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Abstract 

Solar installation sites must be chosen carefully in order to maximize return on 

investment for green energy projects. Given a database containing 27 potential 

sites in Arizona, we present a method for ranking them in order of their 

optimality. Three models of optimality, or score, are evaluated, where each is a 

function of solar panel efficiency, availability of solar resource and confidence in 

data for each site. Low uncertainty was obtained when comparing two of the 

models, which agreed on similar final rankings. 

1. Introduction 

As interest in green alternatives to fossil fuel intensifies, many organizations have 

turned to solar radiation to meet their energy needs. However, the decision to build an 

installation for harvesting solar power is a potentially costly one. Although solar power is 

available anywhere, not all locations are made equal. The abundance of sunlight and 

effects temperature and humidity may have on photovoltaic cells make deciding the best 

place to put a solar panel tricky. Furthermore, the unpredictability of weather ensures that 

just because a site looks optimal today, it may not always be so. If the wrong decision is 

made, the consequences can be dire. Facilities that are unable to produce the projected 

amount of energy early in their lifespans run the risk of putting companies in debt to their 

financiers.1 

As such, potential investors are conservative with their funding. Locations for 

solar panel placement are usually evaluated by the smallest possible solar energy return 

one can reasonably expect.2 This figure, referred to as a P90 value, is the amount of a 

given resource that will be exceeded 90% of the time. P90 values are an important tool 
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for anyone wishing to assess a solar installation site, but they come with a built-in 

assumption that may not always be reasonable. That is, in order to compute the P90 value 

for a given location, one needs a set of reliable measurements of resources at that 

location. A large amount of historical data is needed to make accurate predictions about 

the long-term cycles of weather. Yet gathering many decades’ worth of data introduces 

many decades’ worth of measurement and transcription errors.  

Our project combines physics, weather forecasting, and data science to determine 

both the abundance of solar resource as well as the degree to which measurements can be 

trusted for a potential site. Given a database of different locations, each characterized by 

years-worth of multivariate data, we present a method for ranking them in order of their 

optimality for gathering solar resource. 

 

2. Methods: 
In order to rank each of the 27 stations in order of optimality, a score was assigned to 

each potential site. The score was the product of two quantities, referred to as value and 

confidence. Value is a function of meteorological data available at a given location and 

reflects how ideal that location appears, if the data are to be trusted. Confidence is a 

function of numerical features of the data itself, and reflect the degree to which the 

calculated value can be trusted. Because confidence is given as a real number between 0 

and 1, it can be thought of as a weight that affects the final score.  

It should also be noted that in the final version of the model, confidence 𝑐 is not 

used to weight value, but used to weight the difference between the value 𝑉 of a site and 

the mean value 𝑉 of all sites. Using confidence to weight the difference of the mean has 

the effect of ranking high-confidence, low-value locations lower than low-confidence, 

low-value locations. This result is fortuitous, as confidence is intended to reflect the 

trustworthiness of the value. A higher degree of confidence should not raise our 

assessment of a station’s optimality (as would be the effect of multiplying confidence by 

value itself), but should only adjust the assessment of the value. As such, sites whose 

value falls below the mean value will always have a negative score, whereas sites whose 

value exceeds the mean value will always have a positive score. 

𝑆𝑐𝑜𝑟𝑒 = 𝑐 𝑉 −   𝑉  
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Once a score is found, sites are simply ranked in order of their scores, with higher scoring 

sites treated as being more optimal for solar power investment. It should be noted that 

each score, although represented as a real number, is only used for ordinal ranking. The 

actual quantity associated with the score is not considered relevant to the model. A 

precise explanation of the quantities value and confidence follows. 

a. Value V: 

Because we had a number of measurements available to us beyond solar radiation, 

our first step was to come up with a formula for Value V more sophisticated than the 

radiation P90 typically used. Since solar power depends heavily on radiation available at 

a given site, we still include the P90 value, but now we consider it alongside other 

factors. For instance, the efficiency of solar panels also depends on temperature. The 

manufacture efficiency of solar panels is mostly tested at a standard temperature of 25 

degrees Celsius or 77 degrees Fahrenheit. The efficiency of solar panels can be written as 

the following function of temperature: 

𝜂 = 𝜂!!"#   1−
𝑇! − 𝑇!"#
𝑇! − 𝑇!"#

3 

Tc is the current temperature (the variable). 

Tref  is the temperature at which the solar cell efficiency is maximal, which is usually 

around 25C. 

𝜂!!"# is the efficiency of the solar panel at standard Tref  with solar radiation of 1000 

watts per meters squared, and 

T0 is the high temperature, at which, the efficiency drops to 0. For crystalized silicon 

cells, it is about 270C. Since these are constant, the more the temperature increases from 

25C, the lower the efficiency is, and vice versa. As such, a lower temperature implies 

greater efficiency. Since the 𝜂!!"# is the same for all locations, because we are using the 

same type of solar panels, we only consider the efficiency ratio [  1− !!!!!"#
!!!!!"#

] in order to 

evaluate the stations. 

Furthermore, the solar radiation contains energy from many light spectra 

including both ultra violet and visible light. UV is the most energetic spectrum, and solar 
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panels can only absorb energy from the visible light spectrum;4 therefore, even if a 

cloudy place has a high value of solar radiation, the solar energy that can be used is very 

low. Hence, solar power plants receive the most radiation during clear sky weather. To 

predict cloudiness, we use relative humidity. Since relative humidity is defined as the 

ratio between actual vapor pressure and saturated vapor pressure, it reflects how saturated 

the water vapor in the air is. At 100% relative humidity, the air is saturated with water 

vapor, and there will be formation of water liquid. Clouds are a mixed form of water 

liquid and water vapor; therefore, the lower the relative humidity is, the less likely cloud 

formation is. 

Considering the deleterious effect of cloud formation on the solar resource, we 

can finally come up with a Value V for each site. This figure is simply the product of the 

radiation with the efficiency ratio and the inverse of relative humidity.  

𝑉 =   𝑆𝑜𝑙𝑎𝑟  𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 ∗      1−
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒   𝐶 − 25

245 ∗
1

𝑅𝑒𝑙𝑎𝑡𝑖𝑉𝑒  𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 

There are two ways to calculate V. The value of P90’s, V(P90) is calculated from 

P90 of solar radiation, P90 of temperature, and P90 of relative humidity. The second way 

of calculating V is after calculating all of the V from daily solar radiation, temperature 

and relative humidity, we take the P90 value of V or P90(V) as the value. 

b. Confidence: 

Confidence measures the degree to which the value calculated for a given site can be 

trusted. It is an assessment based on numerical or historical features of the data itself, 

rather than the climatological conditions that the data are meant to portray. More 

formally, we defined confidence as the property of a system that allows one to make 

predictions about that system’s future. High-confidence systems are deterministic, and 

their future can be easily predicted. Low-confidence systems are more stochastic or 

random, and confound attempts at long-term prediction. 

