
	
 1	

The Optimal Locations for Solar Power Investment in Arizona
Alex Kuefler, Hector Lopez, Thao Nguyen

Department of Mathematics

Occidental College

Los Angeles, CA 90041 USA

May 5, 2015

Abstract

Solar installation sites must be chosen carefully in order to maximize return on

investment for green energy projects. Given a database containing 27 potential

sites in Arizona, we present a method for ranking them in order of their

optimality. Three models of optimality, or score, are evaluated, where each is a

function of solar panel efficiency, availability of solar resource and confidence in

data for each site. Low uncertainty was obtained when comparing two of the

models, which agreed on similar final rankings.

1. Introduction

As interest in green alternatives to fossil fuel intensifies, many organizations have

turned to solar radiation to meet their energy needs. However, the decision to build an

installation for harvesting solar power is a potentially costly one. Although solar power is

available anywhere, not all locations are made equal. The abundance of sunlight and

effects temperature and humidity may have on photovoltaic cells make deciding the best

place to put a solar panel tricky. Furthermore, the unpredictability of weather ensures that

just because a site looks optimal today, it may not always be so. If the wrong decision is

made, the consequences can be dire. Facilities that are unable to produce the projected

amount of energy early in their lifespans run the risk of putting companies in debt to their

financiers.1

As such, potential investors are conservative with their funding. Locations for

solar panel placement are usually evaluated by the smallest possible solar energy return

one can reasonably expect.2 This figure, referred to as a P90 value, is the amount of a

given resource that will be exceeded 90% of the time. P90 values are an important tool

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 Vignola,	
 F.	
 et.	
 al.	

2	
 Dobos,	
 A.	
 et.	
 al.	

	
 2	

for anyone wishing to assess a solar installation site, but they come with a built-in

assumption that may not always be reasonable. That is, in order to compute the P90 value

for a given location, one needs a set of reliable measurements of resources at that

location. A large amount of historical data is needed to make accurate predictions about

the long-term cycles of weather. Yet gathering many decades’ worth of data introduces

many decades’ worth of measurement and transcription errors.

Our project combines physics, weather forecasting, and data science to determine

both the abundance of solar resource as well as the degree to which measurements can be

trusted for a potential site. Given a database of different locations, each characterized by

years-worth of multivariate data, we present a method for ranking them in order of their

optimality for gathering solar resource.

2. Methods:
In order to rank each of the 27 stations in order of optimality, a score was assigned to

each potential site. The score was the product of two quantities, referred to as value and

confidence. Value is a function of meteorological data available at a given location and

reflects how ideal that location appears, if the data are to be trusted. Confidence is a

function of numerical features of the data itself, and reflect the degree to which the

calculated value can be trusted. Because confidence is given as a real number between 0

and 1, it can be thought of as a weight that affects the final score.

It should also be noted that in the final version of the model, confidence 𝑐 is not

used to weight value, but used to weight the difference between the value 𝑉 of a site and

the mean value 𝑉 of all sites. Using confidence to weight the difference of the mean has

the effect of ranking high-confidence, low-value locations lower than low-confidence,

low-value locations. This result is fortuitous, as confidence is intended to reflect the

trustworthiness of the value. A higher degree of confidence should not raise our

assessment of a station’s optimality (as would be the effect of multiplying confidence by

value itself), but should only adjust the assessment of the value. As such, sites whose

value falls below the mean value will always have a negative score, whereas sites whose

value exceeds the mean value will always have a positive score.

𝑆𝑐𝑜𝑟𝑒 = 𝑐 𝑉 − 𝑉

	
 3	

Once a score is found, sites are simply ranked in order of their scores, with higher scoring

sites treated as being more optimal for solar power investment. It should be noted that

each score, although represented as a real number, is only used for ordinal ranking. The

actual quantity associated with the score is not considered relevant to the model. A

precise explanation of the quantities value and confidence follows.

a. Value V:

Because we had a number of measurements available to us beyond solar radiation,

our first step was to come up with a formula for Value V more sophisticated than the

radiation P90 typically used. Since solar power depends heavily on radiation available at

a given site, we still include the P90 value, but now we consider it alongside other

factors. For instance, the efficiency of solar panels also depends on temperature. The

manufacture efficiency of solar panels is mostly tested at a standard temperature of 25

degrees Celsius or 77 degrees Fahrenheit. The efficiency of solar panels can be written as

the following function of temperature:

𝜂 = 𝜂!!"# 1−
𝑇! − 𝑇!"#
𝑇! − 𝑇!"#

3

Tc is the current temperature (the variable).

Tref is the temperature at which the solar cell efficiency is maximal, which is usually

around 25C.

𝜂!!"# is the efficiency of the solar panel at standard Tref with solar radiation of 1000

watts per meters squared, and

T0 is the high temperature, at which, the efficiency drops to 0. For crystalized silicon

cells, it is about 270C. Since these are constant, the more the temperature increases from

25C, the lower the efficiency is, and vice versa. As such, a lower temperature implies

greater efficiency. Since the 𝜂!!"# is the same for all locations, because we are using the

same type of solar panels, we only consider the efficiency ratio [1− !!!!!"#
!!!!!"#

] in order to

evaluate the stations.

Furthermore, the solar radiation contains energy from many light spectra

including both ultra violet and visible light. UV is the most energetic spectrum, and solar

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	
 Skoplaki,	
 E.	

	
 4	

panels can only absorb energy from the visible light spectrum;4 therefore, even if a

cloudy place has a high value of solar radiation, the solar energy that can be used is very

low. Hence, solar power plants receive the most radiation during clear sky weather. To

predict cloudiness, we use relative humidity. Since relative humidity is defined as the

ratio between actual vapor pressure and saturated vapor pressure, it reflects how saturated

the water vapor in the air is. At 100% relative humidity, the air is saturated with water

vapor, and there will be formation of water liquid. Clouds are a mixed form of water

liquid and water vapor; therefore, the lower the relative humidity is, the less likely cloud

formation is.

Considering the deleterious effect of cloud formation on the solar resource, we

can finally come up with a Value V for each site. This figure is simply the product of the

radiation with the efficiency ratio and the inverse of relative humidity.

𝑉 = 𝑆𝑜𝑙𝑎𝑟 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 ∗ 1−
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐶 − 25

245 ∗
1

𝑅𝑒𝑙𝑎𝑡𝑖𝑉𝑒 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦

There are two ways to calculate V. The value of P90’s, V(P90) is calculated from

P90 of solar radiation, P90 of temperature, and P90 of relative humidity. The second way

of calculating V is after calculating all of the V from daily solar radiation, temperature

and relative humidity, we take the P90 value of V or P90(V) as the value.

b. Confidence:

Confidence measures the degree to which the value calculated for a given site can be

trusted. It is an assessment based on numerical or historical features of the data itself,

rather than the climatological conditions that the data are meant to portray. More

formally, we defined confidence as the property of a system that allows one to make

predictions about that system’s future. High-confidence systems are deterministic, and

their future can be easily predicted. Low-confidence systems are more stochastic or

random, and confound attempts at long-term prediction.

