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The Smarts Pyramid

20 balls

10 pairs

5 colors

No two adjacent
balls share the same
color
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The Smarts Pyramid

Definition: A graph G = (V ,E ) is an ordered pair where V
and E are the set of vertices and edges of G , respectively.
Defintion: A graph G ′ = (V ′,E ′) is a subgraph of
G = (V ,E ) if V ′ ⊂ V and E ′ ⊂ E .
Notation: Vertex v = (a, b, c , d)
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Solutions: Matchings

Definition: A matching M of a graph G is a subgraph of G
such that the edges are pairwise disjoint from each other.

Definition: A graph with an edge between every pair of two
vertices is a complete graph.

Definition: A complete graph with n vertices is a Kn graph.
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Matchings:Ti -matchings

Definition: A tetrahedron is a K4 subgraph of G .

Definition: A matching M of graph G contains a tetrahedron
if M contains two edges whose corresponding vertices in G are
adjacent and form a K4 subgraph of G .

Definition: A Ti -matching is a matching M where i ∈ N is
the number of tetrahedra contained in M.
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Solutions: Colorings

Definition: A k-coloring of the graph P is an assignment of
colors represented by integers such that no pair of adjacent
vertices share a common color.
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Equivalencies and Symmetries

Given the coordinates (a, b, c , d), 24 permutations can be applied
to it. The 24 permutations consist of:

Single Reflections: (a, b, c , d)→ (b, a, c , d).

Double Reflections: (a, b, c , d)→ (b, a, d , c) .

Rotations: (a, b, c , d)→ (a, d , b, c).

Four-Cycles: (a, b, c, d)→ (b, c, d , a).

Identity: (a, b, c , d)→ (a, b, c, d)

Permutation g on element x is denoted as g · x .
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Equivalencies and Symmetries

Definition: Two colorings, C and C ′ are equivalent if and
only if there exists a permutation g such that for every vertex
v ∈ P, C (g · v) = C ′(v).

Two matchings M = (V ,E ) and M ′ = (V ′,E ′) are equivalent
if and only if there exists a permutation g such that for all
vertices v in V , g · v ∈ V ′.

Definition: A coloring C is fixed by g if and only if for every
vertex v of P, C (g · v) = C (v).
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Burnside’s Lemma

Given a Group G that acts on a set S :

Definition: An orbit of x under Group G is denoted by

orbG (x) = {g · x |g ∈ G}
Definition: A stabilizer of x under Group G is denoted by

stabG (x) = {g ∈ G |g · x = x}
Definition: The number of fixed points of g is denoted by
fix(g).

fix(g) = |{x ∈ S |g · x = x}|

The Orbit-Stabilizer Theorem: Given finite group G which
acts on a finite set S, for each x ∈ S ,

|stabG (x)| · |orbG (x)| = |G |.
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Burnside’s Lemma

Burnside’s Lemma: Given a finite group G that acts on a finite
set S .

G × X → X

The number of orbits in set S is equal to the sum over all g ∈ G of
the cardinality of the subsets of S where each subset is fixed by
some g .

number of orbits = 1
|G |
∑

g∈G fix(g)
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Burnside’s Lemma: Proof

Step 1.
∑

x∈S |stabG (x)| =
∑

g∈G fix(g)

Consider a matrix A with rows indexed by x ∈ S and with
columns indexed by g ∈ G . A will be defined such that

Axg

{
1, g · x = x
0, otherwise

Given x ∈ S , the sum across a row is |stabG (x)|. And, given a
g ∈ G , the sum down a column is fix(g).∑
x∈S |stabG (x)| =

∑
x∈S(sum of all 1′s in row x) = the total

number of 1’s in the matrix.∑
g∈G fix(g) =

∑
g∈G (sum of all 1′s in column g) = the total

number of 1’s in the matrix.