 Although three different metrics for confidence were proposed and assessed, each 

is a function of one or more of four variables we defined known as errors, repeats, years 

and entropy. Errors are defined as any time one of the meteorological variables we 

measured (i.e., solar radiation, temperature or relative humidity) exceeded the maximum 
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or fell below the minimum quantity observed for the state of Arizona and were often 

represented in the dataset as a 999. Repeats can be thought of as another form of error, 

and represented an entire row of daily data being repeated. Although the quantities 

reported in a repeat row are, almost by definition, reasonable, these were assumed to be 

erred rows only when at least 26 of the 28 recorded variables (the columns representing 

year and day number were not considered) appeared multiple times together in the 

dataset. Errors and repeats are assumed to reflect some fault in the measurement 

equipment or data transcription at a given station, and should lower the confidence in a 

given station’s data in any reasonable model. 

 The remaining variables, Years and Entropy, are more ambiguous. It seemed 

reasonable that these variables would inform our understanding of a site’s confidence, but 

from the outside it was unclear if they would have positive or negative valences. Years is 

a percentage of the total years a stations has been on-line (where the oldest station was 

established in 1987)5. Because approximately 30 years of data is needed to accurately 

capture the long-term weather cycles of a given location6, it initially appeared likely that 

a station being active for many years would have higher confidence. However, it could 

also be argued that older stations may use older equipment, which may be defunct or 

obsolete, and diminish the overall confidence in that location’s data. 

 Information entropy, or Entropy, is the final variable of confidence. Entropy is a 

concept borrowed from information theory, which calculates the average amount of 

information in a dataset. Classically, entropy is defined for discrete random variables, 

such as the appearance of one the 26 letters of the Latin alphabet in a message. However, 

solar radiation, relative humidity, and temperature are continuous random variables. 

Instead, differential entropy is used to calculate the mean information of our 

meteorological variables. For a continuous-valued random variable 𝑋 (such as solar 

radiance), with a probability density function 𝑝 𝑥 , differential entropy is defined as 

ℎ 𝑋 =   − 𝑝 𝑥 ln 𝑝 𝑥 𝑑𝑥
!

!!
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in natural units of information, or nats.7 It was also unclear a priori how entropy would 

affect confidence. One might think that a greater amount of information in a data set 

would allow a modeler to make more accurate predictions about the system those data 

characterize. However, the mathematical definition of entropy is closer to uncertainty or 

surprisal, which would feasibly diminish our ability to make predictions. In other words, 

high-entropy systems tend not to behave monotonously, and systems with monotonous 

behavior are, if nothing else, predictable. One our four variables of confidence were 

chosen, the challenge of our many candidate models was to determine how each one 

should be used to influence our overall measure of confidence. 

 It should be noted that it might not be necessary to compute a confidence for 

many datasets, assuming one is reasonably trusting of the source of those data. However, 

the measurements reported on the Arizona Meteorological Network8 are heterogeneous 

and noisy. Although the proposed model has been crafted specifically for this dataset, the 

four chosen variables of confidence are general enough to be applicable to other problem 

spaces. Due to the noisy nature of meteorological data, which is gathered over many 

decades by many instruments, we believe that confidence will be an important construct 

for measuring solar investment optimality from many datasets. 

c.  Candidate models: 

Once value was defined and variables for confidence were selected, a number of potential 

models were generated. For compactness, we detail three particular model structures, of 

the general form 

𝑆𝑐𝑜𝑟𝑒 = 𝑐 𝑉 −   𝑉 , 

however it should be noted that because value  𝑉  can be chosen in two ways,9 V(P90) and 

P90(V) , there were six candidate models in total. 

 

Model 1. Our initial model included only the first three confidence variables, Errors, 

Repeats and Years. Here, the variables were thought of as a succession of weights to be 

applied to the value term, one after another. As in 

𝑐 = (1− 𝑒)(1− 𝑟)(𝑦) 
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where 𝑒 is the percentage of days containing an error collected at a single station 

expressed as a decimal, 𝑟 is the percentage of rows for all data at a station that have been 

repeated expressed as a decimal, and 𝑦 is the percentage of years active, as a decimal. 

The variables 𝑒 and 𝑟 are subtracted from 1, because they were thought a priori to detract 

from our confidence in a site’s data. 

 

Model 2. In our second model, a site’s confidence is a function of differential entropy.10 

Because entropy contains a summation over all data points in a data set (or in the case of 

a continuous random variable, an integral), it seemed redundant to include both Years 

and Entropy in the same model. If entropy sums over all data provided, we reasoned any 

information captured by the Years term would be contained implicitly in entropy. 

Similarly, because entropy measures surprisal, errors or noise seemed like they may also 

be factors of entropy. In symbols, this model for confidence was simply  

𝑐 = ℎ(𝑋) 

where ℎ 𝑋  is the entropy of continuous random variable X, here representing 

meteorological measurements. 

 

Model 3. Although we had quantified many features of the data which we thought 

influenced confidence, the first two models failed to account for all these in an impartial 

way. It was unclear how the four variables should be weighted or even if the presence of 

each one should increase or diminish the confidence. In order to allow more flexibility 

for how each variable factors into the final score, we then changed our model of 

confidence to a linear combination of our four variables such that 

𝑐 = 𝑓(𝐴𝑒 + 𝐵𝑟 + 𝐶𝑦 + 𝐷ℎ(𝑋)) 

where 𝐴, 𝐵, 𝐶, and 𝐷 are unknown parameters and 𝑓 is a function mapping its input onto 

a real number between 0 and 1. 𝑓 has the effect of forcing 𝑐 to behave as a weight, as 

original intended. 

The problem then reduced to fitting the parameters 𝐴, 𝐵, 𝐶, and 𝐷 to ensure that 𝑐 

captures the confidence of the system as we had originally defined the term. Because we 

defined confidence as the property of a system that allows one to make predictions about 
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that system, we understood confidence as correlating with prediction accuracy. As such, 

finding the correct parameters was a process of producing a 27-entried vector 𝑃 of 

prediction accuracies (where each entry gives the accuracy for a different site), and 

optimizing its correlation to a 27-entried vector 𝐶. The entries of 𝐶 are of the form  

𝑓(𝐴𝑒! + 𝐵𝑟! + 𝐶𝑦! + 𝐷ℎ!(𝑋)) 

where 𝑒!, 𝑟!, 𝑦!, and ℎ!(𝑋) are the empirical quantities from each site. 

