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Definitions/Theorems

A set G is called a group [denoted (G , ∗)] if:
i) G has a binary operator ∗. We write a ∗ b as ab.
ii) ∗ is associative
iii) there is an element e ∈ G such that

x ∗ e = e ∗ x = x , ∀x ∈ G
iv) for each x ∈ G , ∃ y ∈ G such that x ∗ y = y ∗ x = e. We

write y = x−1.

A group G is called cyclic if ∃ x ∈ G such that
G = {xn|n ∈ Z} = 〈x〉. Then x is called a generator.
Example cyclic groups are Z,Zn.
The order of a group G , denoted |G |, is the number of
elements in the group.
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Definitions/Theorems

A subset H of a group (G , ∗) is called a subgroup of G if
all h ∈ H form a group under ∗.

Theorem: Let H be a nonempty subset of a group G .
Then H is a subgroup iff:

i) ∀a, b ∈ H, ab ∈ H
ii) ∀a ∈ H, a−1 ∈ H

We write H ≤ G .
If H 6 G , then a Left/Right coset of H in G is a subset
of the form aH/Ha where a ∈ G and
aH/Ha = {ah/ha|h ∈ H}.
Two elements x , y ∈ G are conjugate if ∃g ∈ G such that
y = g−1xg .
If H 6 G , then gHg−1 6 G is a conjugate subgroup of
G , ∀g ∈ G .
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Definitions/Theorems

Lagrange’s Theorem: Let G be a finite group and let
H 6 G . Then |H| | |G |, as |G | = |H|[G : H] where [G : H]
is the number of Left/Right cosets.
Let H 6 G . Then the number of Left/Right Cosets of H
in G is [G : H], called the index.
Let H 6 G . Then we say H is a normal subgroup if
∀h ∈ H, g ∈ G , ghg−1 ∈ H. We write H E G .
Theorem: Let H 6 G . Then the following are equivalent:

i) H E G
ii) gHg−1 = H, ∀g ∈ G
iii) gH = Hg , ∀g ∈ G
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Definitions/Theorems

If H is the only subgroup in G of order |H| then H E G .
If H E G then G/H is a group called the quotient group
whose elements are of the form gH,∀g ∈ G , and whose
operation is ∗ such that aH ∗ bH = (a ∗ b)H.
If G ,H are groups, then we can define a function φ:
G → H as a homomorphism if φ(g1g2) = φ(g1)φ(g2).
Define a surjection φ from G → G/H where g → gH.
The kernel of φ is given by Ker(φ) = {g ∈ G |φ(g) = eH},
where eH is the identity in H and it is a normal subgroup.
The Normalizer of H 6 G is the subset
N(H) = {g ∈ G |gHg−1 = H}.
The Center of a group G is the set of elements
Z (G) = {a ∈ G |ag = ga, ∀g ∈ G}.

6 / 26



Sylow
Theorems

Andrew Clarey

Definitions/
Theorems
Groups, Subgroups

Lagrange’s,
Normality

Class Equation,
Cauchy’s Theorem

First Sylow
Theorem
Theorem

Examples

Proof

Additional Proofs

Second Sylow
Theorem

Third Sylow
Theorem

Results
Cyclic subgroups

Simple Groups

Additional Examples

References

Definitions/Theorems

The Centralizer of a g ∈ G is the set of elements
Z (g) = {a ∈ G |ag = ga}
Theorem: The Class Equation of a group G states:
|G | = |Z (G)|+ [G : Z (g1)] + · · ·+ [G : Z (gk)],
g1, . . . , gk /∈ Z (G), where each gi is a representative of a
conjugacy class which contains at least 2 elements.
Cauchy’s Theorem: Let G be an abelian group, and let p
be a prime such that p | |G |. Then G contains an element
of order p. That is, ∃x ∈ G so that p is the lowest
non-zero number such that xp = e.
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First Sylow Theorem

