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Motivation

Group theory is an important subject in theoretical physics, with a
wide variety of applications, from particle physics to electricity and
magnetism as it allows for the exploitation of symmetries to find
solutions to difficult problems. Groups allow for representations of
the underlying symmetries and provides tools for us to
mathematically characterize solutions solely based on these
symmetries.
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Group

Group A set G under a closed binary operation ‘·’ called the group
operation, forms a group if ∀a, b, c ∈ G the operation satisfies the
following conditions:

1 Associativity: a · (b · c) = (a · b) · c .

2 Identity Element: ∃ an element e ∈ G , such that
a · e = e · a = a. This element is known as the identity
element.

3 Inverse: ∀a ∈ G ∃a−1 ∈ G such that a · a−1 = a−1 · a = e

A group where the group operation is commutative is then known
as an abelian group.
A subgroup of a group G is a set V ⊆ G such that it is a group
under the group operation inherited from G .
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Groups

Group homomorphism For two groups, G1 and G2, we can define
a mapping known as a group homomorphism. This mapping
preserves the group operation, so a mapping s : G1 → G2 is a
homomorphism if ∀a, b ∈ G1, s(a · b) = s(a) · s(b).
From this definition, it then follows that a homomorphism
preserves inverses and maps the identity element of G1 to the
identity element of G2.
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Vector Spaces

Linear Vector Space A linear vector space is a set V = {a, b,
c, . . . } over a scalar field, A = { α, β, γ, . . . } on which two
operations: addition between vectors ‘+’ and multiplication ‘·’ by a
scalar, are defined with the following properties:

1 V is an abelian group under the addition operation

2 (Closure under scalar multiplication) If x ∈ V and α ∈ A,
then α · x ∈ V

3 (Existence of identity scalar)There exists a scalar 1 ∈ A such
that for all x ∈ V , 1 · x = x . This scalar called the unity.

4 (Associativity of scalar multiplication)Multiplication by a
scalar is associative, i.e for α, β ∈ A and x ∈ V ,
α(βx) = (αβ)x

5 (Distributive properties) a vector space also satisfies the
distributive properties, i.e. for α, β ∈ A and x , y ∈ V ,
α(x + y) = αx + βx and (α + β)x = αx + βx
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Linear Transformations

A linear transformation, A, is a mapping of elements between
two linear vector spaces V and V ′ such that

1 for x ∈ V , Ax ∈ V ′

2 for x , y ∈ V and scalars α, β, A(αx + βy) = αAx + βAy

These can also be known as a linear operator.
Some examples of linear operators are differential operators,
rotation matrices, and multiplication of a n × n matrix by column
vector. We say that a linear operator is defined on a vector space,
V , if it maps vectors from V to V .
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Matrix Representation of Linear Operators

If A is a linear transform defined on the vector space V , and the
set {e1, e2, ..., en} is the basis of V , we can construct the matrix
representation by defining the components of the matrix in terms
of the linear transforms on the basis vectors of V . Thus, for the
tranform A, the matrix representation of the transform is given by

Aei =
∑
j

(A)ijej
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Group Representations

Definition

(Group Representation) If there exists a homomorphism, f , from a
group G to a group of linear transforms U defined on a vector
space V , f can be said to be a representation of the group. The
dimension of the representation is the dimension of the vector
space V , and the representation is said to be faithful if the
homomorphism is also one-to-one. Otherwise, the representation is
known as a degenerate representation.

If the vector space V that a group representation if is defined on is
an inner product space, and all linear operators of the
representation are unitary, we then call that representation a
unitary representation.
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The dihedral group, D3

Figure : This figures show the possible symmetric reflections of an
equilateral triangle.

A group of order 6 with elements R0,R1,R2,S0, S1,S2

R0,R1,R2 represent rotations of 0◦, 120◦, and 240◦.

S1,S2,S3 represent reflections about the axes shown above.
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Constructing Group Representations

We can construct a trivial, one-dimensional representation using
the map ∀a ∈ D3, f (a) = 1.