Formally, this model needed to optimize the objective function, Pearson’s R 

Correlation11, 

𝑅 𝑃,𝐶 =   
(𝑃 − 𝑃)(𝐶 − 𝐶)!

!!!

(𝑃 − 𝑃)!!
!!! (𝐶 − 𝐶)!!

!!!

 

by changing the parameters inside 𝐶. This optimization was accomplished by gradient 

ascent12, an iterative process that begins by initializing 𝐴, 𝐵, 𝐶, and 𝐷 equal to 1 and 

computing the partial derivative of 𝑅 with respect to each of the four parameters. Each 

parameter is incremented by the value of its partial derivative until convergence (i.e., a 

local maximum of the function 𝑅) is reached. 

 After optimization, the final form of the gradient ascent model was 

𝑐 = 𝑓(−0.87𝑒 − 1.77𝑟 + 0.57𝑦 − 0.47ℎ(𝑋)) 

 

3. Results 

By graphing the models for each station, we developed a visual understanding 

about the behavior of and consistencies in our 6 models. Graph 1 shows that the degree of 

closeness between each value varies for each station. Presumably, the smaller the degree 

of closeness between values, the more consistent our models are. Therefore, for a given 

station, if the graph demonstrates a significant distance between each value, then the 

station is harder to predict since the values are varying, or unstable. We can generalize 

this idea: the consistencies in the models determine how confident we are about that 

station. If the values are significantly close, then the more confident we are about that 
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location. The inverse is also true. If the values are notably far apart, the less confident we 

are about it.  

To determine the accuracy or precision of our six models, we found the 

uncertainty for each station. The equation that was used to find the uncertainty is given 

below.  

𝐸𝑎𝑐ℎ  𝑠𝑖𝑡𝑒 =
𝑀𝑎𝑥 𝑟𝑎𝑛𝑘  𝑠𝑐𝑜𝑟𝑒 −𝑀𝑖𝑛 𝑟𝑎𝑛𝑘  𝑠𝑐𝑜𝑟𝑒

2   (1) 

Generally, uncertainty determines the error between values and allows us to judge the 

quality of our models. A small value translates to a small degree of closeness, and 

similarly, a large uncertainty indicates a large distance between values. Using this 

principle, we would use uncertainty to help measure confidence since we want the 

optimal locations to have small values for uncertainty. This value would suggest that our 

models were consistent.  

 We used mean uncertainty to observe whether a certain model significantly 

changes the behavior of our results. Mean uncertainty, which is the simplest statistical 

uncertainty to implement, can be calculated by summing all of the uncertainties and 

dividing by the number of stations. We use equation 1 to generate equation 2, mainly 

𝑀𝑒𝑎𝑛  𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = Ʃ  !"#!  !"#$
!"

    (2)  . 

According to Graph 113, model 214 with differential entropy, V(P90)* Differential 

Entropy and P90(V) * Differential Entropy, were slightly distant from the other 4 models. 

Thus, we calculated for mean uncertainty with and without differential entropy in order to 

highlight any notable differences between both values. In fact, the mean uncertainties 

with and without differential entropy were 2.83 and 2.13, respectively. These values 

illustrate that the uncertainty at each site is greater with models that included differential 

entropy, thus we removed model 2, and proceeded to create Graph 215. Graph 2 helps us 

make more reasonable conclusions about the most optimal locations to place solar panels 

since it is easier to examine any consistencies and discrepancies in our models. These are 

fewer values to analyze, so it should be easier to determine what locations are the most 

reliable. Therefore, using this graph, we made a chart that lists the ideal locations to place 
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solar panels at the top. Notably, Mesa, Yuma North, and San Simon share low elevation 

levels, low precipitation, and high amount of solar radiation. Furthermore, their 

respective values were consistent with Graph 2, indicating that the confidence for these 

locations were reasonably high. 16  

4. Discussion: 

The distance between the ranks of one station reflects the consistency of the 

models. Since the graph 1 of all 6 ranks in appendix B has a large distance between the 

points for each station on each vertical line, we can conclude that some of the models are 

not consistent with each other. However, as we realized that the model 2 has the 

confidence solely as the differential entropy increases the uncertainties between the 

models the most. We can safely assume that these models are incorrect. Additionally, the 

confidence of these models has not been given a negative weight for differential entropy 

as the gradient ascent method indicated. We can conclude that model 2 can be safely 

discarded from our assessment. Models 1 and 3 show a greater degree of consistency. 

Due to the objectivity of the model 3, we use it as our final model of confidence. 

Even though the final rankings are consistent with each other in their weather data 

and elevation location, we understand that there are limitations in our models that need to 

be improved. Our value function based on cloudiness prediction only loosely accounts for 

the relative humidity. Since cloudiness and weather prediction is more complicated, and 

involves more than relative humidity, an expansion of our research for a mathematical 

model of cloudiness and weather prediction would benefit the overall model. 

Furthermore, the profit of a solar power station can be critically affected by other 

logistical factors, such as maintenance fees. Therefore, further research could include 

these non-climatological factors into the value to significantly improve the model.  

Furthermore, our confidence can be made more accurate with access to training 

data of existing solar power stations’ energy production. We can use the training data for 

our error analysis by comparing it to our models’ output. Additionally, we used ARIMA 

as an important feature in creating our confidence. Due to limited funding, we could only 

access free trials of software offering ARIMA features in limited time. Therefore, 

investing in more reliable ARIMA software would be helpful for improving our model.    
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Appendix A: Choosing variables for Value V 
 
Solar radiation – P90 value 

The exceedance probability P90 of solar radiation computes the value at which, 
90% of anytime (in the past), the solar radiation was larger or equal to. However, since 
the time range of data collected for each station is varied, the exceedance probability of 
the younger stations would be less reliable than the older ones’. Therefore, we need to 
calculate the reliability of each station’s P90 based on its age.  
Furthermore, the solar radiation is not the absolute ranking value for a profitable station 
since the efficiency of solar panels also depends on other factors such as temperature and 
relative humidity. 
 
Solar Panel Properties 

1. How do Photovoltaics (PV) works? 

Solar panels use photovoltaics to directly convert sunlight into energy. This 
process is an application of the photoelectric effect. Some materials, especially 
semiconductors have the property that allows them to absorb light photon and emit 
electric current. In an atom of pure silicon, electrons is attracted to the nucleus and has an 
energy bond between them. When external energy, such as light photon, is added onto the 
atom, a few electrons can break free using this excess energy and floating around, 
creating electric current. 

