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Worksheet 9: Wednesday September 25

SUMMARY Introduction to Fixed Point (Picard) Iteration
READING Recktenwald, pp. 250-253

Fixed Point
A function g(x) is said to have a fixed point p if g(p) = p. In other words, if the value you
put into the function is exactly the same value that you get out.

Solving the equation g(x) = f(x)−x = 0 is identical to finding the fixed point of f(x) AND
the zero of g(x). So, we are dealing with another possible method for finding the root of a
one-variable equation.

Fixed Point Iteration
The iteration process is pn = g(pn−1) for n = 1, 2, 3, . . .. This process is also called picard
or functional iteration or sometimes repeated substitution.
Example
Consider the function g(x) = log(x + 4) on [1,2]. Each one of you should pick a starting
value, (i.e. p0 = 1) and then actually execute a number of Picard iterations. Record your
results below:

pn g(pn)

Do you think your sequence is converging? How many fixed points does g(x) = log(x + 4)
have? What’s the value of its fixed point(s) to 4 decimal places?

Uniqueness: The Fixed Point Theorem
If g is continuous on [a,b] and g(x) ∈ [a, b] for all x ∈ [a, b] then g has a fixed point in [a,b].
In addition, if 0 < |g′(x)| < 1 for all x ∈ [a, b] then g has a unique fixed point in [a,b]

Using the above theorem what can we say about our example function?

Convergence Criteria for Picard Iteration
The iteration process pn = g(pn−1) for n = 1, 2, 3, · · · will converge to a unique solution for
any initial value p0 in [a,b] if g′ exists on (a,b) and 0 < |g′(x)| < 1 for all x ∈ [a, b]

Using the above theorem what can we say about our example iteration process?



GroupWork
Take a look at the following examples of possible functions to do fixed-point interation on
and in groups of two or three graphically indicate what happens. Try the initial guesses like
p0 = 0 and p0 = 1.
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The example functions were

g1(x) = 1
2
x2 + 1

4
g′
1(x) =

g2(x) = 2e−1.5x g′
2(x) =

g3(x) = cos2(x) g′
3(x) =

g4(x) = sin(x + 1
4
) g′

4(x) =

Which of these functions converged using functional iteration?

Can you explain why?
(Think about the behavior of the derivative on the interval of interest in each case)

Which of the iterations exhibit monotone convergence?

Which of the iterations exhibit oscillating convergence?

Consider these two other functions,
g5(x) = 2 ln(2x − 1) on [0,0.5] and g6(x) = e−10x on [1,3]

Will Picard Iteration converge or diverge for these examples?
(prove your answer graphically on the next page)



Graphical Examples
Look at these plots of g5(x) = 2 ln(2x − 1) and g6(x) = e−10x and graphically indicate
whether Picard iteration converges or diverges. In either case classify the convergence as
either monotone or oscillating
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Example

1. Let us try to use Picard Iteration to approximate
5
√

7, assuming p0 = 1

2. What function f(x) would we have to use to find a zero for in order to compute 71/5?

3. What function would we have to use to do functional iteration on? [i.e. what is g(x)?]
Is there only one such function? If you can, write down three possible g(x) functions
which have the fixed point 71/5

4. How will you decide which function to do the functional iteration on? [i.e.which one
will converge the fastest]

5. Try running picard.m on your choices and see if this confirms your choice of function
above...


