Analyzing the Smarts Pyramid Puzzle

Daniel Park
Occidental College

Spring 2016

Outline

(1) Defining the problem and its solutions
(2) Introduce and prove Burnside's Lemma
(3) Proving the results

The Smarts Pyramid

- 20 balls
- 10 pairs
- 5 colors
- No two adjacent balls share the same color

The Smarts Pyramid

- Definition: A graph $G=(V, E)$ is an ordered pair where V and E are the set of vertices and edges of G, respectively.
- Defintion: A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subset V$ and $E^{\prime} \subset E$.
- Notation: Vertex $v=(a, b, c, d)$

Solutions: Matchings

- Definition: A matching M of a graph G is a subgraph of G such that the edges are pairwise disjoint from each other.
- Definition: A graph with an edge between every pair of two vertices is a complete graph.
- Definition: A complete graph with n vertices is a K_{n} graph .

Matchings: T_{i}-matchings

- Definition: A tetrahedron is a K_{4} subgraph of G.

- Definition: A matching M of graph G contains a tetrahedron if M contains two edges whose corresponding vertices in G are adjacent and form a K_{4} subgraph of G.
- Definition: $A T_{i}$-matching is a matching M where $i \in \mathbb{N}$ is the number of tetrahedra contained in M.

Solutions: Colorings

- Definition: A k-coloring of the graph P is an assignment of colors represented by integers such that no pair of adjacent vertices share a common color.

Equivalencies and Symmetries

Given the coordinates $(a, b, c, d), 24$ permutations can be applied to it. The 24 permutations consist of:

- Single Reflections: $(a, b, c, d) \rightarrow(b, a, c, d)$.
- Double Reflections: $(a, b, c, d) \rightarrow(b, a, d, c)$.
- Rotations: $(a, b, c, d) \rightarrow(a, d, b, c)$.
- Four-Cycles: $(a, b, c, d) \rightarrow(b, c, d, a)$.
- Identity: $(a, b, c, d) \rightarrow(a, b, c, d)$

Permutation g on element x is denoted as $g \cdot x$.

Equivalencies and Symmetries

- Definition: Two colorings, C and C^{\prime} are equivalent if and only if there exists a permutation g such that for every vertex $v \in P, C(g \cdot v)=C^{\prime}(v)$.
- Two matchings $M=(V, E)$ and $M^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are equivalent if and only if there exists a permutation g such that for all vertices v in $V, g \cdot v \in V^{\prime}$.
- Definition: A coloring C is fixed by g if and only if for every vertex v of $P, C(g \cdot v)=C(v)$.

Burnside's Lemma

Given a Group G that acts on a set S :

- Definition: An orbit of x under Group G is denoted by

$$
\operatorname{orb}_{G}(x)=\{g \cdot x \mid g \in G\}
$$

- Definition: A stabilizer of x under Group G is denoted by

$$
\operatorname{stab}_{G}(x)=\{g \in G \mid g \cdot x=x\}
$$

- Definition: The number of fixed points of g is denoted by fix (g).

$$
f i x(g)=|\{x \in S \mid g \cdot x=x\}|
$$

- The Orbit-Stabilizer Theorem: Given finite group G which acts on a finite set S, for each $x \in S$,

$$
\left|\operatorname{stab}_{G}(x)\right| \cdot\left|\operatorname{orb}_{G}(x)\right|=|G| .
$$

Burnside's Lemma

Burnside's Lemma: Given a finite group G that acts on a finite set S.

$$
G \times X \rightarrow X
$$

The number of orbits in set S is equal to the sum over all $g \in G$ of the cardinality of the subsets of S where each subset is fixed by some g.

$$
\text { number of orbits }=\frac{1}{|G|} \sum_{g \in G} f i x(g)
$$

Burnside's Lemma: Proof

Step 1. $\sum_{x \in S}\left|s t a b_{G}(x)\right|=\sum_{g \in G} f i x(g)$

- Consider a matrix A with rows indexed by $x \in S$ and with columns indexed by $g \in G$. A will be defined such that

$$
A_{x g}\left\{\begin{array}{l}
1, g \cdot x=x \\
0, \text { otherwise }
\end{array}\right.
$$

- Given $x \in S$, the sum across a row is $\left|s t a b_{G}(x)\right|$. And, given a $g \in G$, the sum down a column is fix (g).
$\sum_{x \in S}\left|\operatorname{stab}_{G}(x)\right|=\sum_{x \in S}($ sum of all 1's in row $x)=$ the total number of 1 's in the matrix.
$\sum_{g \in G} f i x(g)=\sum_{g \in G}($ sum of all 1 's in column $g)=$ the total number of 1 's in the matrix.