The most popular photovoltaic cell that is used in solar panel is silicon cell, which 
takes up to about 94% of the market, due to its efficiency comparing to other metals; 
therefore, in this paper, we will assume that the facility uses silicon cell and based our 
model on this information. 

 
2. Cloudiness and Relative humidity 
Although the photovoltaic cells absorb sunlight to create electric current, not all 

wavelength of sunlight is used in the process. Silicon solar cell absorbs mostly light in the 
wavelength range from about 400 to 1100 nm17 which is visible light. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17	
  Based	
  on	
  Figure	
  1	
  (source:	
  Solar	
  Cell	
  Central)	
  

Figure 1. Silicon cell can only absorb a certain wavelength range 
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This range does not include the most energetic light spectrum, which is 
Ultraviolet. Since solar radiation is composed of a large amount of energy from 
Ultraviolet spectrum, we need to make sure that the region that has a high amount of 
solar radiation also has clear sky.  

	
  Away to predict cloudiness or 
precipitation is based on relative humidity. 
Since cloud is the mix between water’s vapor 
and liquid. Based on the phase shift of water18, 
we can see that the dew point line between the 
gas phase and the liquid phase is where 
precipitation takes place, so the lower the 
combination of vapor pressure and temperature 
that stays in the gaseous or vapor phase, the 
less a significant chance of precipitation. An 
indication for this combination is relative 
humidity. Since relative humidity calculation is 
the quotient of real vapor pressure and the 
dew point pressure, the lower it is, the less 
chance of precipitation. 

 
3. Temperature and Efficiency 
The efficiency 

𝜂 =
𝐽!"#𝑉!"#
𝑃!"#!!

19 

of solar panel is determined by how much power it produces to the amount of light shines 
on it with 
Jmax is the current at the maximum power point, 
Vmax is the voltage at the maximum power point and 
Plight is the power incident on the solar cell (the power from the light shining on it). 

 
Figure 3. Current, Power vs Voltage in photovoltaic cell.17 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
18	
  Based	
  on	
  Figure	
  2	
  [source:	
  McKinnell,	
  M.,	
  et.	
  al.]	
  
19	
  Eisenmenger,	
  N.	
  

Figure 2. Water Phase Diagram based on 
Temperature and Vapor Pressure  
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Based on figure 3, his equation can also be expressed as following 
𝜂 = !!"!!"!!

!!"#!!
 with20 

Jsc is the current at short circuit (when V = 0), 
Voc is the voltage at open circuit (when J = 0) and 
FF is the fill factor which describes how “square” the current-voltage curve is. It 

is the ratio between the two rectangles drawn in figure 3. 
 
When the temperature is high, the solar cell is heated, so the short circuit current 

Jsc increases but both the open circuit voltage Voc and fill factor FF decreases. Since the 
product of FF and Voc decreases much faster than Jsc, the overall efficiency will decrease. 
The efficiency, therefore, can also obtained as a function of temperature Tc 

𝜂 = 𝜂!!"#[  1−
!!!!!"#
!!!!!"#

] with 21 

Tc is the current temperature (the variable), 
Tref is the temperature, at which, the solar cell efficiency is maximal, usually at 25C,  
𝜂!!"# is the efficiency of the solar panel at standard Tref  with solar radiation of 1000 
watts per meters squared, and 
T0 is the high temperature, at which, the efficiency drops to 0. For crystalized silicon cell, 
it is about 270C.  
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20	
  Eisenmenger,	
  N.	
  
21	
  Skoplaki,	
  E.	
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Appendix B: Graph of different ranking models for 27 active stations 
Graph 1: Six rankings of 27 active stations using all three models. 

 
 

Graph 2: Four rankings of 27 active stations using model 1 and 3. 

 
  



	
   16	
  

Appendix C: ARIMA model 
ARIMA (Auto- Regressive Integrated Moving Average) uses three different 

models: autoregressive, moving average, and integration. Combining these three different 
components, ARIMA is able to analyze several aspects of the time series, and is able 
produce accurate forecasts through mathematical operations. Auto- regressive indicates 
that the output variable,  𝑌! , depends linearly on the previous values.  “We forecast the 
variable of interest [𝑌!] using a linear combination of past values of the variable.”20 We 
can mathematically translate it to equation 1 where 𝜙1,𝜙2,… ,𝜙𝑝 are estimated 
coefficients.  
   

𝑌! = 𝑐 + 𝜙1𝑌!!! + 𝜙2𝑌!!! +⋯+ 𝜙𝑝𝑌!!! + 𝑒𝑡, 1  22  . 
 
The next model, integration, is used if the series is non- stationary. The reason for 

transforming a non-stationary series into a stationary one is explained by the fact that a 
stationary series maintains a constant mean, variance, and autocorrelation over time as 
opposed to the varying mean of a non-stationary series. Therefore, “a stationarized series 
is relatively easy to predict: you simply predict that its statistical properties [mean, 
variance, and autocorrelation] will be the same in the future as they have been in the 
past”(Duke University). Thus a constant mean is easy to forecast relative to an altering 
mean. Through a series of mathematical transformations, or differences, we can make our 
series stationary. Equation 2, which is represented as a difference between the current and 
previous value, is given below.  

 
𝑊 𝑡 = 𝑌! − 𝑌!!!  (2)23  

 
Finally, moving average accounts for forecast errors, or shocks. This error can be 

represented by the difference between the mean of the data set and the forecasted values. 
The mean is used since it remains constant for a stationary data set. In general, moving 
average accounts for previous mistakes, thus improving the accuracy of the future 
predictions. Equation 3 is composed of forecasts errors 𝑒𝑡, 𝑒𝑡−1 , 𝑒𝑡−2,… 𝑒𝑡−𝑞, and 
parameters  𝜃1, 𝜃2,… ,𝜃𝑞 .  

𝑌𝑡 = 𝑐 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 +⋯+ 𝜃𝑞𝑒𝑡−𝑞  (2)24 
 
Process 

 
In order to make predictions, we need to estimate 6 parameters: p, d, q, P, D, Q. 

These will generate an ARIMA model that will ultimately give us the forecasted values. 
The lower case parameters are non- seasonal while the upper case parameters are the 
seasonal components of our ARIMA model. We need to include seasonal elements 
because our data demonstrates a trend, mainly an oscillating trend. The chart below 
defines each parameter: 
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  Hyndman,	
  J.	
  et.	
  al.	
  [3]	
  	
  
23	
  Hyndman,	
  J.	
  et.	
  al.	
  [4]	
  
24	
  Hyndman,	
  J.	
  et.	
  al.	
  [5]	
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 The estimations of these six parameters are found through a three stage process: 

identification, estimation, and forecasting. These stages require the application of several 
rules and practices that are listed in Duke University’s ARIMA models for time series 
forecasting. Alongside the guidelines from this source, we will also use a statistical 
program, STATISTICA, which has a built in ARIMA feature. This program will provide 
you with the necessary elements, the autocorrelation function plot (ACF) and partial 
autocorrelation function plot (PACF), to come up with the most efficient ARIMA model.  
For each station, we used three years of daily data as our time series. We will look at how 
to generate an ARIMA model for a specific location, Queen Creek. 
Step 1: Identification 
 This stage consists of classifying your series as stationary or non-stationary. First, 
we would need to inspect the autocorrelation plot (ACF) of the non- differenced series. 
The ACF for the series of Queens Creek is shown below.  