 Although three different metrics for confidence were proposed and assessed, each

is a function of one or more of four variables we defined known as errors, repeats, years

and entropy. Errors are defined as any time one of the meteorological variables we

measured (i.e., solar radiation, temperature or relative humidity) exceeded the maximum

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4	
 Appendix	
 A	

	
 5	

or fell below the minimum quantity observed for the state of Arizona and were often

represented in the dataset as a 999. Repeats can be thought of as another form of error,

and represented an entire row of daily data being repeated. Although the quantities

reported in a repeat row are, almost by definition, reasonable, these were assumed to be

erred rows only when at least 26 of the 28 recorded variables (the columns representing

year and day number were not considered) appeared multiple times together in the

dataset. Errors and repeats are assumed to reflect some fault in the measurement

equipment or data transcription at a given station, and should lower the confidence in a

given station’s data in any reasonable model.

 The remaining variables, Years and Entropy, are more ambiguous. It seemed

reasonable that these variables would inform our understanding of a site’s confidence, but

from the outside it was unclear if they would have positive or negative valences. Years is

a percentage of the total years a stations has been on-line (where the oldest station was

established in 1987)5. Because approximately 30 years of data is needed to accurately

capture the long-term weather cycles of a given location6, it initially appeared likely that

a station being active for many years would have higher confidence. However, it could

also be argued that older stations may use older equipment, which may be defunct or

obsolete, and diminish the overall confidence in that location’s data.

 Information entropy, or Entropy, is the final variable of confidence. Entropy is a

concept borrowed from information theory, which calculates the average amount of

information in a dataset. Classically, entropy is defined for discrete random variables,

such as the appearance of one the 26 letters of the Latin alphabet in a message. However,

solar radiation, relative humidity, and temperature are continuous random variables.

Instead, differential entropy is used to calculate the mean information of our

meteorological variables. For a continuous-valued random variable 𝑋 (such as solar

radiance), with a probability density function 𝑝 𝑥 , differential entropy is defined as

ℎ 𝑋 = − 𝑝 𝑥 ln 𝑝 𝑥 𝑑𝑥
!

!!

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5	
 The	
 University	
 of	
 Arizona	

6	
 Vignola,	
 F.	
 et	
 al.	

	
 6	

in natural units of information, or nats.7 It was also unclear a priori how entropy would

affect confidence. One might think that a greater amount of information in a data set

would allow a modeler to make more accurate predictions about the system those data

characterize. However, the mathematical definition of entropy is closer to uncertainty or

surprisal, which would feasibly diminish our ability to make predictions. In other words,

high-entropy systems tend not to behave monotonously, and systems with monotonous

behavior are, if nothing else, predictable. One our four variables of confidence were

chosen, the challenge of our many candidate models was to determine how each one

should be used to influence our overall measure of confidence.

 It should be noted that it might not be necessary to compute a confidence for

many datasets, assuming one is reasonably trusting of the source of those data. However,

the measurements reported on the Arizona Meteorological Network8 are heterogeneous

and noisy. Although the proposed model has been crafted specifically for this dataset, the

four chosen variables of confidence are general enough to be applicable to other problem

spaces. Due to the noisy nature of meteorological data, which is gathered over many

decades by many instruments, we believe that confidence will be an important construct

for measuring solar investment optimality from many datasets.

c. Candidate models:

Once value was defined and variables for confidence were selected, a number of potential

models were generated. For compactness, we detail three particular model structures, of

the general form

𝑆𝑐𝑜𝑟𝑒 = 𝑐 𝑉 − 𝑉 ,

however it should be noted that because value 𝑉 can be chosen in two ways,9 V(P90) and

P90(V) , there were six candidate models in total.

Model 1. Our initial model included only the first three confidence variables, Errors,

Repeats and Years. Here, the variables were thought of as a succession of weights to be

applied to the value term, one after another. As in

𝑐 = (1− 𝑒)(1− 𝑟)(𝑦)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

7	
 Michalowicz,	
 J.	
 V.	
 et	
 al.	

8	
 The	
 University	
 of	
 Arizona	

9	
 Refer	
 to	
 the	
 Value	
 V	
 section	

	
 7	

where 𝑒 is the percentage of days containing an error collected at a single station

expressed as a decimal, 𝑟 is the percentage of rows for all data at a station that have been

repeated expressed as a decimal, and 𝑦 is the percentage of years active, as a decimal.

The variables 𝑒 and 𝑟 are subtracted from 1, because they were thought a priori to detract

from our confidence in a site’s data.

Model 2. In our second model, a site’s confidence is a function of differential entropy.10

Because entropy contains a summation over all data points in a data set (or in the case of

a continuous random variable, an integral), it seemed redundant to include both Years

and Entropy in the same model. If entropy sums over all data provided, we reasoned any

information captured by the Years term would be contained implicitly in entropy.

Similarly, because entropy measures surprisal, errors or noise seemed like they may also

be factors of entropy. In symbols, this model for confidence was simply

𝑐 = ℎ(𝑋)

where ℎ 𝑋 is the entropy of continuous random variable X, here representing

meteorological measurements.

Model 3. Although we had quantified many features of the data which we thought

influenced confidence, the first two models failed to account for all these in an impartial

way. It was unclear how the four variables should be weighted or even if the presence of

each one should increase or diminish the confidence. In order to allow more flexibility

for how each variable factors into the final score, we then changed our model of

confidence to a linear combination of our four variables such that

𝑐 = 𝑓(𝐴𝑒 + 𝐵𝑟 + 𝐶𝑦 + 𝐷ℎ(𝑋))

where 𝐴, 𝐵, 𝐶, and 𝐷 are unknown parameters and 𝑓 is a function mapping its input onto

a real number between 0 and 1. 𝑓 has the effect of forcing 𝑐 to behave as a weight, as

original intended.

The problem then reduced to fitting the parameters 𝐴, 𝐵, 𝐶, and 𝐷 to ensure that 𝑐

captures the confidence of the system as we had originally defined the term. Because we

defined confidence as the property of a system that allows one to make predictions about
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10	
 Refer	
 to	
 the	
 Confidence	
 section	

	
 8	

that system, we understood confidence as correlating with prediction accuracy. As such,

finding the correct parameters was a process of producing a 27-entried vector 𝑃 of

prediction accuracies (where each entry gives the accuracy for a different site), and

optimizing its correlation to a 27-entried vector 𝐶. The entries of 𝐶 are of the form

𝑓(𝐴𝑒! + 𝐵𝑟! + 𝐶𝑦! + 𝐷ℎ!(𝑋))

where 𝑒!, 𝑟!, 𝑦!, and ℎ!(𝑋) are the empirical quantities from each site.