Thus, $\sum_{x \in S}\left|s t a b_{G}(x)\right|=\sum_{g \in G} f i x(g)$, as wanted.

Burnside's Lemma: Proof

Step 2. Orbit Stabilizer Theorem

The Orbit-Stabilizer Theorem can be rewritten from

$$
\begin{gathered}
\left|\operatorname{stab}_{G}(x)\right| \cdot\left|\operatorname{orb}_{G}(x)\right|=|G| . \\
\text { to } \\
\frac{\left|\operatorname{stab}_{G}(x)\right|}{|G|}=\frac{1}{\left|\operatorname{orb}_{G}(x)\right|}
\end{gathered}
$$

Burnside's Lemma: Proof

Step 3. Putting it together

$\sum_{x \in S}\left|\operatorname{stab}_{G}(x)\right|=\sum_{g \in G} f i x(g) \cdots$ from Step 1.

$$
\begin{aligned}
\sum_{x \in S}\left|s \operatorname{tab}_{G}(x)\right| & =\sum_{g \in G} f i x(g) \\
\frac{1}{|G|} \sum_{x \in S}\left|\operatorname{stab}_{G}(x)\right| & =\frac{1}{|G|} \sum_{g \in G} f i x(g) \\
\sum_{x \in S} \frac{1}{|G|}\left|s t a b_{G}(x)\right| & =\frac{1}{|G|} \sum_{g \in G} f i x(g)
\end{aligned}
$$

Use the Orbit Stabilizer Theorem to get:

$$
\sum_{x \in S} \frac{1}{\left|\operatorname{orb}_{G}(x)\right|}=\frac{1}{|G|} \sum_{g \in G} f i x(g)
$$

Burnside's Lemma: Proof

$$
\sum_{x \in S} \frac{1}{\left|\operatorname{orb}_{G}(x)\right|}=\frac{1}{|G|} \sum_{g \in G} f i x(g)
$$

Focusing on the left side of the equation: Rewrite sum as the double sum $\sum_{\text {orbits }} \sum_{x \in \text { orbit }}$.

$$
\sum_{\text {orbits }} \sum_{x \in o r b i t} \frac{1}{\left|\operatorname{orb}_{G}(x)\right|}=\frac{1}{|G|} \sum_{g \in G} f i x(g)
$$

Inner Sum: Given the orbit $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$, each $x \in\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ has an orbit, $\operatorname{orb}_{G}(x)$, of size t. Thus, we get $\sum_{i=1}^{t} \frac{1}{t}=1$.

$$
\sum_{\text {orbits }}(1)=\frac{1}{|G|} \sum_{g \in G} f i x(g)
$$

Burnside's Lemma: Proof

Thus,

$$
\text { number of orbits }=\frac{1}{|G|} \sum_{g \in G} f i x(g)
$$

Results: T_{5}-matchings

- Three ways to construct a matching for a tetrahedron.
- With 5 tetrahedra:

$$
3^{5}=243
$$

- 12 distinct T_{5}-matchings up to equivalence

T_{5}-matchings: Burnside's Lemma

Table: Burnside's Lemma: T_{5}-matchings

Action	Number	Matchings Fixed	Total
Single Reflection	6	3	18
Double Reflection	3	3	9
Rotation	8	0	0
4-Cycle	6	3	18
Identity	1	243	243

Burnside's Lemma:
number of orbits $=\frac{1}{|G|} \sum_{g \in G} f i x(g)$
number of orbits $=\frac{1}{24} \times(18+9+0+18+243)$
number of orbits $=\frac{288}{24}=12$