Autocorrelation Function
VAR2

(Standard errors are white-noise estimates)

 Conf. Limit-1.0 -0.5 0.0 0.5 1.0
0

 15 +.742 .0300

 14 +.744 .0300

 13 +.747 .0300

 12 +.758 .0300

 11 +.770 .0300

 10 +.771 .0300

  9 +.785 .0301

  8 +.784 .0301

  7 +.785 .0301

  6 +.785 .0301

  5 +.780 .0301

  4 +.789 .0301

  3 +.799 .0301

  2 +.825 .0302

  1 +.870 .0302

Lag Corr. S.E.

0

102E2 0.000

9554. 0.000

8939. 0.000

8319. 0.000

7682. 0.000

7024. 0.000

6366. 0.000

5683. 0.000

5003. 0.000

4321. 0.000

3642. 0.000

2970. 0.000

2284. 0.000

1582. 0.000

832.3 0.000

  Q p

	
  
“Rule 1: If the series has positive autocorrelations out to a high number of lags (say, 10 
or more), then it probably needs a higher order of differencing” (Duke University) 

 
The ACF demonstrates positive autocorrelation from lags 1 to 15, thus we would 

take a difference of the series. Now, we will use the differenced series to estimate the 
other parameters.  
  

p: number of non-seasonal autoregressive 
terms  
 

P: number of seasonal autoregressive terms  
 

d: number of non- seasonal differences D: number of seasonal differences 

q: number of non- seasonal moving 
average terms. 

Q: number of seasonal moving average 
terms. 
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Step 2: Estimation  
 
 The second stage is estimating parameters, p, q, P, and Q. We have determined d, 
and because we want to avoid over-differencing the data, we set the value of D to 0. The 
remaining four parameters are determined by simultaneously looking at the 
autocorrelation function (ACF) and the partial autocorrelation function (PACF). These 
plots, however, contain 365 lags as opposed to 15. This can be explained by the fact that 
we want to observe and predict an entire year, or 365 lags.  We have to consider two rules 
that would guide us toward the estimation of the two non- seasonal parameters, p and q.  

 
If the autocorrelation function (ACF) of the differenced series displays a sharp 

cutoff and/or the lag-1 autocorrelation is negative … then consider adding an MA term to 
the model.”23 

 
“If the partial autocorrelation function (PACF) of the differenced series displays a sharp 

cutoff and/or the lag-1 autocorrelation is positive… then consider adding one or 
more AR terms to the model.”25 

    

Autocorrelation Function
VAR2    : D(-1)

(Standard errors are white-noise estimates)

 Conf. Limit-1.0 -0.5 0.0 0.5 1.0
0

341 -.017 .0251

316 -.009 .0255

291 -.000 .0259

266 -.027 .0263

241 -.040 .0267

216 +.003 .0271

191 -.029 .0274

166 +.048 .0278

141 +.010 .0282

116 +.014 .0286

 91 -.022 .0289

 66 -.008 .0293

 41 +.014 .0296

 16 +.086 .0300

0

556.7 .0000

531.8 .0000

491.4 .0000

461.7 .0000

446.1 .0000

416.7 .0000

390.0 .0000

351.2 .0000

324.8 .0000

260.5 .0000

247.1 .0000

220.6 .0000

194.8 0.000

166.1 0.000

	
  
Figure 1:  ACF (Autocorrelation Function Plot) 
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  Duke	
  University	
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Partial Autocorrelation Function
VAR2    : D(-1)

(Standard errors assume AR order of k-1)

 Conf. Limit-1.0 -0.5 0.0 0.5 1.0
0

341 +.008 .0302

316 -.010 .0302

291 +.020 .0302

266 +.011 .0302

241 -.004 .0302

216 +.003 .0302

191 -.006 .0302

166 +.074 .0302

141 +.013 .0302

116 +.024 .0302

 91 -.014 .0302

 66 -.007 .0302

 41 +.070 .0302

 16 +.020 .0302

	
  
Figure 2:  Partial Autocorrelation Function Plot (PACF) 

Let	
  us	
  take	
  a	
  look	
  at	
  the	
  autocorrelation	
  function	
  plot	
  and	
  the	
  partial	
  
autocorrelation	
  plot	
  for	
  one	
  of	
  the	
  stations.	
  Because	
  the	
  PACF	
  displays	
  a	
  negative	
  
autocorrelation,	
  then	
  we	
  do	
  not	
  consider	
  adding	
  an	
  AR	
  term.	
  Also,	
  we	
  see	
  that	
  the	
  
ACF	
  has	
  a	
  negative	
  autocorrelation	
  at	
  lag	
  1,	
  so	
  we	
  consider	
  applying	
  rule	
  7;	
  
however,	
  we	
  do	
  not	
  need	
  to	
  add	
  an	
  AR	
  term	
  if	
  we	
  can	
  get	
  a	
  better	
  estimation	
  with	
  no	
  
AR	
  term.	
  We	
  can	
  change	
  the	
  values	
  of	
  AR	
  from	
  0	
  to	
  1	
  and	
  determine	
  which	
  value	
  
gives	
  a	
  better	
  estimation.	
  Using	
  the	
  STATISTICA	
  program,	
  we	
  are	
  able	
  to	
  examine	
  
the	
  standard	
  error	
  when	
  AR	
  is	
  1	
  or	
  when	
  AR	
  is	
  0;	
  therefore,	
  we	
  choose	
  the	
  value	
  
with	
  the	
  smallest	
  standard	
  error.	
  Now,	
  because	
  we	
  want	
  to	
  keep	
  the	
  seasonal	
  
pattern	
  of	
  the	
  series,	
  we	
  find	
  values	
  for	
  P	
  and	
  Q,	
  which	
  can	
  be	
  found	
  by	
  looking	
  at	
  
the	
  autocorrelation	
  function.	
  