Thus,
∑

x∈S |stabG (x)| =
∑

g∈G fix(g), as wanted.
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Burnside’s Lemma: Proof

Step 2. Orbit Stabilizer Theorem

The Orbit-Stabilizer Theorem can be rewritten from

|stabG (x)| · |orbG (x)| = |G |.

to

|stabG (x)|
|G |

=
1

|orbG (x)|
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Burnside’s Lemma: Proof

Step 3. Putting it together∑
x∈S |stabG (x)| =

∑
g∈G fix(g) · · · from Step 1.∑

x∈S
|stabG (x)| =

∑
g∈G

fix(g)

1

|G |
∑
x∈S
|stabG (x)| =

1

|G |
∑
g∈G

fix(g)

∑
x∈S

1

|G |
|stabG (x)| =

1

|G |
∑
g∈G

fix(g)

Use the Orbit Stabilizer Theorem to get:∑
x∈S

1

|orbG (x)|
=

1

|G |
∑
g∈G

fix(g)

Daniel Park Occidental College

Analyzing the Smarts Pyramid Puzzle 14/ 22



Burnside’s Lemma: Proof

∑
x∈S

1

|orbG (x)|
=

1

|G |
∑
g∈G

fix(g)

Focusing on the left side of the equation: Rewrite sum as the
double sum

∑
orbits

∑
x∈orbit .∑

orbits

∑
x∈orbit

1

|orbG (x)|
=

1

|G |
∑
g∈G

fix(g)

Inner Sum: Given the orbit {x1, x2, . . . , xt}, each
x ∈ {x1, x2, . . . , xt} has an orbit, orbG (x), of size t. Thus, we get∑t

i=1
1
t = 1.

∑
orbits

(1) =
1

|G |
∑
g∈G

fix(g)
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Burnside’s Lemma: Proof

Thus,

number of orbits =
1

|G |
∑
g∈G

fix(g)
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Results: T5-matchings

Three ways to construct a matching for a tetrahedron.

With 5 tetrahedra:
35 = 243

12 distinct T5-matchings up to equivalence
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T5-matchings: Burnside’s Lemma

Table: Burnside’s Lemma: T5-matchings

Action Number Matchings Fixed Total
Single Reflection 6 3 18
Double Reflection 3 3 9
Rotation 8 0 0
4-Cycle 6 3 18
Identity 1 243 243

Burnside’s Lemma:

number of orbits = 1
|G |

∑
g∈G

fix(g)

number of orbits = 1
24 × (18 + 9 + 0 + 18 + 243)

number of orbits = 288
24 = 12
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Results: Colorings

(20
4

)
×
(16
4

)
×
(12
4

)
×
(8
4

)
×
(4
4

)
= 305, 540, 235, 000 ways to

assign colors to vertices

3778 colorings

183 distinct colorings up to equivalence
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Colorings: Burnside’s Lemma

Table: Burnside’s Lemma: Colorings

|orbS4(x)| |stabS4(x)| Occurrences ”fix(g)”
24 1 139 omitted
12 2 30 360
8 3 4 64
6 4 7 126
4 6 1 20
3 8 1 21
1 24 1 23

Burnside’s Lemma:

number of orbits = 1
|G |

∑
g∈G

fix(g)

number of orbits = 1
24 × (360 + 64 + 126 + 20 + 21 + 23 + 3778)

number of orbits = 4392
24 = 183
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Results

The Un-Named Theorem: Each coloring admits exactly 6
T5-matchings.

Each of the 183 colorings have 1 to 6 non-isomorphic
T5-matchings.

There are between 183 and 1098 unique solutions to the
Smarts Pyramid using T5-matchings.
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Equivalencies and Symmetries

Definition: A
symmetry group
of degree n,

denoted by Sn, is
the group of all
permutations g on
a finite set of n
elements.
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Theorem 1

Theorem: There is only one coloring, up to equivalence, that is
symmetric over all permuations.

Definition: Two colors c1 and c2 are interchangeable if all
vertices colored c1 can be taken to vertices colored c2 by a
graph automorphism, i.e., by recoloring c1 to c2 and c2 to c1,
we get an equivalent coloring.

Assume P is in a T5-matching.

Without loss of generality, the center tetrahedron is colored 0,
1, 2, and 3.

0, 1, 2, and 3 are interchangeable.
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Theorem 1

c0

c1

c2

c3

c0 = 0

c1 = 1

c2 = 2

c3 = 3
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Theorem 1

4 is not interchangeable with any other color, thus any
symmetry takes 4 to itself.

The four corners of the pyramid are colored 4.

c1

c2

c3

v4v1

v2

v3
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Theorem 1

Vertices v1, v2 and v3 each have one option for a valid
coloring.

c2 and v4 are adjacent to v1, v2, and v3, thus v1, v2, and v3
may not be colored 2 or 4. They may also not share a color.

v1 is adjacent to c1, c2, and c3, thus the only valid color for v1
is 0.

v3 is adjacent to c3, which is colored 3. So, v3 must be
colored 1.

v2 is colored 3
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Theorem 1
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Theorem 2

Theorem: Any coloring of the Smarts Pyramid admits exactly six
T5-matchings.