Formally, this model needed to optimize the objective function, Pearson’s R

Correlation11,

𝑅 𝑃,𝐶 =
(𝑃 − 𝑃)(𝐶 − 𝐶)!

!!!

(𝑃 − 𝑃)!!
!!! (𝐶 − 𝐶)!!

!!!

by changing the parameters inside 𝐶. This optimization was accomplished by gradient

ascent12, an iterative process that begins by initializing 𝐴, 𝐵, 𝐶, and 𝐷 equal to 1 and

computing the partial derivative of 𝑅 with respect to each of the four parameters. Each

parameter is incremented by the value of its partial derivative until convergence (i.e., a

local maximum of the function 𝑅) is reached.

 After optimization, the final form of the gradient ascent model was

𝑐 = 𝑓(−0.87𝑒 − 1.77𝑟 + 0.57𝑦 − 0.47ℎ(𝑋))

3. Results

By graphing the models for each station, we developed a visual understanding

about the behavior of and consistencies in our 6 models. Graph 1 shows that the degree of

closeness between each value varies for each station. Presumably, the smaller the degree

of closeness between values, the more consistent our models are. Therefore, for a given

station, if the graph demonstrates a significant distance between each value, then the

station is harder to predict since the values are varying, or unstable. We can generalize

this idea: the consistencies in the models determine how confident we are about that

station. If the values are significantly close, then the more confident we are about that

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

11	
 Rice	
 University	
 et.	
 al.	

12	
 Ng.	
 A.	

	
 9	

location. The inverse is also true. If the values are notably far apart, the less confident we

are about it.

To determine the accuracy or precision of our six models, we found the

uncertainty for each station. The equation that was used to find the uncertainty is given

below.

𝐸𝑎𝑐ℎ 𝑠𝑖𝑡𝑒 =
𝑀𝑎𝑥 𝑟𝑎𝑛𝑘 𝑠𝑐𝑜𝑟𝑒 −𝑀𝑖𝑛 𝑟𝑎𝑛𝑘 𝑠𝑐𝑜𝑟𝑒

2 (1)

Generally, uncertainty determines the error between values and allows us to judge the

quality of our models. A small value translates to a small degree of closeness, and

similarly, a large uncertainty indicates a large distance between values. Using this

principle, we would use uncertainty to help measure confidence since we want the

optimal locations to have small values for uncertainty. This value would suggest that our

models were consistent.

 We used mean uncertainty to observe whether a certain model significantly

changes the behavior of our results. Mean uncertainty, which is the simplest statistical

uncertainty to implement, can be calculated by summing all of the uncertainties and

dividing by the number of stations. We use equation 1 to generate equation 2, mainly

𝑀𝑒𝑎𝑛 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = Ʃ !"#! !"#$
!"

 (2) .

According to Graph 113, model 214 with differential entropy, V(P90)* Differential

Entropy and P90(V) * Differential Entropy, were slightly distant from the other 4 models.

Thus, we calculated for mean uncertainty with and without differential entropy in order to

highlight any notable differences between both values. In fact, the mean uncertainties

with and without differential entropy were 2.83 and 2.13, respectively. These values

illustrate that the uncertainty at each site is greater with models that included differential

entropy, thus we removed model 2, and proceeded to create Graph 215. Graph 2 helps us

make more reasonable conclusions about the most optimal locations to place solar panels

since it is easier to examine any consistencies and discrepancies in our models. These are

fewer values to analyze, so it should be easier to determine what locations are the most

reliable. Therefore, using this graph, we made a chart that lists the ideal locations to place
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

13	
 See	
 Appendix	
 B	

14	
 Refer	
 to	
 the	
 Models	
 section	

15	
 See	
 Appendix	
 B	

	
 10	

solar panels at the top. Notably, Mesa, Yuma North, and San Simon share low elevation

levels, low precipitation, and high amount of solar radiation. Furthermore, their

respective values were consistent with Graph 2, indicating that the confidence for these

locations were reasonably high. 16

4. Discussion:

The distance between the ranks of one station reflects the consistency of the

models. Since the graph 1 of all 6 ranks in appendix B has a large distance between the

points for each station on each vertical line, we can conclude that some of the models are

not consistent with each other. However, as we realized that the model 2 has the

confidence solely as the differential entropy increases the uncertainties between the

models the most. We can safely assume that these models are incorrect. Additionally, the

confidence of these models has not been given a negative weight for differential entropy

as the gradient ascent method indicated. We can conclude that model 2 can be safely

discarded from our assessment. Models 1 and 3 show a greater degree of consistency.

Due to the objectivity of the model 3, we use it as our final model of confidence.

Even though the final rankings are consistent with each other in their weather data

and elevation location, we understand that there are limitations in our models that need to

be improved. Our value function based on cloudiness prediction only loosely accounts for

the relative humidity. Since cloudiness and weather prediction is more complicated, and

involves more than relative humidity, an expansion of our research for a mathematical

model of cloudiness and weather prediction would benefit the overall model.

Furthermore, the profit of a solar power station can be critically affected by other

logistical factors, such as maintenance fees. Therefore, further research could include

these non-climatological factors into the value to significantly improve the model.

Furthermore, our confidence can be made more accurate with access to training

data of existing solar power stations’ energy production. We can use the training data for

our error analysis by comparing it to our models’ output. Additionally, we used ARIMA

as an important feature in creating our confidence. Due to limited funding, we could only

access free trials of software offering ARIMA features in limited time. Therefore,

investing in more reliable ARIMA software would be helpful for improving our model.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

16	
 The	
 final	
 ranking	
 for	
 the	
 27	
 stations	
 can	
 be	
 found	
 in	
 Appendix	
 D.	

	
 11	

	
 12	

Appendix A: Choosing variables for Value V

Solar radiation – P90 value

The exceedance probability P90 of solar radiation computes the value at which,
90% of anytime (in the past), the solar radiation was larger or equal to. However, since
the time range of data collected for each station is varied, the exceedance probability of
the younger stations would be less reliable than the older ones’. Therefore, we need to
calculate the reliability of each station’s P90 based on its age.
Furthermore, the solar radiation is not the absolute ranking value for a profitable station
since the efficiency of solar panels also depends on other factors such as temperature and
relative humidity.

Solar Panel Properties

1. How do Photovoltaics (PV) works?

Solar panels use photovoltaics to directly convert sunlight into energy. This
process is an application of the photoelectric effect. Some materials, especially
semiconductors have the property that allows them to absorb light photon and emit
electric current. In an atom of pure silicon, electrons is attracted to the nucleus and has an
energy bond between them. When external energy, such as light photon, is added onto the
atom, a few electrons can break free using this excess energy and floating around,
creating electric current.

The most popular photovoltaic cell that is used in solar panel is silicon cell, which
takes up to about 94% of the market, due to its efficiency comparing to other metals;
therefore, in this paper, we will assume that the facility uses silicon cell and based our
model on this information.

