂t
= Dc∇2c + f(n) − λc (15)

with initial conditions n(x,0) = 0, c(x,0) = 0 for x ∈ Ω and boundary
conditions n(x, t) = n0, c(x, t) = c0 for x ∈ ∂Ω

∎ Nonlinear coupled system of partial differential
equations
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A Pair of Reaction-Diffusion Equations The Model

Non-Dimensionalizing the Model

∎ Length scale L
∎ Cell cycle timescale 1/k
∎ We use the scales given below

n∗ = n

n0
, c∗ = c

c0
, x∗ = x

L
, t∗ = kt, D∗ = D

(kL2)
,

λ∗ = λ
k
, c∗m = cm

c0
, α∗ = α

n0
, D∗

c =
Dc

(kL2)
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A Pair of Reaction-Diffusion Equations The Model

Non-Dimensionalizing the Model

∎ Dropping the ∗ for simplicity we have

∂n

∂t
= D∇2n + s(c) ⋅ n ⋅ (2 − n) − n (16)

∂c

∂t
= Dc∇2c + λf(n) − λc (17)

with initial conditions n(x,0) = 0, c(x,0) = 0 for x ∈ Ω and boundary
conditions n(x, t) = 1, c(x, t) = 1 for x ∈ ∂Ω
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A Pair of Reaction-Diffusion Equations Numerical Solutions

Numerical Solutions

∎ Using the method of lines we have

nj+1
i = D

∆t

(∆x)2
(nj

i−1 − 2nj
i + n

j
i+1) +∆t ⋅ s(cji ) ⋅ n

j
i ⋅ (2 − n

j
i ) + n

j
i (18)

cj+1i = Dc
∆t

(∆x)2
(cji−1 − 2cji + c

j
i+1) +∆t(λf(nj+1

i ) − λcji) + c
j
i (19)

∎ We can now use a Forward Euler marching scheme to compute solution curves
at each successive time step

This numerical scheme will converge if both CFL conditions are
satisfied

D
∆t

(∆x)2
≤ 1

2
(20)

Dc
∆t

(∆x)2
≤ 1

2
(21)
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A Pair of Reaction-Diffusion Equations Numerical Solutions

Numerical Solutions (Activator Case)
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A Pair of Reaction-Diffusion Equations Numerical Solutions

Numerical Solutions (Inhibitor Case)
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A Pair of Reaction-Diffusion Equations Numerical Solutions

Time versus Wound Radius Plots
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A Pair of Reaction-Diffusion Equations Numerical Solutions

Nova Computational Modeling Software
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A Pair of Reaction-Diffusion Equations Numerical Solutions

Nova Computational Modeling Software Fun ,
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Simplifying the Model

Simplifying the PDE Model

∎ Characteristic variable transformation z = x + at where a is the
traveling wave speed

n(x, t) = N(z)
c(x, t) = C(z)

∂n(x, t)
∂t

= dN(z)
dz

⋅ ∂z(x, t)
∂t

= N ′ ⋅ a = aN ′ (22)

D∇2n = D
∂2n

∂x2
=Dd

2N(z)
dz2

⋅ ∂z(x, t)
∂x

=DN ′′ (23)

Dc∇2c = Dc
∂2c

∂x2
=Dc

d2C(z)
dz2

⋅ ∂z(x, t)
∂x

=DcC
′′ (24)
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Simplifying the Model

Reduction to ODE

∎ By plugging the respective derivatives in, the model becomes a
coupled system of ordinary differential equations given by

aN ′ = DN ′′ + s(C) ⋅N ⋅ (2 −N) −N (25)
aC ′ = DcC

′′ + λf(N) − λC (26)

with biologically appropriate conditions of
N(−∞) = C(−∞) = 0, N(∞) = C(∞) = 1, and
N ′(±∞) = C ′(±∞) = 0

∎ Here we also make the simplification to a linearized

s(C) = γC + 1 − γ where γ = 2(h − 1)
cm − 2
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Simplifying the Model

Simplification of λ→∞

∎ This simplification represents the chemical concentration kinetics
coming to a state of equilibrium

∎ As λ→∞, the terms not containing a λ in the chemical PDE
become negligible

0 = −aC ′ +DcC
′′ + λf(N) − λC

= 0 + 0 + λf(N) − λC
= λ(f(N) −C)

∎ As λ /= 0, this implies that f(N) = C(z)
∎ By rearranging terms we get the single ODE given by