Results: Colorings

- $\binom{20}{4} \times\binom{ 16}{4} \times\binom{ 12}{4} \times\binom{ 8}{4} \times\binom{ 4}{4}=305,540,235,000$ ways to assign colors to vertices
- 3778 colorings
- 183 distinct colorings up to equivalence

Colorings: Burnside's Lemma

Table: Burnside's Lemma: Colorings

\mid orb $_{S_{4}}(x) \mid$	$\left\|s t a b_{S_{4}}(x)\right\|$	Occurrences	"fix (g) "
24	1	139	omitted
12	2	30	360
8	3	4	64
6	4	7	126
4	6	1	20
3	8	1	21
1	24	1	23

Burnside's Lemma:
number of orbits $=\frac{1}{|G|} \sum_{g \in G}$ fix (g)
number of orbits $=\frac{1}{24} \times(360+64+126+20+21+23+3778)$
number of orbits $=\frac{4392}{24}=183$

Results

- The Un-Named Theorem: Each coloring admits exactly 6 T_{5}-matchings.
- Each of the 183 colorings have 1 to 6 non-isomorphic T_{5}-matchings.
- There are between 183 and 1098 unique solutions to the Smarts Pyramid using T_{5}-matchings.

References

```
Bondy, J.A., and U. S. R. Murty. Graduate Texts in Mathematics: Graph
    Theory. N.p.: Springer, 2008. Print
Klingsberg, Paul. "Group Actions and Burnside's Lemma." Saint
    Joseph's University, n.d. Web. 3 Nov. 2015. <http://people.sju.edu/ pklingsb/burnside>
"Multiplication Table of S4." S4 Tables. Bogazici University, n.d. Web.
17 Oct. 2015. <http://feyzioglu.boun.edu.tr/math321archive/tablesofs4/s4tables/index1.html> .
Roberts, Fred S., and Barry Tesman. Applied Combinatorics. CRC Press, 2009. Print
Saracino, Dan. Abstract Algebra: A First Course. Reading, MA:
Addison-Wesley, 1980. Print.
```


Equivalencies and Symmetries

Definition: A

 $\frac{\frac{\text { symmetry group }}{\text { of degree } n,}}{\text { denoted by } S_{n},}$ the group of all permutations g on a finite set of n elements.

Theorem: There is only one coloring, up to equivalence, that is symmetric over all permuations.

- Definition: Two colors c_{1} and c_{2} are interchangeable if all vertices colored c_{1} can be taken to vertices colored c_{2} by a graph automorphism, i.e., by recoloring c_{1} to c_{2} and c_{2} to c_{1}, we get an equivalent coloring.
- Assume P is in a T_{5}-matching.
- Without loss of generality, the center tetrahedron is colored 0 , 1,2 , and 3.
- $0,1,2$, and 3 are interchangeable.

Theorem 1

$$
\begin{aligned}
& c_{0}=0 \\
& c_{1}=1 \\
& c_{2}=2 \\
& c_{3}=3
\end{aligned}
$$

- 4 is not interchangeable with any other color, thus any symmetry takes 4 to itself.
- The four corners of the pyramid are colored 4.

- Vertices v_{1}, v_{2} and v_{3} each have one option for a valid coloring.
- c_{2} and v_{4} are adjacent to v_{1}, v_{2}, and v_{3}, thus v_{1}, v_{2}, and v_{3} may not be colored 2 or 4 . They may also not share a color.
- v_{1} is adjacent to c_{1}, c_{2}, and c_{3}, thus the only valid color for v_{1} is 0 .
- v_{3} is adjacent to c_{3}, which is colored 3 . So, v_{3} must be colored 1.
- v_{2} is colored 3

Theorem 1

Theorem: Any coloring of the Smarts Pyramid admits exactly six T_{5}-matchings.

1. Any coloring of the pyramid has at most six T_{5}-matchings.
2. Any coloring of the pyramid has at least six T_{5}-matchings.

Theorem 2: Part 1

Step 1. $\forall i \neq j$, the colorings of T_{i} and T_{j} do not contain exactly the same colors.

- Given four of each color ($1,2,3,4$, and 5), we have

$$
q=[1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5]
$$

where q is a list representing available color assignments.

