Numerical Analysis

Class 12: Friday October 4

SUMMARY The Newton-Raphson Method and the Secant Method
READING Recktenwald, 6.1.1 (240-250)

The Newton-Raphson Algorithm

Bisection and False Position are both globally convergent algorithms, because, given a bracket which contains a solution, they both will find the solution, eventually.

Newton's Method (and the Secant Method) are very different from these methods, in that instead of needing a bracket where the solution exists [i.e. continuous function has values at the bracket endpoints have opposite sign] one needs a single guess of the solution, which has to be "close" to the exact answer, in order for these locally convergent to get the solution.

A Derivation of Newton's Method

Write down the first 3 terms of a Taylor expansion of $f(x)$ about the point $\left(p_{0}, f\left(p_{0}\right)\right)$

Evaluate this function at the root, the point $\left(p_{1}, 0\right)$ and solve for p_{1}

This is the iterative step for Newton's Method
$p_{n+1}=$
Pseudocode for Newton's Method
INPUT: $x_{0}, f(x), f^{\prime}(x)$
FOR k = 1 to NSTEPS
$x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$
OUTPUT $k, x_{k}, f\left(x_{k}\right)$
IF '(CONVERGED'), STOP
END
Example
Consider the function $f(x)=x^{2}-A$, where $A>0$
Compute the Newton iterative step using the above function $f(x)$
Simplify it, so that it look like $x_{n+1}=\frac{x_{n}+A / x_{n}}{2}$. Recognize this iteration?

Exercise

Let $A=2$ and $x_{0}=1$. Find x_{3}

Secant Method

The secant method is very similar to Newton's method, except that instead of actually computing the derivative, one approximates it using a difference quotient. This ends up in making the iterative step look algebraically identical to the one for the False Position method.

Exercise

We will write down the Secant Method iterative step below $p_{n+1}=$

If the iterative step is identical to False Position, how come the Secant Method is not just called the False Position method? Look at the picture...
Secant Method, visually

False Position Method, visually
Now, let's recall what False Position look like, visually...

Example

Consider the following function $f(x)=x^{3}-x+2$. On the first figure, draw on the graph the set of approximations to the zero, i.e. $\left\{p_{k}\right\}$, due to Newton's Method, if you start at $p_{0}=1$

On the following figure, draw on the graph the set of approximations produced by Bisection, Secant and False Position (use differently colored pens).