1. Any coloring of the pyramid has at most six T5-matchings.

2. Any coloring of the pyramid has at least six T5-matchings.

Daniel Park Occidental College

Analyzing the Smarts Pyramid Puzzle 29/ 22



Theorem 2: Part 1

Step 1. ∀i 6= j , the colorings of Ti and Tj do not contain exactly
the same colors.

Given four of each color (1, 2, 3, 4, and 5), we have

q = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5]

where q is a list representing available color assignments.

Assume towards contradiction that there exists T1 and T2

such that their colorings both contain the colors 1, 2, 3, and 4.

The remaining available color assignments are then

q = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5].

By the pigeonhole principle, at least one tetrahedron will have
two 5’s in its coloring.

Thus, ∀i 6= j , Ti and Tj have different colorings.
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Theorem 2: Part 1

Step 2. There is only one way to color five tetrahedra such that
no two tetrahedra have the same coloring.

A tetrahedron is made up of four different colors.

With 5 colors to choose from, the number of ways to color a
tetrahedron is

(5
4

)
= 5.

Because of we must color 5 tetrahedra, there is only one way
to uniquely color 5 tetrahedra.

Daniel Park Occidental College

Analyzing the Smarts Pyramid Puzzle 31/ 22



Theorem 2: Part 1

Step 3. Given the colorings in Step 2, there are six T5-matchings
compatible with it.

Notation: An edge whose vertices are colored will be denoted
by [a, b], where a and b represents the vertices’ colors. The
union of two edges is a matching of a tetrahedron.

Any given edge [a, b] can be paired with three other edges to
make a matching of a colored tetrahedron.

Without loss of generality, if [1,2] is paired with the edge
[3,4], then the edges that contain a vertex colored 5, or [*,5],
are [1,5], [2,5], [3,5], and [4,5]. The other remaining edges
are: [1,3], [1,4], [2,3], and [2,4].

No edge [*, 5] can be paired with another [*,5]. So, each [*,5]
is paired with an edge that does not contain a vertex which is
colored 5, otherwise, by the pigeonhole principle, a [*,5] will
be paired with another [*,5].

Each edge without a five can be paired with exactly two [*,5].
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Theorem 2: Part 1

Each edge without a five can be paired with exactly two [*,5].

Edge [1,3] can be paired with either [2,5] or [4,5]. If [1,3] is
paired with [2,5], then [1,4] must be paired with [3,5]

Then [2,4] must be paired with [1,5], and [2,3] with [4,5].

Likewise, if [1,3] is paired with [4,5] instead of [2,5], then the
remaining matchings must be:

[2, 3] to [1, 5]

[2, 4] to [3, 5]

[1, 4] to [2, 5]

The first tetrahedron matched has three matchings to choose
from. The remaining eight edges can be paired in two different
ways. So, there are at most six matchings for five tetrahedra that
each have a different coloring.
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Theorem 2: Part 2

From the set of five colored tetrahedra of P, choose one
tetrahedron, let’s say T1 that has no matching assigned. This
tetrahedron’s coloring, without loss of generality, includes the
colors 1, 2, 3, and 4.

This means that the coloring of the other four tetrahedra
include the colors as follows:

The coloring of T2 includes the colors 1, 2, 3, and 5

The coloring of T3 includes the colors 1, 2, 4, and 5

The coloring of T4 includes the colors 1, 3, 4, and 5

The coloring of T5 includes the colors 2, 3, 4, and 5
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Theorem 2: Part 2

In the matching of T1, the vertex colored 1 can be in an edge
with the vertex colored 2, 3, or 4.

Assume that the matching of T1 is made of of edges [1, 2]
and [3, 4].

T2 and T3 also contain the colors 1 and 2. T2 also contains 3
and 5. T3 also contains 4 and 5.

T1, T2, and T3 are equivalent up to recoloring.

T1 contains [3,4], so T4 must have [3,5] or [4,5]

If T4 has [3,5], then T5 has [4,5] and if T4 has [4,5], then T5

has [3,5].

From the three choices for matching T1 and the two choices
for matching T4 and T5, we conclude that there are at least
six ways to match the five tetrahedra.
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