The Nine Card Problem: Combinatorics and

 Magic TricksDaniel R. Perez

March 16, 2016

Outline

1. Describing and doing the Nine Card Problem
2. Definitions
3. Proving why the Nine Card Problem works
4. Variation of the Nine Card Problem

What is the Nine Card Problem?

1. Take any nine cards from a deck. Put them into a stack and look at the third card from the top.
2. Remember the rank and suit of the third card.
3. Now, spell out the rank. Every time you state a letter, put the top card down on the table.
4. Once you have spelled out the word, pick up the stack and put it in the bottom of the pile in your hand.
5. After spelling the rank, spell out "of," then the suit.
6. After spelling the suit, spell "MAGIC."
7. Flip over the last card. It should be the card you spelled out.

Definitions

Deck: the set of D cards that are picked. D will be known as the Size.
Step: One round of spelling a word, placing cards on the table, and picking them up.
Dealt Card: A card placed on the table.
Shuffle: Picking up cards once they have been dealt.
Shuffle Length, L_{i} : The number of cards dealt before picking them up at the end of a step i.

What the Shuffle Does

Each Shuffle places the dealt cards in reverse order on the bottom.

Example

Let $x=\{123456789\}$. The function iDeal (x) takes a set x and returns a shuffle with length i.
If $i=2$, then $2 \operatorname{Deal}(x)=12 \mid 3456789=345678921$
If $i=3$, then $3 \operatorname{Deal}(x)=123 \mid 456789=456789321$
If $i=4$, then $4 \operatorname{Deal}(x)=1234 \mid 56789=567894321$

Groups for all steps

Note that some words, like "Ace" and "Two," have the same amount of deals.
Rank
3 cards dealt: (ace, two, six, ten)
4 cards dealt: (four, five, nine, jack, king)
5 cards dealt: (three, seven, eight, queen)
" of"
2 cards dealt: (of)
Suit
5 cards dealt: (clubs)
6 cards dealt: (spades, hearts)
8 cards dealt: (diamonds)

The Exhaustive proof of the 9 card trick

In order to find the total amount of possible deals, multiply the number of groups in each set of Rank, "Of", and Suit.

There are $3 * 1 * 3=9$ sets associated with each group permutation.

Finally, all permutations will be subjected to 5Deal(x) [Or "Magic"] so if the 3rd card is in the 5th position by the penultimate step, then we have proved it for all cases.

All Possible Combinations of Shuffles

$$
\begin{array}{cll}
\text { Unit } \rightarrow \text { Step } 1 \quad \rightarrow \text { Step 2 } & \rightarrow \text { Step 3 } \\
3,2,5: & 123|456789 \rightarrow 45| 6789321 \rightarrow 67893 \mid 2154 \rightarrow 215439876 \\
3,2,6: & 123|456789 \rightarrow 45| 6789321 \rightarrow 678932 \mid 154 \rightarrow 154239876 \\
3,2,8: & 123|456789 \rightarrow 45| 6789321 \rightarrow 67893215 \mid 4 \rightarrow 451239876 \\
4,2,5: & 1234|56789 \rightarrow 56| 7894321 \rightarrow 78943 \mid 2165 \rightarrow 216534987 \\
4,2,6: & 1234|56789 \rightarrow 56| 7894321 \rightarrow 789432 \mid 165 \rightarrow 165234987 \\
4,2,8: & 1234|56789 \rightarrow 56| 7894321 \rightarrow 78943216 \mid 5 \rightarrow 561234987 \\
5,2,5: & 12345|6789 \rightarrow 67| 8954321 \rightarrow 89543 \mid 2176 \rightarrow 217634598 \\
5,2,6: & 12345|6789 \rightarrow 67| 8954321 \rightarrow 895432 \mid 176 \rightarrow 176234598 \\
5,2,8: & 12345|6789 \rightarrow 67| 8954321 \rightarrow 89543217 \mid 6 \rightarrow 671234598
\end{array}
$$

Pseudo-Fixed Point

Definition

A Pseudo-Fixed Point (PFP) is a card, f_{i}, in the original distribution $S=1,2, \ldots, f_{i}, \ldots, D$ such that given three steps, the card remains in the same position relative to its counterparts with different shuffle lengths.

Equivalence Classes

Definition

An Equivalence Class for j is a group of shuffles $\left\{L_{i}\right\}$ such that a card will be placed on the table.

Example
Consider our earlier example.
2 Deal $(x)=12 \mid 3456789=345678921$
$3 \operatorname{Deal}(x)=123 \mid 456789=456789321$
$4 \operatorname{Deal}(x)=1234 \mid 56789=567894321$
Here, the equivalence class for $j=2$ would be $\{2,3,4\}$ as they all move the second card.

Insight of equivalence classes

The trick uses a sleight of hand method that makes the viewer think that the card is moving.

If a magician wants a certain card to move, they will have to deal at least the smallest shuffle in the equivalence class.

The General Proof for the 9 card Problem: Rank Step

Proposition: For the 9 card problem, 3 is the only PFP.
Proof.
First, start with the original placement of the cards.
123456789
The first shuffle will either be 3deal(x), 4deal(x), or 5deal(x). Note that each function will deal the first three cards.
The first shuffle returns:

$$
123456789 \rightarrow a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} 321
$$

Where a_{i} are arbitrary cards that depend on the shuffle size.