2. Cloudiness and Relative humidity
Although the photovoltaic cells absorb sunlight to create electric current, not all

wavelength of sunlight is used in the process. Silicon solar cell absorbs mostly light in the
wavelength range from about 400 to 1100 nm17 which is visible light.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

17	
 Based	
 on	
 Figure	
 1	
 (source:	
 Solar	
 Cell	
 Central)	

Figure 1. Silicon cell can only absorb a certain wavelength range

	
 13	

This range does not include the most energetic light spectrum, which is
Ultraviolet. Since solar radiation is composed of a large amount of energy from
Ultraviolet spectrum, we need to make sure that the region that has a high amount of
solar radiation also has clear sky.

	
 Away to predict cloudiness or
precipitation is based on relative humidity.
Since cloud is the mix between water’s vapor
and liquid. Based on the phase shift of water18,
we can see that the dew point line between the
gas phase and the liquid phase is where
precipitation takes place, so the lower the
combination of vapor pressure and temperature
that stays in the gaseous or vapor phase, the
less a significant chance of precipitation. An
indication for this combination is relative
humidity. Since relative humidity calculation is
the quotient of real vapor pressure and the
dew point pressure, the lower it is, the less
chance of precipitation.

3. Temperature and Efficiency
The efficiency

𝜂 =
𝐽!"#𝑉!"#
𝑃!"#!!

19

of solar panel is determined by how much power it produces to the amount of light shines
on it with
Jmax is the current at the maximum power point,
Vmax is the voltage at the maximum power point and
Plight is the power incident on the solar cell (the power from the light shining on it).

Figure 3. Current, Power vs Voltage in photovoltaic cell.17

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

18	
 Based	
 on	
 Figure	
 2	
 [source:	
 McKinnell,	
 M.,	
 et.	
 al.]	

19	
 Eisenmenger,	
 N.	

Figure 2. Water Phase Diagram based on
Temperature and Vapor Pressure

	
 14	

Based on figure 3, his equation can also be expressed as following
𝜂 = !!"!!"!!

!!"#!!
 with20

Jsc is the current at short circuit (when V = 0),
Voc is the voltage at open circuit (when J = 0) and
FF is the fill factor which describes how “square” the current-voltage curve is. It

is the ratio between the two rectangles drawn in figure 3.

When the temperature is high, the solar cell is heated, so the short circuit current

Jsc increases but both the open circuit voltage Voc and fill factor FF decreases. Since the
product of FF and Voc decreases much faster than Jsc, the overall efficiency will decrease.
The efficiency, therefore, can also obtained as a function of temperature Tc

𝜂 = 𝜂!!"#[1−
!!!!!"#
!!!!!"#

] with 21

Tc is the current temperature (the variable),
Tref is the temperature, at which, the solar cell efficiency is maximal, usually at 25C,
𝜂!!"# is the efficiency of the solar panel at standard Tref with solar radiation of 1000
watts per meters squared, and
T0 is the high temperature, at which, the efficiency drops to 0. For crystalized silicon cell,
it is about 270C.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

20	
 Eisenmenger,	
 N.	

21	
 Skoplaki,	
 E.	

	
 15	

Appendix B: Graph of different ranking models for 27 active stations
Graph 1: Six rankings of 27 active stations using all three models.

Graph 2: Four rankings of 27 active stations using model 1 and 3.

	
 16	

Appendix C: ARIMA model
ARIMA (Auto- Regressive Integrated Moving Average) uses three different

models: autoregressive, moving average, and integration. Combining these three different
components, ARIMA is able to analyze several aspects of the time series, and is able
produce accurate forecasts through mathematical operations. Auto- regressive indicates
that the output variable, 𝑌! , depends linearly on the previous values. “We forecast the
variable of interest [𝑌!] using a linear combination of past values of the variable.”20 We
can mathematically translate it to equation 1 where 𝜙1,𝜙2,… ,𝜙𝑝 are estimated
coefficients.

𝑌! = 𝑐 + 𝜙1𝑌!!! + 𝜙2𝑌!!! +⋯+ 𝜙𝑝𝑌!!! + 𝑒𝑡, 1 22 .

The next model, integration, is used if the series is non- stationary. The reason for

transforming a non-stationary series into a stationary one is explained by the fact that a
stationary series maintains a constant mean, variance, and autocorrelation over time as
opposed to the varying mean of a non-stationary series. Therefore, “a stationarized series
is relatively easy to predict: you simply predict that its statistical properties [mean,
variance, and autocorrelation] will be the same in the future as they have been in the
past”(Duke University). Thus a constant mean is easy to forecast relative to an altering
mean. Through a series of mathematical transformations, or differences, we can make our
series stationary. Equation 2, which is represented as a difference between the current and
previous value, is given below.

𝑊 𝑡 = 𝑌! − 𝑌!!! (2)23

Finally, moving average accounts for forecast errors, or shocks. This error can be

represented by the difference between the mean of the data set and the forecasted values.
The mean is used since it remains constant for a stationary data set. In general, moving
average accounts for previous mistakes, thus improving the accuracy of the future
predictions. Equation 3 is composed of forecasts errors 𝑒𝑡, 𝑒𝑡−1 , 𝑒𝑡−2,… 𝑒𝑡−𝑞, and
parameters 𝜃1, 𝜃2,… ,𝜃𝑞 .

𝑌𝑡 = 𝑐 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 +⋯+ 𝜃𝑞𝑒𝑡−𝑞 (2)24

Process

In order to make predictions, we need to estimate 6 parameters: p, d, q, P, D, Q.

These will generate an ARIMA model that will ultimately give us the forecasted values.
The lower case parameters are non- seasonal while the upper case parameters are the
seasonal components of our ARIMA model. We need to include seasonal elements
because our data demonstrates a trend, mainly an oscillating trend. The chart below
defines each parameter:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

22	
 Hyndman,	
 J.	
 et.	
 al.	
 [3]	
 	

23	
 Hyndman,	
 J.	
 et.	
 al.	
 [4]	

24	
 Hyndman,	
 J.	
 et.	
 al.	
 [5]	

	
 17	

 The estimations of these six parameters are found through a three stage process:

identification, estimation, and forecasting. These stages require the application of several
rules and practices that are listed in Duke University’s ARIMA models for time series
forecasting. Alongside the guidelines from this source, we will also use a statistical
program, STATISTICA, which has a built in ARIMA feature. This program will provide
you with the necessary elements, the autocorrelation function plot (ACF) and partial
autocorrelation function plot (PACF), to come up with the most efficient ARIMA model.
For each station, we used three years of daily data as our time series. We will look at how
to generate an ARIMA model for a specific location, Queen Creek.
Step 1: Identification
 This stage consists of classifying your series as stationary or non-stationary. First,
we would need to inspect the autocorrelation plot (ACF) of the non- differenced series.
The ACF for the series of Queens Creek is shown below.