	
  
“If	
  the	
  autocorrelation	
  of	
  the	
  appropriately	
  differenced	
  series	
  is	
  positive	
  at	
  lag	
  

s,	
  where	
  s	
  is	
  the	
  number	
  of	
  periods	
  in	
  a	
  season,	
  then	
  consider	
  adding	
  an	
  SAR	
  term	
  to	
  
the	
  model.	
  If	
  the	
  autocorrelation	
  of	
  the	
  differenced	
  series	
  is	
  negative	
  at	
  lag	
  s,	
  consider	
  
adding	
  an	
  SMA	
  term	
  to	
  the	
  model.”26	
  
 

Because the autocorrelation has 365 lags, it is difficult to implement this rule. 
This rule will be more efficient for an autocorrelation that contains fewer than twenty 
lags. But, generally, the values for P and Q are under 3. By varying the numbers for the 4 
parameters and with the help of the STATISTICA program, we developed an ARIMA 
model with these parameters: p=0, d=1, q=0, P = 2, D=0, Q=1. 
 
Step 3: Forecasting 
 

The last step is forecasting. Finding the parameters creates an 
ARIMA(𝑝,𝑑, 𝑞)𝑋(𝑃,𝐷,𝑄) model, which will produce a predicted list of 365 values, or 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
26	
  Duke	
  University	
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an entire year. Below are graphs that overlap the actual 2015 solar radiation values with 
the predicted solar radiation outputs for the Queens Creek station.  Overall, we were able 
to find 80% accuracy between the actual and forecasted. 

 
Figure 3: Overlap of predicted and actual data in 2015 (Solar Radiation vs days 

from the beginning of 2012) 

 

Figure 4: Prediction data in 2015 (Solar Radiation vs days from the beginning of 2012) 
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Appendix D: Table of Final Rankings 
Final rankings produced for the AZMET dataset, based on confidence model 3, where 
Mesa is most optimal. 

 
 
 
Appendix E: Web Scraper in Python 
 
import urllib 
from urllib import urlopen 
import sys 
import re 
import os 
#Recovers daily data from the Arizona Meteorlogical Network website 
(http://ag.arizona.edu/azmet/) 
#and stores it locally in a directory hierarchy. 
 
#Author: Alex Kuefler 
#Date: February, 2015. 
 
active_stations = 
{"01","02","04","06","07","08","09","12","14","15","19","20","22","23","24","26","27",
"28", 
                   "29","05","31","32","33","35","36","37","38"} 
 
text = 'http://cals.arizona.edu/azmet/data/0487rd.txt' 
last_year = 2015 
 
directory = 'dailies' #Title of the new directories to be created. 
 
#Loop through every station provided in active stations. 
for station in active_stations: 
    directory = str(station)+'_dailies' 
 
    if not os.path.exists(directory): 
        os.makedirs(directory) 
 
    os.chdir(directory) 
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    #Extract the the "Date on line" year for each station. 
    page = urllib.urlopen('http://cals.arizona.edu/azmet/'+station+'.htm') #Access the data 
page for current station. 
    body = page.read() 
    result = re.search('....\ *?\(Day', body) 
    try: 
        first_year = str(result.group()) 
    except: 
        print(body) 
     
    first_year = int(first_year[:4]) #Take only the last four digits (year) 
 
 
    #Makes a .txt file for each year for the given station. 
    for i in range(first_year,last_year):  
        year = str(i) 
        year = year[2:4] #We only want the last two digits. e.g., 1997 -> 97 
        text = re.sub('(..rd)', year+'rd',text) #Hard coding rd (daily) for now. 
        text = re.sub('/data/..','/data/'+station,text) 
 
        u = urlopen(text) 
        localFile = open(station+'_'+str(i)+'.txt', 'w') 
 
        my_str = str(bytes.decode(u.read())) 
        decoded_string = my_str.decode('string_escape') #Interpret expressions like \n in the 
string. 
 
        localFile.write(decoded_string) 
        localFile.close() 
 
    os.chdir("..") #Once inner loop terminates, go back to the parent directory  
 
Appendix F: MATLAB Program for ranking 
function [ stations ] = station_rank(  ) 
%Stores information about each station (e.g., score, rank, entropy, 
P90's), 
%and ranks the stations by our models. 
  
%Must be placed in a directory containing a folder called 'data'. Must 
run it after simple_scrape.py, 
%but run simple_scrape INSIDE the folder 'data'. 
  
%Authors: Alex Kuefler, Thao Nguyen 
%Date: April 2015 
  
    cd('data'); 
    station_files = dir; 
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    %Loop through every station 
    for i = 4:length(station_files) 
        cd(station_files(i).name); 
  
        year_files = dir; 
  
        all_years_SR = []; 
        all_years_tempMax=[]; 
        all_years_tempMean=[]; 
        all_years_relhum=[]; 
         
        errors = 0; 
        repeats = 0; 
  
        %Loop through every year 
        for j = 4:length(year_files) 
            this_year_data = importdata(year_files(j).name); 
  
            str = regexp(year_files(j).name,'\_....','match'); 
            this_year_num = str2double(str{1}(2:end)); 
  
            %Data were reformatted in 2003. Control statement if that 
            %becomes important, which it isn't now. 
            if this_year_num <= 2002 
                sr_index = 11-2; %Subtract 2, because we use uqs, which 
is missing first 2 values.  
                tempMax_index=4-2; 
                tempMean_index=6-2; 
                relhum_index=9-2; 
             
            else 
                sr_index = 11-2; 
                tempMax_index=4-2; 
                tempMean_index=6-2; 
                relhum_index=9-2; 
            end 
             
            uqs = unique(this_year_data(:,3:end),'rows'); %throw out 
repeated rows 
             
            %Concatenate this year to all years for each meteorlogical 
            %variable. 
            all_years_SR = [all_years_SR; uqs(:,sr_index)]; 
            all_years_tempMax = [all_years_tempMax; 
uqs(:,tempMax_index)]; 
            all_years_tempMean = [all_years_tempMean; 
uqs(:,tempMean_index)]; 
            all_years_relhum = [all_years_relhum; uqs(:,relhum_index)]; 
             
            repeats = repeats + length(this_year_data(:,1))-
length(uqs(:,1)); %Repeats are all rows that aren't captured by 
unique(). 
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            %errors = errors + length(find(uqs(:,sr_index) > 50)); 
            errors = errors + length(find(uqs(:,sr_index) > 50))... 
                            + length(find(uqs(:,tempMax_index) > 
50))... 
                            + length(find(uqs(:,relhum_index) > 
100))... 
                            + length(find(uqs(:,tempMean_index) > 50)); 
        end 
         
        ValueRaw=[];        
        all_years_temp = ((all_years_tempMax-
all_years_tempMean)/2)+all_years_tempMean; 
        ValueRaw = all_years_SR.*(1./all_years_relhum).*(1-
((all_years_temp-25)/(270-25))); 
         