A subgroup of a group G is called a p-Sylow subgroup if
its order is pn, p a prime and n ∈ Z+, such that pn | |G |
and pn+1 - |G |.
First Sylow Theorem: Let G be a finite group, p a
prime, k ∈ Z+.

i) If pk | |G |, then G has a subgroup of order pk . In
particular, G has a p-Sylow subgroup.

ii) Let H be any p-Sylow subgroup of G . If K 6 G , |K | = pk ,
then for some g ∈ G we have K ⊆ gHg−1. In particular, K
is contained in some p-Sylow subgroup of G .
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Examples

Say |G | = 22 · 34 · 52 · 72. Then we know there will be at least
one of each:
2-Sylow subgroup of order 4,
3-Sylow subgroup of order 81,
5-Sylow subgroup of order ,
7-Sylow subgroup of order .
We also know there will be subgroups of order 2, 3, 9, 27, 5,
and 7.
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Examples

Let G = A4, a group of order 12 = 22 · 3

A4 = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 2, 4),
(1, 3, 4), (1, 3, 2), (1, 4, 3), (1, 4, 2), (2, 3, 4), (2, 4, 3)}

So, a 2-Sylow subgroup of G would be a subgroup of order 4,
an example is:

H = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

In fact this is the only one and therefore is normal, and all
subgroups of order 2 and 4 are contained within it.
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Examples

Say G = SL2(Z3).1 Then |G | = 24 = 23 · 3 and −1 ≡ 2mod3.
The only 2-Sylow subgroup is:[

1 0
0 1

]
,

[
0 −1
1 0

]
,

[
1 1
1 −1

]
,

[
−1 1
1 1

]
,[

−1 0
0 −1

]
,

[
0 1
−1 0

]
,

[
−1 −1
−1 1

]
,

[
1 −1
−1 −1

]

and there are 4 3-Sylow subgroups:

〈[ 1 1
0 1

]〉
,

〈[ 1 0
1 1

]〉
,

〈[ 0 1
−1 −1

]〉
,

〈[ 0 −1
1 −1

]〉
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Proof

We now prove that if pk | |G |, then G has a subgroup of order
pk . In particular, G has a p-Sylow subgroup, part i of the First
Sylow Theorem.

Let G be a group, p a prime, k ∈ Z+ such that pk | |G |. We
will proceed with induction on |G |. If |G | = 2 the result is
trivial, and we are done. So, let’s assume the theorem is true
for all groups of order less than |G | and show it is true for |G |.

Case 1: Assume ∃H < G such that p - [G : H].
|G | = [G : H]|H| so pk must divide |H|.
By the inductive hypothesis, Since |H| < |G |, H has a
subgroup of order pk , therefore G does as well.
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Proof

Case 2: Assume @H < G such that p - [G : H].
So, ∀H < G , p | [G : H].

By the Class Equation: |G | = |Z (G)|+
∑

[G : Z (gi )].
Since p | |G | and p | [G : Z (gi )] ∀i , then p | |Z (G)|.

⇒ By Cauchy’s Theorem Z (G) has a subgroup of order p, say
A. Then A E G .

So, |G/A| = |G |/p ⇒ pk−1 | |G/A|. But |G/A| < |G |.

⇒ The inductive hypothesis applies to G/A. So, G/A has a
subgroup of order pk−1, say J .
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Proof

Define φ : G → G/A

Let H = {g ∈ G |φ(gA) ∈ J}. H 6= ∅, eH = A. Then H ≤ G .

Show that g1, g2 ∈ H ⇒ g1g−1
2 ∈ H, i.e. Show g1g−1

2 A ∈ J

But, g1g−1
2 A = g1A(g2A)−1 ∈ J as J < G/A, and A < H as

A ∈ J .

So, map φ : H → J by h→ hA which is onto by definition.

Then Ker(φ) : H ∩ A = A, and therefore H/A ∼= J .