Autocorrelation Function
VAR2

(Standard errors are white-noise estimates)

 Conf. Limit-1.0 -0.5 0.0 0.5 1.0
0

 15 +.742 .0300

 14 +.744 .0300

 13 +.747 .0300

 12 +.758 .0300

 11 +.770 .0300

 10 +.771 .0300

 9 +.785 .0301

 8 +.784 .0301

 7 +.785 .0301

 6 +.785 .0301

 5 +.780 .0301

 4 +.789 .0301

 3 +.799 .0301

 2 +.825 .0302

 1 +.870 .0302

Lag Corr. S.E.

0

102E2 0.000

9554. 0.000

8939. 0.000

8319. 0.000

7682. 0.000

7024. 0.000

6366. 0.000

5683. 0.000

5003. 0.000

4321. 0.000

3642. 0.000

2970. 0.000

2284. 0.000

1582. 0.000

832.3 0.000

 Q p

	

“Rule 1: If the series has positive autocorrelations out to a high number of lags (say, 10
or more), then it probably needs a higher order of differencing” (Duke University)

The ACF demonstrates positive autocorrelation from lags 1 to 15, thus we would

take a difference of the series. Now, we will use the differenced series to estimate the
other parameters.

p: number of non-seasonal autoregressive
terms

P: number of seasonal autoregressive terms

d: number of non- seasonal differences D: number of seasonal differences

q: number of non- seasonal moving
average terms.

Q: number of seasonal moving average
terms.

	
 18	

Step 2: Estimation

 The second stage is estimating parameters, p, q, P, and Q. We have determined d,
and because we want to avoid over-differencing the data, we set the value of D to 0. The
remaining four parameters are determined by simultaneously looking at the
autocorrelation function (ACF) and the partial autocorrelation function (PACF). These
plots, however, contain 365 lags as opposed to 15. This can be explained by the fact that
we want to observe and predict an entire year, or 365 lags. We have to consider two rules
that would guide us toward the estimation of the two non- seasonal parameters, p and q.

If the autocorrelation function (ACF) of the differenced series displays a sharp

cutoff and/or the lag-1 autocorrelation is negative … then consider adding an MA term to
the model.”23

“If the partial autocorrelation function (PACF) of the differenced series displays a sharp

cutoff and/or the lag-1 autocorrelation is positive… then consider adding one or
more AR terms to the model.”25

Autocorrelation Function
VAR2 : D(-1)

(Standard errors are white-noise estimates)

 Conf. Limit-1.0 -0.5 0.0 0.5 1.0
0

341 -.017 .0251

316 -.009 .0255

291 -.000 .0259

266 -.027 .0263

241 -.040 .0267

216 +.003 .0271

191 -.029 .0274

166 +.048 .0278

141 +.010 .0282

116 +.014 .0286

 91 -.022 .0289

 66 -.008 .0293

 41 +.014 .0296

 16 +.086 .0300

0

556.7 .0000

531.8 .0000

491.4 .0000

461.7 .0000

446.1 .0000

416.7 .0000

390.0 .0000

351.2 .0000

324.8 .0000

260.5 .0000

247.1 .0000

220.6 .0000

194.8 0.000

166.1 0.000

	

Figure 1: ACF (Autocorrelation Function Plot)

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

25	
 Duke	
 University	

	
 19	

Partial Autocorrelation Function
VAR2 : D(-1)

(Standard errors assume AR order of k-1)

 Conf. Limit-1.0 -0.5 0.0 0.5 1.0
0

341 +.008 .0302

316 -.010 .0302

291 +.020 .0302

266 +.011 .0302

241 -.004 .0302

216 +.003 .0302

191 -.006 .0302

166 +.074 .0302

141 +.013 .0302

116 +.024 .0302

 91 -.014 .0302

 66 -.007 .0302

 41 +.070 .0302

 16 +.020 .0302

	

Figure 2: Partial Autocorrelation Function Plot (PACF)

Let	
 us	
 take	
 a	
 look	
 at	
 the	
 autocorrelation	
 function	
 plot	
 and	
 the	
 partial	

autocorrelation	
 plot	
 for	
 one	
 of	
 the	
 stations.	
 Because	
 the	
 PACF	
 displays	
 a	
 negative	

autocorrelation,	
 then	
 we	
 do	
 not	
 consider	
 adding	
 an	
 AR	
 term.	
 Also,	
 we	
 see	
 that	
 the	

ACF	
 has	
 a	
 negative	
 autocorrelation	
 at	
 lag	
 1,	
 so	
 we	
 consider	
 applying	
 rule	
 7;	

however,	
 we	
 do	
 not	
 need	
 to	
 add	
 an	
 AR	
 term	
 if	
 we	
 can	
 get	
 a	
 better	
 estimation	
 with	
 no	

AR	
 term.	
 We	
 can	
 change	
 the	
 values	
 of	
 AR	
 from	
 0	
 to	
 1	
 and	
 determine	
 which	
 value	

gives	
 a	
 better	
 estimation.	
 Using	
 the	
 STATISTICA	
 program,	
 we	
 are	
 able	
 to	
 examine	

the	
 standard	
 error	
 when	
 AR	
 is	
 1	
 or	
 when	
 AR	
 is	
 0;	
 therefore,	
 we	
 choose	
 the	
 value	

with	
 the	
 smallest	
 standard	
 error.	
 Now,	
 because	
 we	
 want	
 to	
 keep	
 the	
 seasonal	

pattern	
 of	
 the	
 series,	
 we	
 find	
 values	
 for	
 P	
 and	
 Q,	
 which	
 can	
 be	
 found	
 by	
 looking	
 at	

the	
 autocorrelation	
 function.	

	

“If	
 the	
 autocorrelation	
 of	
 the	
 appropriately	
 differenced	
 series	
 is	
 positive	
 at	
 lag	

s,	
 where	
 s	
 is	
 the	
 number	
 of	
 periods	
 in	
 a	
 season,	
 then	
 consider	
 adding	
 an	
 SAR	
 term	
 to	

the	
 model.	
 If	
 the	
 autocorrelation	
 of	
 the	
 differenced	
 series	
 is	
 negative	
 at	
 lag	
 s,	
 consider	

adding	
 an	
 SMA	
 term	
 to	
 the	
 model.”26	

Because the autocorrelation has 365 lags, it is difficult to implement this rule.
This rule will be more efficient for an autocorrelation that contains fewer than twenty
lags. But, generally, the values for P and Q are under 3. By varying the numbers for the 4
parameters and with the help of the STATISTICA program, we developed an ARIMA
model with these parameters: p=0, d=1, q=0, P = 2, D=0, Q=1.

Step 3: Forecasting

The last step is forecasting. Finding the parameters creates an
ARIMA(𝑝,𝑑, 𝑞)𝑋(𝑃,𝐷,𝑄) model, which will produce a predicted list of 365 values, or

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

26	
 Duke	
 University	

	
 20	

an entire year. Below are graphs that overlap the actual 2015 solar radiation values with
the predicted solar radiation outputs for the Queens Creek station. Overall, we were able
to find 80% accuracy between the actual and forecasted.