Thus, ∀g ∈ D3, f (g) = 1. Then, ∀g1, g2 ∈ D3,
f (g1)f (g2) = 1 · 1 = 1 = f (g1g2) since all elements in D3 map to 1.

Then, f is a homomorphism and it follows that f is a
representation of D3.

However, such a representation is not very useful!
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Constructing Group Representations

A non-trivial group representation of D3 can be constructed on the
three-dimensional Euclidian space, R3, with the standard basis
vectors e1, e2, and e3. Let us construct a mapping U such that the
rotation elements map to their respective rotation linear transforms
in three dimensions , so U(R0) = Rz(0◦), U(R1) = Rz(120◦), and
U(R2) = Rz(240◦). The reflections map similarly to
transformations in a two-dimensional vector space.
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Constructing Group Representations

From these mappings, we can than construct the matrix
representations of these linear operators to obtain the matrix
representation of our group representations.(U(g)e1)1 (U(g)e2)1 (U(g)e3)1

(U(g)e1)2 (U(g)e2)2 (U(g)e3)2
(U(g)e1)3 (U(g)e2)3 (U(g)e3)3

 =
(
U(g)e1 U(g)e2 U(g)e3

)
where for a vector v , vi gives the ith component of v . Thus, we
can than list the matrix representations of our group
representation.
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Constructing Group Representations

For the rotation operations:

U(R0) = Rz(0◦) =

1 0 0
0 1 0
0 0 1

 ,

U(R1) = Rz(120◦) =

cos(120◦) −sin(120◦) 0
sin(120◦) cos(120◦) 0

0 0 1


=

−1/2 −
√

3/2 0√
3/2 −1/2 9
0 0 1

 ,

U(R2) = Rz(240◦) =

 −1/2
√

3/2 0

−
√

3/2 −1/2 0
0 0 1
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Constructing Group Representations

For the reflection operations, through geometry and Figure 1, we
can see that S0e1 = e1 and S0e2 = −e2 since e1 is in the
x-direction, and e2 is in the y-direction. Since we are only acting in
the xy plane, the z-direction is unaltered and S0e3 = e3

U(S0) =

1 0 0
0 −1 0
0 0 1



U(S1) = U(S0R1) = U(S0)U(R1) =

 −1/2 −
√

3/2 0

−
√

3/2 1/2 0
0 0 1



U(S2) = U(S0R2) = U(S0)U(R2) =

−1/2
√

3/2 0√
3/2 1/2 0
0 0 1
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Group Representations

Furthermore, if a group, G , with a representation U(G ) and a
normal subgroup H we can define a theorem about the nature of
the representations of G/H.

Theorem

If a the group G has a non-trivial normal subgroup H, then the
representation of the quotient group G/H is also a representation
of G . This representation is a degenerate representation of G . In
addition the converse is true. If the representation U(G ) of G is
degenerate representation, then G has at least one non-trivial
normal subgroup, H, such that U(G ) is a faithful representation of
G/H.
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Equivalent Representations

Definition

(Equivalent Representations) Two representations of a group G
related by a similarity transform are said to be equivalent.

Note: Two representations U and U ′ are related by a similarity
transform if U ′(G ) = SU(G )S−1 = {S−1U(g))S : U(g) ∈ U(G )}.
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Equivalent Representations

Theorem

Any representation of a finite group defined on an inner product
space has an equivalent unitary representation.

Proof.

Let U : G → U(G ) be a representation of the finite group, G ,
defined on the inner product space V .
We construct a new invertible linear operator, S =

∑
g∈G U(g).