N ′′ = aN
′

D
− s(f(N)) ⋅N ⋅ (2 −N) −N

D
(27)

with boundary conditions N(∞) = 1, N(−∞) = 0, N ′(±∞) = 0
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Simplifying the Model

Asymptotic Stability Analysis

∎ Converting the system to two first order ODEs we have

N ′ = M (28)

M ′ = aM − s(f(N)) ⋅N ⋅ (2 −N) +N
D

(29)

with equilibrium values are (N,M) = (0,0) and (N,M) = (1,0)
∎ Then the Jacobian is given by

J(N,M) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f1

∂N

∂f1

∂M

∂f2

∂N

∂f2

∂M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Traveling Wave Solutions

Traveling Wave Solutions for Simplified System

∎ Converting the system to two first order ODEs we have that

J(0,0) =
⎡⎢⎢⎢⎢⎣

0 1
−[2s(0) − 1]

D

a

D

⎤⎥⎥⎥⎥⎦

Λ = 1

2
[ a
D
±
√

( a
D

)
2
− 4(2s(0) − 1

D
)]

∎ The bifurcation value is

a∗ = 2

√
(D(2(s(0) − 1)) = 2

√
(D(2(1 − γ) − 1)) = 2

√
D(1 − 2γ)

∎ For a > a∗ we have an unstable node which allows for traveling
wave solutions and thus this simplified ODE system has traveling
wave solutions
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Traveling Wave Solutions

Cooperative Reaction Diffusion Systems

∎ Chinese mathematical biologists Haiyan Wang and Shilang Wu
demonstrated existence of traveling wave solutions for the full system

∎ Consider the reaction-diffusion partial differential equation system
∂A

∂t
= d1∇2A + g1(A,B) (30)

∂B

∂t
= d2∇2B + g2(A,B) (31)

where g1 and g2 are differentiable functions of A and B. We call the
system cooperative if

∂g1
∂B

≥ 0 (32)

∂g2
∂A

≥ 0 (33)

∎ In the epidermal wound healing system
∂g2
∂c

= λf(n) /≥ 0 for n > α
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Traveling Wave Solutions

Bounding the System

∎ Wang and Wu define an upper and lower bound cooperative
system given by

∂n

∂t
= D∇2n + s(c) ⋅ n ⋅ (2 − n) − n (34)

∂c

∂t
= Dc∇2c + λf±(n) − λc (35)

where

f+(n) = { f(n) , 0 ≤ n ≤ α
f(α) , n ≥ α

and

f−(n) = { f(n) , 0 ≤ n ≤ f0

f(f0) , n > f0

∎ Through further analysis we can apply Wang and Wu’s previous
results on cooperative reaction-diffusion systems to the wound
healing model
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Traveling Wave Solutions

Traveling Wave Solutions to Full Model

Theorem

Let D,Dc be positive constants and let γ ∈ (0, 1

2
), α ∈ (0,1),

Dc

D
< 2 + λ

1 − 2γ
,

and

2γf ′(0)
1 − γ

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + 1 − 2γ

λ
, D ≥Dc

(2 − Dc

D
)1 − 2γ

λ
+ 1 , D ≤Dc

Then the Sherratt/Murray epidermal wound healing system admits a
physically relevant traveling wave solution for a > a∗ and does not admit a
physically relevant traveling wave solution for a < a∗ where the minimum wave
speed a∗ is given by

a∗ = 2
√

(1 − 2γ)D.
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Clinical Implications

Clinical Implications: Varying Wound Geometry

fshape(x;α) = 1

2
(1 + 1

α
) − sign(α)[1

2
(1 + 1

α2
) − (x + 1

2α
− 1

2
)
2

]
−1/2

(36)

∎ α = −1 implies the wound shape is a cusp
∎ −1 < α < 0 implies the wound shape is a cusped diamond
∎ α = 0 implies the wound shape is a diamond
∎ 0 < α < 1 implies the wound shape is more ovate
∎ α = 1 implies the wound shape is an ellipse
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Clinical Implications

Geometry of Epidermal Wound Healing
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Clinical Implications

Nova Demonstration of Geometry
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Clinical Implications

Topical Addition Slide?
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Conclusion

Conclusion

∎ Mathematical models of epidermal wound healing:
Have increased in mathematical/biological complexity over time
Give us insight into a complex biological reaction
Are excellent examples of complex systems of coupled nonlinear partial
differential equations

∎ Traveling wave solutions to the full coupled system given by
Sherratt and Murray exist

∎ Opportunity for future mathematical and biological research
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Conclusion
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