So, J has the form H/A for some H < G , where
pk−1 = |H/A| = |H|/|A| = |H|/p. So, |H| = pk as required.
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additional proof 1

We proceed by induction on |G |. If|G | = 2, the result is trivially
true. Now assume the statement is true for all groups of order
less than |G |.

Case 1: If G has a proper subgroup H such that pk divides |H|,
then, by our inductive assumption, H has a subgroup of order
pk and we are done.
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additional proof 1

Case 2: We may assume that pk does not divide the order of
any proper subgroup of G . Next, consider the class equation
for G :

|G | = |Z (G)|+
∑

[G : Z (gi )]
where we sum over a representative of each conjugacy class.
Since pk divides |G | = [G : Z (gi )]|Z (gi )| and pk does not
divide |Z (gi )|, we know p must divide [G : Z (gi )], ∀gi /∈ Z (G).
Thus, from Cauchy’s Theorem, we see that Z (G) contains an
element of order p, say x . Since x is in the center of G , 〈x〉 is
a normal subgroup of G and we may form the factor group
G/〈x〉. Now observe that pk−1 divides |G/〈x〉|. Thus, by the
inductive hypothesis, |G/〈x〉| has a subgroup of order pk−1 and
this subgroup has the form H/〈x〉 where H is a subgroup of G .
Finally, note that |H/〈x〉| = pk−1 and |〈x〉| = p imply that
|H| = pk and this completes the proof.2
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additional proof 2

We divide the proof into two cases.

Case 1: p divides the order of the center Z (G) of G . By
Cauchy’s Theorem, Z (G) must have an element of order p, say
x . By induction, the quotient group G/〈x〉 must have a
subgroup P of order pk−1. Then the pre-image of P in Z (G) is
the desired subgroup of order pk .

Case 2: assume that p does not divide the order of the center
of G . Again:

|G | = |Z (G)|+
∑

[G : Z (gi )],
where the sum is over all the distinct conjugacy classes of G ;
that is, conjugacy class with more than one element. Since p
fails to divide the order of the center, ∃i such that
p - [G : Z (gi )]. Then pk must divide the order of the subgroup
Z (gi ) as |G | = [G : Z (gi )]|Z (gi )|. Again, by induction, G will
have a p-Sylow subgroup.3
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Second Sylow Theorem

Second Sylow Theorem: All p-Sylow subgroups of G are
conjugate to each other. Consequently, a p-Sylow subgroup is
normal iff it is the only p-Sylow subgroup.

Proof :
Let K , H be p-Sylow subgroups of G . Then by the second part
of the First Sylow Theorem K ⊆ gHg−1. But K and H have
the same order, so K = gHg−1.

Next, if there is a p-Sylow subgroup H E G and K is any
p-Sylow subgroup, then K = gHg−1, so K = H. Therefore H
is the only p-Sylow subgroup.

Finally, if H is the only p-Sylow subgroup, then
|gHg−1| = |H| ⇒ H = gHg−1 and H is normal.
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Third Sylow Theorem

We give the Third Sylow Theorem without proof:

Third Sylow Theorem: Let H be any p-Sylow subgroup of G .
Then the number of p-Sylow subgroups in G is [G : N(H)].
This number divides |G | and has the form 1 + jp for some
j ≥ 0 and this number divides [G : H].

Note: [G : H] = [G : N(H)][N(H) : H].

These theorems allow us to look at the structure of arbitrary
groups in order to try and classify them.
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Cyclic Theorem

Cyclic Theorem: Let G be a group of order pq, where p and
q are primes and p < q. Then if p - q − 1, G is cyclic.

Examples:
Every group of order 15 is cyclic. 15 = 3 · 5 and
3 - 5− 1 = 4. So by the theorem, all groups of order 15
are cyclic.
Every group of order 35 is cyclic. 35 = 5 · 7 and
5 - 7− 1 = 6. So by the theorem, all groups of order 35
are cyclic.
Every group of order 119 is cyclic. 119 = 7 · 17 and
7 - 17− 1 = 16. So by the theorem, all groups of order
119 are cyclic.

