$Math\ 370\ Fall\ 2002$

Quiz 6	DUE: MON OCT 28
Name:	
Date: Time Begun: Time Ended:	
Topic: Solving Non-linear Systems of	Equations
1 0	n more practice solving a non-linear system of equations. calculate using Successive Substitution, Seidel Iteration or
Instructions:	
1. Once you open the quiz, you have as start time and end time at the top of	much time as you need to complete it, but record your this sheet.
2. You may use the textbook or any of your class notes. You must work alone. However, you are strongly encouraged to ask questions on the Class Web Messageboard.	
3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.	
4. After completing the quiz, sign the ple to these rules.	edge below stating on your honor that you have adhered
5. Your solutions must have enough deta and determine HOW you came up wi	ails such that an impartial observer can read your work th your solution.
6. Relax and enjoy	
7. This quiz is due on Monday October 28, in class. NO LATE QUIZZES WILL BE ACCEPTED.	

Pledge: I, _______, pledge my honor as a human being and Occidental student,

that I have followed all the rules above to the letter and in spirit.

1. In class we found one of the points of intersection of the hyperbola $4x^2 - y^2 = 1$ and the circle $(x-1)^2 + y^2 = 2^2$ to be (1.1165151,1.9966032). Let

$$ec{G}(ec{x}) = \left(egin{array}{c} g_1(x,y) \ g_2(x,y) \end{array}
ight) = \left(egin{array}{c} rac{8x - 4x^2 + y^2 + 1}{8} \ rac{2x - x^2 + 4y - y^2 + 3}{4} \end{array}
ight)$$

- (a) [2 pts] Show that the fixed point(s) of the vector function $\vec{G}(\vec{x})$ are exactly the points of intersection of the hyperbola $4x^2 y^2 = 1$ and circle $(x-1)^2 + y^2 = 4$. (HINT: one way to do this is to show algebraically that the fixed points of \vec{G} satisfy the exact same equation that the points of intersection do.)
- (b) [2 pts] Starting with an initial guess of $\vec{x}_0 = (1,2)^T$ compute the next approximation to the fixed point of \vec{G} using Successive Substitution, $\vec{x}_k = \vec{G}(\vec{x}_{k-1})$
- (c) [2 pts] Starting with an initial guess of $\vec{x}_0 = (1,2)^T$ compute the next approximation to the fixed point of \vec{G} using Seidel Iteration.
- (d) [2 pts] Considering $\vec{f}(\vec{x}) = \begin{bmatrix} 4x^2 y^2 1 \\ (x-1)^2 + y^2 2^2 \end{bmatrix}$ Find the Jacobian matrix J(x,y) for the system.
- (e) [2 pts] Starting with an initial guess of $\vec{x}_0 = (1,2)^T$ compute the next approximation to the fixed point of \vec{G} using Newton's Method.