Figure 3: Overlap of predicted and actual data in 2015 (Solar Radiation vs days

from the beginning of 2012)

Figure 4: Prediction data in 2015 (Solar Radiation vs days from the beginning of 2012)

0	

5	

10	

15	

20	

25	

30	

35	

0	
 200	
 400	
 600	
 800	
 1000	
 1200	
 1400	

Solar	
 Radiation	
 Values	
 	

<=	
 Forecasts	
 	

0	

5	

10	

15	

20	

25	

30	

35	

-­‐100	
 100	
 300	
 500	
 700	
 900	
 1100	
 1300	
 1500	

Solar	
 Radiation	
 Values	
 	

<=	
 Forecasts	
 	

	
 21	

Appendix D: Table of Final Rankings
Final rankings produced for the AZMET dataset, based on confidence model 3, where
Mesa is most optimal.

Appendix E: Web Scraper in Python

import urllib
from urllib import urlopen
import sys
import re
import os
#Recovers daily data from the Arizona Meteorlogical Network website
(http://ag.arizona.edu/azmet/)
#and stores it locally in a directory hierarchy.

#Author: Alex Kuefler
#Date: February, 2015.

active_stations =
{"01","02","04","06","07","08","09","12","14","15","19","20","22","23","24","26","27",
"28",
 "29","05","31","32","33","35","36","37","38"}

text = 'http://cals.arizona.edu/azmet/data/0487rd.txt'
last_year = 2015

directory = 'dailies' #Title of the new directories to be created.

#Loop through every station provided in active stations.
for station in active_stations:
 directory = str(station)+'_dailies'

 if not os.path.exists(directory):
 os.makedirs(directory)

 os.chdir(directory)

	
 22	

 #Extract the the "Date on line" year for each station.
 page = urllib.urlopen('http://cals.arizona.edu/azmet/'+station+'.htm') #Access the data
page for current station.
 body = page.read()
 result = re.search('....\ *?\(Day', body)
 try:
 first_year = str(result.group())
 except:
 print(body)

 first_year = int(first_year[:4]) #Take only the last four digits (year)

 #Makes a .txt file for each year for the given station.
 for i in range(first_year,last_year):
 year = str(i)
 year = year[2:4] #We only want the last two digits. e.g., 1997 -> 97
 text = re.sub('(..rd)', year+'rd',text) #Hard coding rd (daily) for now.
 text = re.sub('/data/..','/data/'+station,text)

 u = urlopen(text)
 localFile = open(station+'_'+str(i)+'.txt', 'w')

 my_str = str(bytes.decode(u.read()))
 decoded_string = my_str.decode('string_escape') #Interpret expressions like \n in the
string.

 localFile.write(decoded_string)
 localFile.close()

 os.chdir("..") #Once inner loop terminates, go back to the parent directory

Appendix F: MATLAB Program for ranking
function [stations] = station_rank()
%Stores information about each station (e.g., score, rank, entropy,
P90's),
%and ranks the stations by our models.

%Must be placed in a directory containing a folder called 'data'. Must
run it after simple_scrape.py,
%but run simple_scrape INSIDE the folder 'data'.

%Authors: Alex Kuefler, Thao Nguyen
%Date: April 2015

 cd('data');
 station_files = dir;

	
 23	

 %Loop through every station
 for i = 4:length(station_files)
 cd(station_files(i).name);

 year_files = dir;

 all_years_SR = [];
 all_years_tempMax=[];
 all_years_tempMean=[];
 all_years_relhum=[];

 errors = 0;
 repeats = 0;

 %Loop through every year
 for j = 4:length(year_files)
 this_year_data = importdata(year_files(j).name);

 str = regexp(year_files(j).name,'_....','match');
 this_year_num = str2double(str{1}(2:end));

 %Data were reformatted in 2003. Control statement if that
 %becomes important, which it isn't now.
 if this_year_num <= 2002
 sr_index = 11-2; %Subtract 2, because we use uqs, which
is missing first 2 values.
 tempMax_index=4-2;
 tempMean_index=6-2;
 relhum_index=9-2;

 else
 sr_index = 11-2;
 tempMax_index=4-2;
 tempMean_index=6-2;
 relhum_index=9-2;
 end

 uqs = unique(this_year_data(:,3:end),'rows'); %throw out
repeated rows

 %Concatenate this year to all years for each meteorlogical
 %variable.
 all_years_SR = [all_years_SR; uqs(:,sr_index)];
 all_years_tempMax = [all_years_tempMax;
uqs(:,tempMax_index)];
 all_years_tempMean = [all_years_tempMean;
uqs(:,tempMean_index)];
 all_years_relhum = [all_years_relhum; uqs(:,relhum_index)];

 repeats = repeats + length(this_year_data(:,1))-
length(uqs(:,1)); %Repeats are all rows that aren't captured by
unique().

	
 24	

 %errors = errors + length(find(uqs(:,sr_index) > 50));
 errors = errors + length(find(uqs(:,sr_index) > 50))...
 + length(find(uqs(:,tempMax_index) >
50))...
 + length(find(uqs(:,relhum_index) >
100))...
 + length(find(uqs(:,tempMean_index) > 50));
 end

 ValueRaw=[];
 all_years_temp = ((all_years_tempMax-
all_years_tempMean)/2)+all_years_tempMean;
 ValueRaw = all_years_SR.*(1./all_years_relhum).*(1-
((all_years_temp-25)/(270-25)));

 %Calculate P90s for each variable.
 fx = sort_assign(all_years_SR,'sr');
 tx = sort_assign(all_years_temp,'temp');
 rx = sort_assign(all_years_relhum,'relhum');
 vx = sort_assign(ValueRaw,'sr'); %'sr' input arbitrary.
 sn = regexp(year_files(3).name,'..','match');

 stations(i-3).name = sn{1};

 %Assign the name of the town based on the station ID number.
 if strcmp(stations(i-3).name, '01')
 stations(i-3).title = 'Tuscon';
 elseif strcmp(stations(i-3).name, '02')
 stations(i-3).title = 'Yuma Valley';
 elseif strcmp(stations(i-3).name, '03')
 stations(i-3).title = 'Yuma Mesa';
 elseif strcmp(stations(i-3).name, '04')
 stations(i-3).title = 'Safford';
 elseif strcmp(stations(i-3).name, '05')
 stations(i-3).title = 'Coolidge';
 elseif strcmp(stations(i-3).name, '06')
 stations(i-3).title = 'Maricopa';
 elseif strcmp(stations(i-3).name, '07')
 stations(i-3).title = 'Aguila';
 elseif strcmp(stations(i-3).name, '08')
 stations(i-3).title = 'Parker #1';
 elseif strcmp(stations(i-3).name, '09')
 stations(i-3).title = 'Bonita';
 elseif strcmp(stations(i-3).name, '10')
 elseif strcmp(stations(i-3).name, '11')
 elseif strcmp(stations(i-3).name, '12')
 stations(i-3).title = 'Phoenix Greenway';
 elseif strcmp(stations(i-3).name, '13')
 elseif strcmp(stations(i-3).name, '14')
 stations(i-3).title = 'Yuma North Gila';
 elseif strcmp(stations(i-3).name, '15')
 stations(i-3).title = 'Phoenix Encanto';
 elseif strcmp(stations(i-3).name, '16')
 elseif strcmp(stations(i-3).name, '17')
 elseif strcmp(stations(i-3).name, '18')
 elseif strcmp(stations(i-3).name, '19')

