Numerical Analysis

Math 370 Fall 2002 © 2002 Ron Buckmire MWF 9:30am - 10:25pm Fowler 127

Worksheet 7: Friday September 20

SUMMARY Continuation of Matlab programming; Machine Precision Algorithm

CURRENT READING Recktenwald pp. 209-211

Warm-up

Write down (in your own words) the meaning of the following terms: Algorithm:

PSEUDOCODE:

The **Machine Precision** is the number ϵ_m which makes the following statement on a computer to be TRUE:

$$1 + \epsilon_m = 1$$

Consider the following algorithm to compute ϵ_m , the machine precision:

```
LET epsilon = 1
LET COUNTER = 0
LET MAXCOUNTER = 100
WHILE COUNTER < MAXCOUNTER
    LET B = 1 + EPSILON
    IF (B EQUALS 1) QUIT PROGRAM
    LET EPSILON = EPSILON/2 % halve epsilon each iteration
    LET COUNTER = COUNTER + 1 % update thecounter
END WHILE
OUTPUT (EPSILON, COUNTER)</pre>
```

Exercise

Find the machine precision of your calculator.

Implications

When designing an algorithm one should NOT USE the logical construct **Are** x **and** y **equal?** but instead **Are** x **and** y **close?** or **Is** x - y **small enough?**

Here is how the "MACHINE PRECISION" ALGORITHM would be implemented in MATLAB (found in Q:\mfiles\math370\myeps.m

```
epsilon = 1;
it = 0;
maxit = 100;
while it < maxit,
   b = 1 + epsilon;
   if b == 1 break; end
   epsilon = epsilon/2;
   it = it + 1;
end
fprintf('epsilon = %12.8e in %d steps',epsilon,it);
```

NOTE the machine precision ϵ_m for MATLAB is found in the command eps. Therefor how many bits is MATLAB using to store floating point numbers?

Therefor how many bits is **your calculator** using to store floating point numbers?

What would the output of the following MATLAB code be? (Example found on page 211 of Recktenwald)

```
x = tan(pi/6);
y = sin(pi/6)/cos(pi/6);
if x==y
    fprintf('x and y are equal\n');
else
    fprintf('x and y are not equal: x - y = %e\n');
end
```

Go to Matlab and check your answer!