The General Proof for the 9 card Problem: Of Step

Proof.

The second permutation follows from the first like so:

$$
a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} 321 \rightarrow a_{3} a_{4} a_{5} a_{6} 321 a_{2} a_{1}
$$

The first three cards simply move up two spaces.

The General Proof for the 9 card Problem: Suit Step

Proof.

The third permutation follows from the second. Similar to the first situation, our three functions will either be 5 deal (x), 6 deal (x), or $8 d e a l(x)$. All of them will at least move the 3rd card. Therefore the final placement will be:

$$
a_{3} a_{4} a_{5} a_{6} 321 a_{2} a_{1} \rightarrow a_{1} a_{2} a_{3} a_{4} 3 a_{5} a_{6} a_{7} a_{8}
$$

Therefore, $f=3$ is a pseudo-fixed point and every possible permutation of different shuffles will lead to 3 being in the fifth spot.

Generalizing the Nine Card Problem

The 9 card problem can be generalized to include differing deck sizes, D, as well as different variable shuffle lengths L_{i}.

In order to show a variation of the problem, there needs to be one additional definition.

New Definition of I_{i}

Before continuing on, it is important to note here that changing the shuffle lengths will require bounds on the smallest possible length for a step and the total sum of those.

Definition

The smallest length in a step l_{i} is the minimum in an equivalence class of a step.
The sum of these minimums need to be bounded above and below to guarantee that a PFP exists.
In our example, $I_{1}=3, I_{2}=2$, and $I_{3}=5$.

PFPs in a generalized proof

1a. $3(D-1) \geq I_{1}+I_{2}+I_{3} \geq D+1$ must occur for a PFP
1 b. So in our original case, $3+2+5=11 \geq 10$
2a. $\left(l_{1}+l_{2}+l_{3}\right)-D=s$, where $s \geq 1$
2b. $(3+2+5)-10=1$
3a. Depending on the minimum of l_{1}, l_{3}, and s, the number of PFPs and their final positions can be determined.
$3 b$. The minimum of 3,5 , and 1 is 1 , or s.

PFPs and their final positions

Table: PFP and final positions

	$\min \left\{I_{1}, I_{3}, s\right\}$	Additional Restriction	PFPs	Final Positions
1	I_{1}	$I_{2} \leq D-I_{1}$	$1,2, \ldots, I_{1}$	$I_{2}+1, I_{2}+2, \ldots, I_{2}+I_{1}$
2	I_{1}	$I_{2}>D-I_{1}$	$1,2, \ldots, I_{1}$	$I_{2}+1, I_{2}+2, \ldots, D, I_{2}, I_{2}-1, \ldots D-I_{1}+1$
3	I_{3}	$I_{3}>D-I_{2}$	$1,2, \ldots, I_{3}$	$I_{2}+1, I_{2}+2, \ldots, D, I_{2}, I_{2}-1, \ldots D-I_{3}+1$
4	I_{3}	$I_{3} \leq D-I_{2}$	$I_{1}-s+1, I_{1}-s+2, \ldots, D-I_{2}$	$D-I_{3}+1, \ldots, D-1, D$
5	s	N/A	$I_{1}-s+1, \ldots, I_{1}$	$I_{1}+I_{2}-s+1, \ldots, I_{1}+L_{2}$

An Example for Case 5

Suppose the order of the first and the last shuffle in the Nine Card Problem were switched, so it was "Suit of Rank".
Here, $l_{1}=5, l_{2}=2, l_{3}=3$, and $s=1$.
Therefore, s would be the minimum.
According to the table, the PFP would be the $I_{1}-s+1=5-1+1=5$ th card.
It's final position would be $I_{1}+I_{2}-s+1=5+2-1+1=7$ th in the deck.

Example for Case 5 Test

Because of equivalence classes, all that needs to be done is to check the minimum lengths and see if they work.
Consider the following example with [5, 2, 3, or Clubs of Ace] and deck size $D=9$:

Original Order 123456789
Step 1: 12345|6789 $\rightarrow 678954321$
Step 2: $67 \mid 8954321 \rightarrow 895432176$
Step 3: $895 \mid 432176 \rightarrow 432176598$

Conclusion

1: Learned of the 9 Card Problem.
2: Saw why and how the 9 Card Problem worked.
3: Changed the 9 Card Problem slightly and saw it still works.

Bibliography

围 Swart Breeanne Baker, and Brittany Shelton. "Revelations and Generalizations of the Nine Card Trick." Mathematics Magazine 88, no. 2 (June 3, 2015): 137-43. doi:10.4169/math.mag.88.2.137.

嗇 Applied Combinatorics, Second Edition. 2 edition. Chapman and Hall/CRC, 2008.

Rosen, Kenneth. Discrete Mathematics and Its Applications Seventh Edition. 7 edition. New York: McGraw-Hill Education, 2011.

TheEllenShow. Card Trick from Home! Accessed December 10, 2015.
https://www.youtube.com/watch?v=uvTX9sK-TdU.