	
 25	

 stations(i-3).title = 'Paloma';
 elseif strcmp(stations(i-3).name, '20')
 stations(i-3).title = 'Mohave';
 elseif strcmp(stations(i-3).name, '21')
 elseif strcmp(stations(i-3).name, '22')
 stations(i-3).title = 'Queen Creek';
 elseif strcmp(stations(i-3).name, '23')
 stations(i-3).title = 'Harquahala';
 elseif strcmp(stations(i-3).name, '24')
 stations(i-3).title = 'Roll';
 elseif strcmp(stations(i-3).name, '26')
 stations(i-3).title = 'Buckeye';
 elseif strcmp(stations(i-3).name, '27')
 stations(i-3).title = 'Desert Ridge';
 elseif strcmp(stations(i-3).name, '28')
 stations(i-3).title = 'Mohave #2';
 elseif strcmp(stations(i-3).name, '29')
 stations(i-3).title = 'Mesa';
 elseif strcmp(stations(i-3).name, '31')
 stations(i-3).title = 'Prescott';
 elseif strcmp(stations(i-3).name, '32')
 stations(i-3).title = 'Payson';
 elseif strcmp(stations(i-3).name, '33')
 stations(i-3).title = 'Bowie';
 elseif strcmp(stations(i-3).name, '35')
 stations(i-3).title = 'Parker #2';
 elseif strcmp(stations(i-3).name, '36')
 stations(i-3).title = 'Yuma South';
 elseif strcmp(stations(i-3).name, '37')
 stations(i-3).title = 'San Simon';
 elseif strcmp(stations(i-3).name, '38')
 stations(i-3).title = 'Sahuarita';

 end

 %extract p90 for rad, temp, and relhum
 stations(i-3).P90SR = xc_prob(0.90,fx);
 stations(i-3).P90TP = xc_prob(0.90,tx);
 stations(i-3).P90RH = xc_prob(0.90,rx);
 stations(i-3).P90Value = xc_prob(0.90,vx);

 %calculate the value
 stations(i-3).Value= stations(i-3).P90SR*(1/stations(i-
3).P90RH)*(1-((stations(i-3).P90TP-25)/(270-25)));

 %Calculates and assigns confidence variables.
 stations(i-3).percentErrors = errors/((length(year_files)-
2)*365)*100;
 stations(i-3).percentRepeats = repeats/((length(year_files)-
2)*365)*100;
 stations(i-3).percentYears = ((length(year_files)-2)/28);

 pd = fitdist(ValueRaw,'normal'); %Find the normal distribution
of the values.

	
 26	

 stations(i-3).differential_entropy =
log(pd.sigma*sqrt(2*pi*exp(1))); %Use normal distribution to find
entropy.

 stations(i-3).score = zeros(5,1); %Create a vector for the
scores, to be filled later.

 cd('..'); %Back out of current directory directory

 end

 mean_value = mean([stations.Value]);
 mean_P90 = mean([stations(i-3).P90Value]);

 %Rescales entropy, so it can be used as a weight on value in model
2.
 diff_entropy_weights =
mapminmax2([stations.differential_entropy],0,1);

 %Use gradient ascent algorithm to solve coefficients for confidence
 %variables.
 [A, B, C, D] =
gradient_ascent([stations.percentErrors]',[stations.percentRepeats]',..
.
 [stations.percentYears]',[stations.differential_entropy]');

 disp('Error coeff: ')
 disp(A)
 disp('Repeat coeff: ')
 disp(B)
 disp('Years coeff: ')
 disp(C)
 disp('Entropy coeff: ')
 disp(D)

 weights = [];
 for i = 1:length(stations)
 weights = [weights; (A*stations(i).percentErrors+...
 B*stations(i).percentRepeats+...
 C*stations(i).percentYears+...
 D*stations(i).differential_entropy)];

 end

 confidences = mapminmax(weights',0,1)';

 %Score 2 is P90-mean, weighted by entropy
 for i = 1:length(stations)

 %MODEL 1: Errors, Years, Repeats

 stations(i).score(1) = (stations(i).Value - mean_value)*((1-
0.01*stations(i).percentErrors) *...

	
 27	

 (1-0.01*stations(i).percentRepeats) *
(0.01*stations(i).percentYears));

 stations(i).score(3) = (stations(i).P90Value - mean_P90)*((1-
0.01*stations(i).percentErrors) *...
 (1-0.01*stations(i).percentRepeats) *
(0.01*stations(i).percentYears));

 %MODEL 2: Entropy

 stations(i).score(2) = (stations(i).Value -
mean_value)*diff_entropy_weights(i);

 stations(i).score(4) = (stations(i).P90Value -
mean_P90)*diff_entropy_weights(i);

 %MODEL 3: Gradient Ascent

 stations(i).score(5) = (stations(i).Value - mean_value)*...
 confidences(i);

 stations(i).score(6) = (stations(i).P90Value - mean_P90)*...
 confidences(i);

 end

 stations = rank_stations(stations);

end

function stations = rank_stations(stations)
%Assigns an ordinal rank to each station by each scoring model.

 scores1 = [];
 scores2 = [];
 scores3 = [];
 scores4 = [];
 scores5 = [];
 scores6 = [];

 for i = 1:length(stations)
 scores1 = [scores1, stations(i).score(1)];
 scores2 = [scores2, stations(i).score(2)];
 scores3 = [scores3, stations(i).score(3)];
 scores4 = [scores4, stations(i).score(4)];
 scores5 = [scores5, stations(i).score(5)];
 scores6 = [scores6, stations(i).score(6)];
 end

 sorted_scores1 = sort(scores1,'descend');
 sorted_scores2 = sort(scores2,'descend');
 sorted_scores3 = sort(scores3,'descend');
 sorted_scores4 = sort(scores4,'descend');

	
 28	

 sorted_scores5 = sort(scores5,'descend');
 sorted_scores6 = sort(scores6,'descend');

 for i = 1:length(stations)
 stations(i).rank = [find(sorted_scores1 ==
stations(i).score(1));
 find(sorted_scores2 == stations(i).score(2));
 find(sorted_scores3 == stations(i).score(3));
 min(find(sorted_scores4 == stations(i).score(4)));
 min(find(sorted_scores5 == stations(i).score(5)));
 min(find(sorted_scores6 == stations(i).score(6)))];
 end

end

function value = xc_prob(percent, sorted_SRs)
%Calculates the exceedene probability for percent such that percent =
90
%find the P90.

 fx2 = abs(sorted_SRs(:,2) - percent); %Find the value closest to
percent
 value = sorted_SRs(find(fx2 == min(fx2)));

 value = value(1); %In case it returns multiple dimensions.

end

function [rads_and_fracs] = sort_assign(solar_rads_vec, type)
%Sorts variables and assigns amount of total probability, allowing the
%P90's to be computed.