(It can be proven that when p | q − 1, ∃ a non-abelian group of
order pq. Moreover, all non-abelian groups of order pq are
isomorphic to each other.) 20 / 26
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Simple Groups

A group G is called simple if its only normal subgroups are {e}
and G .

Examples:

No group of order 200 is simple. 200 = 23 · 52.

Consider the 5-Sylow subgroup H of 25 elements. The
number of 5-Sylow subgroups is [G : N(H)] = 1 + 5j | 8.
The only possibility is 1, so H is the only 5-Sylow
subgroup and is normal by the Second Sylow Theorem,
and therefore G cannot be simple.
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Simple Groups

No group of order 56 is simple. 56 = 23 · 7.

The number of 2-Sylow subgroups is 1 + 2k and divides 7,
therefore is 1 or 7. The number of 7-Sylow subgroups is
1 + 7j and divides 8, and therefore is 1 or 8. If either is 1,
then we are done. So, let’s say there are 8 7-Sylow
subgroups. They have trivial intersection, which gives
8 · 6 = 48 elements. But, 56− 48 = 8 elements, which
only allows for one 2-Sylow subgroup, and therefore this
2-Sylow subgroup is normal and the group is not simple.4
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groups of order 30

Let’s find all the groups of order 30 = 2 · 3 · 5

So, we know there are Sylow subgroups A, B, and C of order 2,
3, and 5 respectively. The number of 5-Sylow subgroups is
[G : N(C)], so must divide 6. But it is also of the form 1 + 5j ,
so either 1 or 6. Similarly, the 3-Sylow subgroups are
1 + 3k | 10, either 1 or 10.

Suppose there are six 5-Sylow subgroups and 10 3-Sylow
subgroups. Any two 5-Sylow subgroups must have trivial
intersection since they are both order 5. All six 5-Sylow groups
would give 6 · 4 = 24 elements of order 5 in G . Similarly, the
3-Sylow subgroups give 20 elements of order 3 in G . By our
assumption, this would imply |G | ≥ 44, which is impossible.

23 / 26



Sylow
Theorems

Andrew Clarey

Definitions/
Theorems
Groups, Subgroups

Lagrange’s,
Normality

Class Equation,
Cauchy’s Theorem

First Sylow
Theorem
Theorem

Examples

Proof

Additional Proofs

Second Sylow
Theorem

Third Sylow
Theorem

Results
Cyclic subgroups

Simple Groups

Additional Examples

References

groups of order 30

So, we know the group is not simple, but let’s continue to
explore its structure.

So, either there is only one 5-Sylow or one 3-Sylow subgroup.
Therefore, either B or C is normal, and BC is a subgroup of G,
of order |B| · |C |/|B ∩ C | = 15. So BC is cyclic, say BC = 〈x〉.

Since 〈x〉 has index 2 (as |G |/|BC | = 30/15 = 2) it is normal
in G. If we let A = 〈y〉, then G = 〈x〉〈y〉 since 〈x〉〈y〉 has order
30. We must have yxy−1 = x t for some integer t. If we knew
the value of t, we could determine the structure of G .
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groups of order 30

So yxy−1 must have order 15, because x does, and therefore
(t, 15) = 1, so t = 1, 2, 4, 7, 8, 11, 13, 14. We also have

y(yxy−1)y−1 = yx ty−1 = (yxy−1)t = (x t)t = x t2 .

So, x = x t2 ⇒ x t2−1 = e, and thus 15 | (t2 − 1). This rules
out t = 2, 7, 8, 13, so there are at most four possibilities for t,
so at most four nonisomorphic groups of order 30.

In fact, there are four:

Z30, S3 × Z5, Z3 × D5, and D15.
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