Numerical Analysis

Math 370 Fall 2002 © **2002 Ron Buckmire**

MWF 9:30am - 10:25pm Fowler 127

Worksheet 2: Monday September 9

SUMMARY Round-off Error and The Significance Floating Point Arithmetic

k-th digit Chopping

In this case all the digits after d_k are **ignored** ("chopped off")

k-th digit Rounding

In this case if the value of $d_{k+1} \geq 5$ then d_k is replaced by $d_k + 1$

Exercise

Write down the 6-digit decimal machine number representation for 3546.16527

(a) using chopping

(b) using rounding

Absolute Error and Relative Error

If \tilde{p} is an approximation to p, the **absolute error** is $|\tilde{p} - p|$, and the **relative error** is $\frac{|\tilde{p} - p|}{|p|}$, provided $p \neq 0$

Example

Let's compute the relative and absolute errors involved in chopping and rounding 3546.16527 using a 6-digit decimal machine number representation.

GROUPWORK Show that the expression involving k which gives you an upper bound for the relative error involved in using chopping arithmetic is $\epsilon_{rel}=10^{-k+1}$

It can also be shown that a bound for the relative error involved in using **rounding arithmetic** is *half* that for chopping, $\epsilon_{rel} = 0.5 \times 10^{-k+1} = 5 \times 10^{-k}$.

Round-off Errors in the Quadratic Formula

Recall that the common formula for the roots of a quadratic equation $ax^2 + bx + c = 0$ is

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Round-off error can wreak havoc with the numerical implementation of this formula. Consider

$$x^2 + 62.10x + 1 = 0$$

which has the approximate roots $x_1 = -0.01610723$ and $x_2 = -62.08390$

Because of the size of the parameters in the quadratic equation, b^2 is much bigger than 4ac, so $\sqrt{b^2 - 4ac}$ is very close to b. a = 1, b = 62.10, c = 1

$$b^2 = 4ac = b^2 - 4ac =$$

GROUPWORK

Using 4-digit rounding arithmetic compute the first root x_1

What's the relative error in this calculation?

Solution: change the formula for x_1 so that we don't have to subtract b from $\sqrt{b^2 - 4ac}$ Now, a new formula for $x_1 =$

Use a similar new formula to compute x_2 (using 4-digit precision) and compute the relative error in x_2

What's the problem?

Solution: Use the new formula for x_1 when you have to subtract numbers which are similar in size, use the traditional formula for the other root.

The Ultimate Quadratic Formula

$$q \equiv -\frac{1}{2} \left[b + \text{sign}(b) \sqrt{b^2 - 4ac} \right]$$

where

$$sign(b) = \begin{cases} 1 & b \ge 0 \\ -1 & b < 0 \end{cases}$$

and

$$x_1 = rac{q}{a}$$
 and $x_2 = rac{c}{q}$