Test 2: Numerical Analysis

Math 370	Friday November 8, 2002
Name:	

Directions: Read *ALL* 3 (three) problems first before answering any of them. This is an open-notes, open-book test. This test has 6 pages. You must show all relevant work to support your answers. Use complete English sentences and indicate your final answer from your "scratch work." I designed it to be completed in 1 hour but you have 90 minutes.

No.	Score	Maximum
1		30
2		30
3		40
Total		100

1. [30 points total.] Picard Iteration.

Consider the Buckmire Algorithm for computing \sqrt{R} .

$$x_{n+1} = g(x_n) = \frac{x_n(x_n^2 + 3R)}{3x_n^2 + R}$$

(a) [8 points]. Show that if the functional iteration scheme converges, it converges to \sqrt{R} . In other words, is $\lim_{n\to\infty} x_n = \sqrt{R}$?

(b) /8 points/. Compute g'(x)

(c) [6 points]. Use your knowledge of g'(p), where p is the fixed point of g(x), to show that Buckmire's Method is superlinearly convergent.

(e) [8 points]. Use Buckmire's Square Root Algorithm to obtain an estimate of $\sqrt{2}$ to 6 decimal places. (Use $x_0 = 1$ as initial guess.)

3. [30 points total.] Matrix Norms.

Consider the diagonal matrix
$$A = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

(a) Show that $||A||_{\infty} = ||A||_{1}$ for this diagonal matrix.

(b) Show that $||A||_2 = \sqrt{\max_{1 \le i \le n} \lambda_i^2}$ for the diagonal matrix A.

(c) Show that $||A||_2 = ||A||_1$ for this diagonal matrix.

4. [40 pts. total] Iterative Solution of Nonlinear Systems.

(a) [20 points]. Show that Newton's Method applied to $\begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix} = \vec{f}(\vec{x}) = \vec{0}$ can be written in Fixed Point Iteration form as $\vec{x} = \vec{G}(\vec{x})$ or

$$\left[egin{array}{c} x \ y \end{array}
ight] = \left[egin{array}{c} g_1(x,y) \ g_2(x,y) \end{array}
ight]$$

where

$$g_1(x,y) = x - \frac{f_1(x,y)\frac{\partial f_2}{\partial y}(x,y) - f_2(x,y)\frac{\partial f_1}{\partial y}(x,y)}{\det(J(x,y))}$$

$$g_2(x,y) = y - \frac{f_2(x,y)\frac{\partial f_1}{\partial x}(x,y) - f_1(x,y)\frac{\partial f_2}{\partial x}(x,y)}{\det(J(x,y))}$$

(b) /10 points/. Consider the system

$$f_1(x,y) = x^2 - y - 0.2 = 0$$

 $f_2(x,y) = y^2 - x - 0.3 = 0$

$$f_2(x,y) = y^2 - x - 0.3 = 0$$

Use the formula in part (a) to write Newton's Method for this nonlinear system as a fixed point iteration scheme $\vec{x}_{k+1} = \vec{G}(\vec{x}_k)$.

(c) [10 points]. Starting with $\vec{x}_0 = (0,0)$ compute \vec{x}_1 and \vec{x}_2 .