%Remove obvious errors from the data.
if strcmp(type,'sr')
 solar_rads_vec = solar_rads_vec((solar_rads_vec) < 51);
 solar_rads_vec = solar_rads_vec((solar_rads_vec) >= 0);
elseif strcmp(type,'temp')
 solar_rads_vec = solar_rads_vec((solar_rads_vec) < 50);
elseif strcmp(type,'relhum')
 solar_rads_vec = solar_rads_vec((solar_rads_vec) <=100);
end

%SR and temp vs. humidity need to be sorted differently, because they
%affect the model differently.
N = length(solar_rads_vec);
if (strcmp(type,'sr')||strcmp(type,'temp'))
 solar_rads_vec = sort(solar_rads_vec,'descend');
elseif strcmp(type,'relhum')
 solar_rads_vec = sort(solar_rads_vec,'ascend');
end

rads_and_fracs = [];

	
 29	

%Assigns the amount of total probability to each measurement once
sorted.
for i = 1:N
 entry = [solar_rads_vec(i) , (1/N)*i];
 rads_and_fracs = [rads_and_fracs; entry];
end

end

function [A_g, B_g, C_g, D_g] = gradient_ascent(A_vec, B_vec, C_vec,
D_vec)
%Optimizes Pearson's R Correlation with respect to confidence
variables.

syms A B C D

%Store the prediction accuracy at each station, found through ARIMA.
data = [
7 0.79509;
9 0.757548;
33 0.767;
26 0.8173;
5 0.8029;
27 0.7831;
23 0.7944;
6 0.7928;
29 0.7981;
20 0.7912;
28 0.7899;
19 0.795;
8 0.8163;
35 0.8146;
32 0.78;
15 0.7971;
12 0.7762;
24 0.8197;
1 0.8004;
22 0.7779;
4 0.7964;
38 0.7955;
37 0.7986;
14 0.7589;
36 0.7832;
2 0.7933;
31 0.7867];

data = sortrows(data,1);

%Need to optimize correlation between prediction accuracy vector X and
%confidence vector Y at every site.
X = data(:,2);
Y = A_vec.*A + B_vec.*B + C_vec.*C + D_vec.*D;

mean_X = mean(X);

	
 30	

mean_Y = mean(Y);

F_num = sum((X-mean_X).*(Y-mean_Y)); %Correlation numerator.
F_denom = sqrt((sum((X-mean_X).^2))*(sum((Y-mean_Y).^2))); %Correlation
denominator.

F = F_num/F_denom;

A_g = 1;
B_g = 1;
C_g = 1;
D_g = 1;
LR = 2; %Learning rate.

%This problem converges after 1000 iterations. Determined empircally.
for i = 1:1000
 A_g = A_g +
LR*eval(subs(subs(subs(subs(diff(F,A),D,D_g),C,C_g),B,B_g),A,A_g));
 B_g = B_g +
LR*eval(subs(subs(subs(subs(diff(F,B),D,D_g),C,C_g),B,B_g),A,A_g));
 C_g = C_g +
LR*eval(subs(subs(subs(subs(diff(F,C),D,D_g),C,C_g),B,B_g),A,A_g));
 D_g = D_g +
LR*eval(subs(subs(subs(subs(diff(F,D),D,D_g),C,C_g),B,B_g),A,A_g));

end

end

	
 31	

References

[1] Dobos, A., P. Gilman, and M. Kasberg., 2012: P50/P90 analysis for solar energy systems using
the system advisor model. Preprints, 2012 World Renewable Energy Forum, Denver, CO, NREL,
1-6.

[2] Duke University, cited 2015: Introduction to ARIMA: nonseasonal models. ARIMA models for
time series forecasting.[Available online at http://people.duke.edu/~rnau/411arim.htm]
	

[3] Hyndman,	
 J.,	
 	
 Rob	
 	
 and	
 Athanasopoulos,	
 G.,	
 2012:	
 8.3	
 Auto-­‐Regression	
 Model.	
 Forecasting:	

principles	
 and	
 practices	
 [Available	
 online	
 at	
 	
 https://www.otexts.org/fpp/8/3]	
 .	

	

[4] Hyndman	
 J.,	
 Rob	
 	
 and	
 Athanasopoulos,	
 G.,	
 2012:	
 8.4	
 Moving	
 Average	
 Model.	
 Forecasting:	

principles	
 and	
 practices	
 [Available	
 online	
 at	
 https://www.otexts.org/fpp/8/4]	

	

[5] Hyndman,	
 J.,	
 Rob	
 	
 and	
 Athanasopoulos,	
 G.,	
 2012:	
 8.1	
 Stationarity	
 and	
 Differencing.	

Forecasting:	
 principles	
 and	
 practices	
 [Available	
 online	
 at	
 https://www.otexts.org/fpp/8/1]	
 	

[6] McKinnell, M., Verhein, J., Yu, P., Chan, L.K., Dhaliwal, J., Bhela, S.,and Wong-Sing,
D.,University of California, Davis, cited 2015: Phase Diagram. [Available online at
http://chemwiki.ucdavis.edu/Physical_Chemistry/Physical_Properties_of_Matter/Phases_of_Matt
er/Phase_Transitions/Phase_Diagrams]

[7] Michalowicz, J. V., M. N., Nichols, and F. Bucholtz., 2008: Calculation of differential entropy
for a mixed Gaussian distribution. Entropy., 10, 200-206.

[8] Ng, A., 2014: Supervised learning. CS229 Lecture Notes, 30 pp.

[9] Eisenmenger, N.,2011: The Temperature Dependence of Solar Cells. [Available online at
http://www.scienceline.ucsb.edu/images/solarTempDepend]

[10] Rice University, University of Houston Clear Lake, and Tufts University, cited 2015: Computing
Pearson’s r. [Available at
http://onlinestatbook.com/2/describing_bivariate_data/calculatation.html]

[11] Skoplaki, E., Palyvos, J.A., 2009: On the temperature dependence of photovoltaic module
electrical performance: A review of efficiency/power correlations. Solar Energy., 83, 614-624.
[Available online at http://dx.doi.org/10.1016/j.solener.2008.10.008]

[12] The University of Arizona, cited 2015: AZMET The Arizona meteorological network. [Available
online at http://ag.arizona.edu/azmet/]

[13] Vignola, F., and C. Grover., N. Lemon and A. McMahan., 2012: Building a bankable solar
radiation dataset. Sol. Energy., 8, 2218-2229.