        %Calculate P90s for each variable. 
        fx = sort_assign(all_years_SR,'sr'); 
        tx = sort_assign(all_years_temp,'temp'); 
        rx = sort_assign(all_years_relhum,'relhum'); 
        vx = sort_assign(ValueRaw,'sr'); %'sr' input arbitrary. 
        sn = regexp(year_files(3).name,'..','match'); 
         
        stations(i-3).name = sn{1}; 
         
        %Assign the name of the town based on the station ID number. 
        if strcmp(stations(i-3).name, '01') 
            stations(i-3).title = 'Tuscon'; 
        elseif strcmp(stations(i-3).name, '02') 
            stations(i-3).title = 'Yuma Valley'; 
        elseif strcmp(stations(i-3).name, '03') 
            stations(i-3).title = 'Yuma Mesa'; 
        elseif strcmp(stations(i-3).name, '04') 
            stations(i-3).title = 'Safford'; 
        elseif strcmp(stations(i-3).name, '05') 
            stations(i-3).title = 'Coolidge'; 
        elseif strcmp(stations(i-3).name, '06') 
            stations(i-3).title = 'Maricopa'; 
        elseif strcmp(stations(i-3).name, '07') 
            stations(i-3).title = 'Aguila'; 
        elseif strcmp(stations(i-3).name, '08') 
            stations(i-3).title = 'Parker #1'; 
        elseif strcmp(stations(i-3).name, '09') 
            stations(i-3).title = 'Bonita'; 
        elseif strcmp(stations(i-3).name, '10') 
        elseif strcmp(stations(i-3).name, '11') 
        elseif strcmp(stations(i-3).name, '12') 
            stations(i-3).title = 'Phoenix Greenway'; 
        elseif strcmp(stations(i-3).name, '13') 
        elseif strcmp(stations(i-3).name, '14') 
            stations(i-3).title = 'Yuma North Gila'; 
        elseif strcmp(stations(i-3).name, '15') 
            stations(i-3).title = 'Phoenix Encanto'; 
        elseif strcmp(stations(i-3).name, '16') 
        elseif strcmp(stations(i-3).name, '17') 
        elseif strcmp(stations(i-3).name, '18') 
        elseif strcmp(stations(i-3).name, '19') 
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            stations(i-3).title = 'Paloma'; 
        elseif strcmp(stations(i-3).name, '20') 
            stations(i-3).title = 'Mohave'; 
        elseif strcmp(stations(i-3).name, '21') 
        elseif strcmp(stations(i-3).name, '22') 
            stations(i-3).title = 'Queen Creek'; 
        elseif strcmp(stations(i-3).name, '23') 
            stations(i-3).title = 'Harquahala'; 
        elseif strcmp(stations(i-3).name, '24') 
            stations(i-3).title = 'Roll'; 
        elseif strcmp(stations(i-3).name, '26') 
            stations(i-3).title = 'Buckeye'; 
        elseif strcmp(stations(i-3).name, '27') 
            stations(i-3).title = 'Desert Ridge'; 
        elseif strcmp(stations(i-3).name, '28') 
            stations(i-3).title = 'Mohave #2'; 
        elseif strcmp(stations(i-3).name, '29') 
            stations(i-3).title = 'Mesa'; 
        elseif strcmp(stations(i-3).name, '31') 
            stations(i-3).title = 'Prescott'; 
        elseif strcmp(stations(i-3).name, '32') 
            stations(i-3).title = 'Payson'; 
        elseif strcmp(stations(i-3).name, '33') 
            stations(i-3).title = 'Bowie'; 
        elseif strcmp(stations(i-3).name, '35') 
            stations(i-3).title = 'Parker #2'; 
        elseif strcmp(stations(i-3).name, '36') 
            stations(i-3).title = 'Yuma South'; 
        elseif strcmp(stations(i-3).name, '37') 
            stations(i-3).title = 'San Simon'; 
        elseif strcmp(stations(i-3).name, '38') 
            stations(i-3).title = 'Sahuarita'; 
             
        end 
         
        %extract p90 for rad, temp, and relhum 
        stations(i-3).P90SR = xc_prob(0.90,fx); 
        stations(i-3).P90TP = xc_prob(0.90,tx); 
        stations(i-3).P90RH = xc_prob(0.90,rx); 
        stations(i-3).P90Value = xc_prob(0.90,vx); 
         
        %calculate the value 
        stations(i-3).Value= stations(i-3).P90SR*(1/stations(i-
3).P90RH)*(1-((stations(i-3).P90TP-25)/(270-25))); 
  
        %Calculates and assigns confidence variables. 
        stations(i-3).percentErrors = errors/((length(year_files)-
2)*365)*100; 
        stations(i-3).percentRepeats = repeats/((length(year_files)-
2)*365)*100; 
        stations(i-3).percentYears = ((length(year_files)-2)/28); 
        
        pd = fitdist(ValueRaw,'normal'); %Find the normal distribution 
of the values. 
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        stations(i-3).differential_entropy = 
log(pd.sigma*sqrt(2*pi*exp(1))); %Use normal distribution to find 
entropy. 
         
        stations(i-3).score = zeros(5,1); %Create a vector for the 
scores, to be filled later. 
  
        cd('..'); %Back out of current directory directory  
  
    end 
      
    mean_value = mean([stations.Value]); 
    mean_P90 = mean([stations(i-3).P90Value]); 
     
    %Rescales entropy, so it can be used as a weight on value in model 
2. 
    diff_entropy_weights = 
mapminmax2([stations.differential_entropy],0,1);  
     
    %Use gradient ascent algorithm to solve coefficients for confidence 
    %variables. 
    [A, B, C, D] = 
gradient_ascent([stations.percentErrors]',[stations.percentRepeats]',..
. 
    [stations.percentYears]',[stations.differential_entropy]'); 
  
    disp('Error coeff: ') 
    disp(A) 
    disp('Repeat coeff: ') 
    disp(B) 
    disp('Years coeff: ') 
    disp(C) 
    disp('Entropy coeff: ') 
    disp(D) 
     
    weights = []; 
    for i = 1:length(stations) 
        weights = [weights; (A*stations(i).percentErrors+... 
            B*stations(i).percentRepeats+... 
            C*stations(i).percentYears+... 
            D*stations(i).differential_entropy)]; 
         
    end 
     
    confidences = mapminmax(weights',0,1)'; 
     
    %Score 2 is P90-mean, weighted by entropy 
    for i = 1:length(stations) 
         