Then, ∀g ∈ G , ∀x , y ∈ V , (SU(g)S−1x , SU(g)S−1y)
=
∑

g ′∈G (U(g ′)U(g)S−1x ,U(g ′)U(g)S−1y)

=
∑

g ′′∈G (U(g ′′)S−1x ,U(g ′′)S−1y) = (SS−1x ,SS−1y) = (x , y)

Thus, D(G ) = SU(G )S−1 is an equivalent unitary representation
of G.
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Ex: Equivalent Representations

Rx(90◦)Rz(0◦)Rx(90◦)−1 =

1 0 0
0 1 0
0 0 1

 = Ry (0◦)

Rx(90◦)Rz(120◦)Rx(90◦)−1 =

 −1/2 0 −
√

3/2
0 1 0

−
√

3/2 0 1/2

 = Ry (120◦)

Rx(90◦)Rz(240◦)Rx(90◦)−1 =

−1/2 0
√

3/2
0 1 0√
3/2 0 1/2

 = Ry (240◦)
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Ex: Equivalent Representations

M(Rx(90◦))U(S0)M(Rx(90◦))−1 =

1 0 0
0 1 0
0 0 −1



M(Rx(90◦))U(S1)M(Rx(90◦))−1 =

 −1/2 0 −
√

3/2
0 1 0

−
√

3/2 0 1/2



M(Rx(90◦))U(S1)M(Rx(90◦))−1 =

−1/2 0
√

3/2
0 1 0√
3/2 0 1/2
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Irreducibility

Consider a group representation U : G → U(G ) of the group G
defined on a vector space V with dimension n. We the can be
block-diagonalize matrix representations of U(G ) to take the form

U(g) =

(
U1(g) 0
0 U2(U(g))

)
∀g ∈ G

U(g) the direct sum of matrices U1(g) and U2(g). The group
U(G ) is then the direct product of the group U1(G ) and U2(G )
and the representation U is a direct product of the representations
U1 and U2. We can write this as U(G ) = U1(G )×U2(G ). Each of
these matrix representations operates on a vector subspace of V ,
V1 and V2.

20 / 32



Invariant Subspaces

Definition

(Invariant Subspaces) Let U : G → U(G ) be a representation of
the group G defined a n-dimensional vector space V . We then say
that a subspace of V , V ′ is an invariant subspace with respect to
U(G ) if ∀x ∈ V ′,&∀g ∈ G , U(g)x ∈ V ′. Thus, V ′ is closed under
the linear operators of the group representation.

We can then say an invariant subspace is minimal if it contains no
non-trivial invariant subspaces.
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Irreducible Representations

Definition

(Irreducible Representation) A representation U : G → U(G )
defined on a vector space V is irreducible if there is no non-trivial
invariant subspace with respect to U(G ). Otherwise, we call U(G )
reducible. If the orthogonal complement to V ′,
V ′′ = {x : x ∈ V |∀v ∈ V ′, (x , v) = 0} is also an invariant
subspace, then U(G ) is fully reducible
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Irreducible Representations

Theorem

If a unitary representation is reducible, then it is fully reducible.

Proof.

Let U(G ) be a unitary reducible representation of a finite group G
defined on the inner product space V . Then V contains a proper
subspace V1 that is invariant with respect to U(G ). Call the
dimension of V m and the dimension of V1 n. Let us choose an
orthogonal basis {e1, . . . , em} for V such that e1, . . . , en spans V1.
The space that is spanned by {en+1, . . . , em} is V2. Since V1 is
invariant, for i = 1, . . . ,m and ∀g ∈ G , U(g)ei ∈ V1. For
i = 1, . . . , n, j = n + 1, . . . ,m g ∈ G ,
(ei , ej) = (ei ,U(g)−1U(g)ej) = (U(g)ei ,U(g)ej) = 0. Then
U(g)ej is in V2 since it is orthogonal to all elements of V1. Thus,
V2 is an invariant subspace and an orthogonal complement to
V1.

Thus, all representations of finite groups defined on inner product
spaces are fully reducible
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Example of Reducible Representations

Take the our 3-dimensional representation of D3. It has two
invariant orthogonal subgroups, the space spanned by {e1, e2}, and
the space spanned by {e3}, i.e. the xy plane and the z-axis.

The 3-dimensional representation is then a direct product of the
trivial representation discussed earlier, which acts on the z -axis
space, and a two dimension representation consisting of the
rotation and reflection operators in the plane.

U(g) =

(
U1(g) 0
0 U2(U(g))

)
= ∀g ∈ G
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Character of a Representation

Definition

(Character of a Group Representation) Given a representation
U : G → U(G ) of the group G , the character χ(g) the trace of
the matrix representation of U(g).