- Assume towards contradiction that there exists T_{1} and T_{2} such that their colorings both contain the colors $1,2,3$, and 4.
- The remaining available color assignments are then

$$
q=[1,1,2,2,3,3,4,4,5,5,5,5] .
$$

- By the pigeonhole principle, at least one tetrahedron will have two 5's in its coloring.
- Thus, $\forall i \neq j, T_{i}$ and T_{j} have different colorings.

Step 2. There is only one way to color five tetrahedra such that no two tetrahedra have the same coloring.

- A tetrahedron is made up of four different colors.
- With 5 colors to choose from, the number of ways to color a tetrahedron is $\binom{5}{4}=5$.
- Because of we must color 5 tetrahedra, there is only one way to uniquely color 5 tetrahedra.

Theorem 2: Part 1

Step 3. Given the colorings in Step 2, there are six T_{5}-matchings compatible with it.

- Notation: An edge whose vertices are colored will be denoted by $[a, b]$, where a and b represents the vertices' colors. The union of two edges is a matching of a tetrahedron.
- Any given edge $[a, b]$ can be paired with three other edges to make a matching of a colored tetrahedron.
- Without loss of generality, if $[1,2]$ is paired with the edge $[3,4]$, then the edges that contain a vertex colored 5 , or $[*, 5]$, are $[1,5],[2,5],[3,5]$, and $[4,5]$. The other remaining edges are: $[1,3],[1,4],[2,3]$, and $[2,4]$.
- No edge [*,5] can be paired with another [*,5]. So, each [*,5] is paired with an edge that does not contain a vertex which is colored 5, otherwise, by the pigeonhole principle, a [$\left.{ }^{*}, 5\right]$ will be paired with another [*,5].
- Each edge without a five can be paired with exactly two $\left[{ }^{*}, 5\right]$.

Theorem 2: Part 1

- Each edge without a five can be paired with exactly two [*,5].
- Edge [1,3] can be paired with either [2,5] or [4,5]. If $[1,3]$ is paired with $[2,5]$, then $[1,4]$ must be paired with $[3,5]$
- Then $[2,4]$ must be paired with $[1,5]$, and $[2,3]$ with $[4,5]$.
- Likewise, if $[1,3]$ is paired with $[4,5]$ instead of $[2,5]$, then the remaining matchings must be:

$$
\begin{aligned}
& {[2,3] \text { to }[1,5]} \\
& {[2,4] \text { to }[3,5]} \\
& {[1,4] \text { to }[2,5]}
\end{aligned}
$$

The first tetrahedron matched has three matchings to choose from. The remaining eight edges can be paired in two different ways. So, there are at most six matchings for five tetrahedra that each have a different coloring.

Theorem 2: Part 2

- From the set of five colored tetrahedra of P, choose one tetrahedron, let's say T_{1} that has no matching assigned. This tetrahedron's coloring, without loss of generality, includes the colors 1, 2, 3, and 4.
- This means that the coloring of the other four tetrahedra include the colors as follows:

The coloring of T_{2} includes the colors 1, 2, 3, and 5
The coloring of T_{3} includes the colors $1,2,4$, and 5
The coloring of T_{4} includes the colors $1,3,4$, and 5
The coloring of T_{5} includes the colors 2, 3, 4, and 5

Theorem 2: Part 2

- In the matching of T_{1}, the vertex colored 1 can be in an edge with the vertex colored 2,3 , or 4 .
- Assume that the matching of T_{1} is made of of edges $[1,2]$ and $[3,4]$.
- T_{2} and T_{3} also contain the colors 1 and 2. T_{2} also contains 3 and $5 . T_{3}$ also contains 4 and 5 .
- T_{1}, T_{2}, and T_{3} are equivalent up to recoloring.
- T_{1} contains $[3,4]$, so T_{4} must have $[3,5]$ or $[4,5]$
- If T_{4} has [3,5], then T_{5} has [4,5] and if T_{4} has [4,5], then T_{5} has $[3,5]$.
- From the three choices for matching T_{1} and the two choices for matching T_{4} and T_{5}, we conclude that there are at least six ways to match the five tetrahedra.