        %MODEL 1: Errors, Years, Repeats 
         
        stations(i).score(1) = (stations(i).Value - mean_value)*((1-
0.01*stations(i).percentErrors) *... 
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            (1-0.01*stations(i).percentRepeats) * 
(0.01*stations(i).percentYears)); 
         
        stations(i).score(3) = (stations(i).P90Value - mean_P90)*((1-
0.01*stations(i).percentErrors) *... 
            (1-0.01*stations(i).percentRepeats) * 
(0.01*stations(i).percentYears)); 
     
        %MODEL 2: Entropy 
         
        stations(i).score(2) = (stations(i).Value - 
mean_value)*diff_entropy_weights(i); 
         
        stations(i).score(4) = (stations(i).P90Value - 
mean_P90)*diff_entropy_weights(i); 
  
        %MODEL 3: Gradient Ascent 
         
        stations(i).score(5) = (stations(i).Value - mean_value)*... 
        confidences(i); 
     
        stations(i).score(6) = (stations(i).P90Value - mean_P90)*... 
        confidences(i); 
         
    end 
     
    stations = rank_stations(stations); 
  
end 
  
  
function stations = rank_stations(stations) 
%Assigns an ordinal rank to each station by each scoring model. 
  
    scores1 = []; 
    scores2 = []; 
    scores3 = []; 
    scores4 = []; 
    scores5 = []; 
    scores6 = []; 
     
    for i = 1:length(stations) 
        scores1 = [scores1, stations(i).score(1)]; 
        scores2 = [scores2, stations(i).score(2)]; 
        scores3 = [scores3, stations(i).score(3)]; 
        scores4 = [scores4, stations(i).score(4)]; 
        scores5 = [scores5, stations(i).score(5)]; 
        scores6 = [scores6, stations(i).score(6)]; 
    end 
  
    sorted_scores1 = sort(scores1,'descend'); 
    sorted_scores2 = sort(scores2,'descend'); 
    sorted_scores3 = sort(scores3,'descend'); 
    sorted_scores4 = sort(scores4,'descend'); 
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    sorted_scores5 = sort(scores5,'descend'); 
    sorted_scores6 = sort(scores6,'descend'); 
     
    for i = 1:length(stations) 
        stations(i).rank = [find(sorted_scores1 == 
stations(i).score(1));  
            find(sorted_scores2 == stations(i).score(2)); 
            find(sorted_scores3 == stations(i).score(3)); 
            min(find(sorted_scores4 == stations(i).score(4))); 
            min(find(sorted_scores5 == stations(i).score(5))); 
            min(find(sorted_scores6 == stations(i).score(6)))]; 
    end 
     
  
end 
  
function value = xc_prob(percent, sorted_SRs) 
%Calculates the exceedene probability for percent such that percent = 
90 
%find the P90. 
  
    fx2 = abs(sorted_SRs(:,2) - percent); %Find the value closest to 
percent 
    value = sorted_SRs(find(fx2 == min(fx2))); 
     
    value = value(1); %In case it returns multiple dimensions. 
  
end 
  
function [ rads_and_fracs ] = sort_assign( solar_rads_vec, type ) 
%Sorts variables and assigns amount of total probability, allowing the 
%P90's to be computed. 
  
%Remove obvious errors from the data. 
if strcmp(type,'sr') 
    solar_rads_vec = solar_rads_vec((solar_rads_vec) < 51); 
    solar_rads_vec = solar_rads_vec((solar_rads_vec) >= 0); 
elseif strcmp(type,'temp') 
    solar_rads_vec = solar_rads_vec((solar_rads_vec) < 50); 
elseif strcmp(type,'relhum') 
    solar_rads_vec = solar_rads_vec((solar_rads_vec) <=100); 
end      
  
%SR and temp vs. humidity need to be sorted differently, because they 
%affect the model differently. 
N = length(solar_rads_vec); 
if (strcmp(type,'sr')||strcmp(type,'temp')) 
    solar_rads_vec = sort(solar_rads_vec,'descend'); 
elseif strcmp(type,'relhum') 
    solar_rads_vec = sort(solar_rads_vec,'ascend'); 
end 
  
rads_and_fracs = []; 
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%Assigns the amount of total probability to each measurement once 
sorted. 
for i = 1:N 
    entry = [solar_rads_vec(i) , (1/N)*i]; 
    rads_and_fracs = [rads_and_fracs; entry]; 
end 
  
  
end 
  
function [ A_g, B_g, C_g, D_g ] = gradient_ascent( A_vec, B_vec, C_vec, 
D_vec ) 
%Optimizes Pearson's R Correlation with respect to confidence 
variables. 
  
syms A B C D 
  
%Store the prediction accuracy at each station, found through ARIMA. 
data = [ 
7   0.79509; 
9   0.757548; 
33  0.767; 
26  0.8173; 
5   0.8029; 
27  0.7831; 
23  0.7944; 
6   0.7928; 
29  0.7981; 
20  0.7912; 
28  0.7899; 
19  0.795; 
8   0.8163; 
35  0.8146; 
32  0.78; 
15  0.7971; 
12  0.7762; 
24  0.8197; 
1   0.8004; 
22  0.7779; 
4   0.7964; 
38  0.7955; 
37  0.7986; 
14  0.7589; 
36  0.7832; 
2   0.7933; 
31  0.7867]; 
  
data = sortrows(data,1); 
  
%Need to optimize correlation between prediction accuracy vector X and 
%confidence vector Y at every site. 
X = data(:,2); 
Y = A_vec.*A + B_vec.*B + C_vec.*C + D_vec.*D; 
  
mean_X = mean(X); 
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mean_Y = mean(Y); 
  
F_num = sum((X-mean_X).*(Y-mean_Y)); %Correlation numerator. 
F_denom = sqrt((sum((X-mean_X).^2))*(sum((Y-mean_Y).^2))); %Correlation 
denominator. 
  
F = F_num/F_denom; 
  
A_g = 1; 
B_g = 1; 
C_g = 1; 
D_g = 1; 
LR = 2; %Learning rate. 
  
%This problem converges after 1000 iterations. Determined empircally. 
for i = 1:1000 
    A_g = A_g + 
LR*eval(subs(subs(subs(subs(diff(F,A),D,D_g),C,C_g),B,B_g),A,A_g)); 
    B_g = B_g + 
LR*eval(subs(subs(subs(subs(diff(F,B),D,D_g),C,C_g),B,B_g),A,A_g)); 
    C_g = C_g + 
LR*eval(subs(subs(subs(subs(diff(F,C),D,D_g),C,C_g),B,B_g),A,A_g)); 
    D_g = D_g + 
LR*eval(subs(subs(subs(subs(diff(F,D),D,D_g),C,C_g),B,B_g),A,A_g)); 
         
end 
  
end 
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