Then, we can identify equivalent representations by calculating the
characters of the group elements. If the characters are the same,
then the group representations are equivalent. Furthermore, all
elements of a conjugacy class have the same character.
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Properties of Irreducible, Inequivalent Representation

Theorem

nG

nµ

∑
g∈G

Dµ(g)ikDν(g)lj = δµνδilδkj

Every representation of a group G can be written as a direct
product of irreducible representations.

The number of irreducible representations of a group is
equivalent to the number of conjugacy classes of a group.

For a given group representation U of a group G with order n,
n =

∑
G χU(G ).
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Applications of Representation Theory in Physics

In quantum mechanics, a system with n-degrees of freedom is
completely described by a complex-valued function called a wave
function Ψ(r, t), where r is a n-dimensional vector describing those
degrees of freedom, and t is time.

These wave functions describing the system are found by solving
the famous Schrödinger equation,

H(r, t)Ψ(r, t) = i~
∂

∂t
Ψ(r, t)

where H is an Hermitian operator known as the Hamiltonian.
However, we will focus on the time independent version of this
equation

H(r)ψ(r) = Eψ(r)
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Applications of Representation Theory in Physics

We again consider a time-independent Hamiltonian, H(r), an
arbitrary time-independent wave function ψ(r), the vector space V
such that r ∈ V , and a set of coordinate transforms G defined on
V. These coordinate transforms then induce a group of
transformations, T (G ), in the space of wave functions. We then
define the transforms ∀g ∈ G

T (g)ψ(r) = ψ′(r) = ψ(g−1r) (1)

if the Hamiltonian is invariant under the similarity transforms from
all elements of T (G ), i.e. if ∀T (g) ∈ T (G ),T (g)HT−1(g) = H,
then the group G is a symmetry group of the Hamiltonian and
T is a representation of G .
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Applications of Representation Theory in Physics

Two properties arise out of the existence of a symmetry group, G ,
for the Hamiltonian.

1 The eigenfunctions and eigenvalues of H may be labeled by
the irreducible representations,Tµ(G ) of the symmetry group,
G , such that we write them Eµ and ψµ.

2 The state, Eµ corresponding to the µ-representation of G will
at least have a degeneracy on order of, n, dimensionality of
the representation. We say that degeneracy of a eigenvalue
implies that there are multiple eigenfunctions that share the
eigenvalue. A degeneracy on the order of n, means that there
are n eigenfunctions that share the same eigenvalue.
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Applications of Representation Theory in Physics

Consider a Hamiltonian with the symmetry group, C3. C3 is a
subgroup of the dihedral group, D3 containing only the three
rotation elements, R0,R1,R2. In this case this represents 120◦

rotations about the z-axis
T 1(C3) is the trivial representation, mapping all elements to the
identity operator. T 2(C3) maps R1 to e2πi/3 and R2 to e2πi/3

while R0 maps to 1. T 3(C3) maps R1 to e4πi/3, R2 to e8πi/3, and
R0 again to 1.

Tα(R1) = e2π(α−1)i/3,Tα(R2) = e4π(α−1)i/3,Tα(R0) = 1 (2)

Since the dimensionality of all the group representations is 1, then
we can immediately assume that there are no degenerate
eigenstates. There will be three eigenstates, each labeled by a
representation of of C3.
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Applications of Representation Theory in Physics

For a eigenfunction labeled φα,

φα(θ − 2π/3) = e2π(α−1)i/3φα(θ) (3)

by definition of the of spacial transform we defined earlier. From
this we can make an ansatz that the eigenfunctions for H take on
the form

φα(θ) = uα(θ)e i(α−1)θ (4)

Plugging equation 4 into equation 3, we get that

uα(θ − 2π/3)e i(α−1)(θ−2π/3) = e2π(α−1)i/3uα(θ)e i(α−1)θ (5)

which simplifies to uα(θ − 2π/3) = uα(θ), verifying that our
solutions have periodic symmetry for θ and that we must only
solve in the range [0, 2π/3).
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