Test 1: Numerical Analysis

Math 370	Wednesday October 9, 2002
Name:	

Directions: Read ALL 4 (four) problems first before answering any of them. This is a one hour, open-notes, open book, test. This test has 6 pages. You must show all relevant work to support your answers. Use complete English sentences and indicate your final answer from your "scratch work."

No.	Score	Maximum
1		20
2		20
3		20
4		40
Total		100

1. [20 points total.] Order Notation and Taylor Series.

Consider the integrally-defined function $F(h) = \int_0^h \sin(x^2) dx$

In this problem our goal is to describe the behavior of this given function F(h) for very small values of h, i.e. |h| << 1, or as $h \to 0$.

(a) [6 points]. Write down the first three non-zero terms of the Maclaurin Series for $f(x) = \sin(x^2)$

(b) [6 points]. Use your answer in part (a) to write down the first three non-zero terms of the Maclaurin series for F(h).

- (c) [2 points]. Use your previous answers to show that you can write down the behavior of the integrally-defined function as $F(h) = L + \mathcal{O}(h^p)$ (Give values for L and p).
- (d) [6 points]. Use L'Hôpital's Rule to confirm your answer in part (c) by using the limit definition of "big oh."

[HINT: Recall the fundamental theorem of calculus: $\frac{d}{dx}\int_a^x f(t) \ dt = ?????$]

2.	[20 points total.] Sequences and Limits.	Consider the sequence $x_{n+1} = \sqrt{a + x_n}$ with
	$x_0 = \sqrt{a}, \ a > 0.$	

(a) [5 points]. Write down x_1, x_2, x_3, \dots

(b) [8 points]. Assume $x_{\infty} = \lim_{n \to \infty} x_n = x$. What is $\lim_{n \to \infty} x_{n+1} = ?$ Therefore obtain an algebraic expression for x in terms of a.

(c) [5 points]. Now suppose a=2. Use your calculator to compute the first 6 or so elements of the sequence. What do you estimate $\lim_{n\to\infty} x_n$ is numerically?

(d [2 points]. Use the formula you derived in (b) to compare the exact value of the limit of the sequence when a = 2 to the approximate limit you found in (c). (Are they the same or different? What do you expect?)

3. /20 points total./ TRUE or FALSE.

Are the following statements TRUE or FALSE – put your answer in the box. To receive ANY credit, you must also give a brief, and correct, explanation in support of your answer! For example, if you think the answer is **FALSE** providing a counter example for which the statement is not true is best. If you think the answer is **TRUE** you should also explain why you believe the statement.

(a) If $\{p_n\}$ is linearly convergent to p=0 and $\{q_n\}$ is quadratically convergent to q=0 then $\lim_{n\to\infty}\frac{q_n-q}{p_n-p}=0$.

(b) The **machine precision** i.e., the number ϵ_m such that $1 + \epsilon_m = 1$, is the same on all computers.

4

4. [40 pts. total] Root-Finding Methods, Convergence Criteria.

Consider the function $J_0(x)$, the zeroth-order Bessel's Function of the First Kind. $J_0(x)$ is defined as one of the solutions to the differential equation $x^2u'' + xu' + x^2u = 0$. Two different methods, **Method A** and **Method B**, are used to approximate z_{01} the first zero of $J_0(x)$ to 7 decimal places.

	ľ	$f Method\ A$		
n	x_n	$f(x_n)$	$ x_n - x_{n-1} $	
1	2.00000000	2.239e-001	2.000e+000	
2	3.000000000	-2.601e-001	1.000e+000	
3	2.50000000	-4.838e-002	5.000e-001	
4	2.25000000	8.275e-002	2.500e-001	
5	2.37500000	1.558e-002	1.250e-001	
6	2.43750000	-1.685e-002	6.250 e - 002	
7	2.40625000	-7.393e-004	3.125e-002	
8	2.39062500	7.394e-003	1.563e-002	Method B
9	2.39843750	3.321e-003	7.813e-003	
10	2.40234375	1.289e-003	3.906e-003	$\begin{array}{c ccccc} n & x_n & f(x_n) & x_n - x_{n-1} \\ \hline 1 & 2.86297144 & -2.102e-001 & 1.137e+000 \end{array}$
11	2.40429688	2.745e-004	1.953e-003	2 1.58493225 4.640e-001 1.137e+000
12	2.40527344	-2.325e-004	9.766e-004	3 2.46453524 -3.060e-002 8.796e-001
13	2.40478516	2.097e-005	4.883e-004	4 2.41011108 -2.741e-003 5.442e-002
14	2.40502930	-1.058e-004	2.441e-004	5 2.40475677 3.571e-005 5.354e-003
15	2.40490723	-4.240e-005	1.221e-004	6 2.40482563 -3.940e-008 6.887e-005
16	2.40484619	-1.071e-005	6.104e-005	7 2.40482556 -5.636e-013 7.589e-008
17	2.40481567	5.131e-006	3.052e-005	8 2.40482556 0.000e+000 1.085e-012
18	2.40483093	-2.790e-006	1.526e-005	8 2.40482330 0.00000000 1.0030-012
19	2.40482330	1.170e-006	7.629e-006	
20	2.40482712	-8.100e-007	3.815e-006	
21	2.40482521	1.802e-007	1.907e-006	
22	2.40482616	-3.149e-007	9.537e-007	
23	2.40482569	-6.734e-008	4.768e-007	
24	2.40482545	5.643e-008	2.384e-007	
25	2.40482557	-5.453e-009	1.192e-007	
26	2.40482551	2.549e-008	5.960e-008	
27	2.40482554	1.002e-008	2.980e-008	

(a) [10 pts] From the data in the two tables, what is the value of z_{01} the first root of $J_0(x)$ to 7 decimal places? How confident are you in your answer? Explain.

(b) [10 points] Which of these methods is linearly convergent? Is the other method superlinearly convergent or quadratically convergent or even faster? Can you tell? How?

_

Consider the following possible termination criteria when answering part (c) and (d).

Criteria 1: $|f(x_n)| \leq FTOL$

Criteria 2: $|x_n - x_{n-1}| \le XTOL$

Criteria 3: $|f(x_n)| \le FTOL \text{ AND } |x_n - x_{n-1}| \le XTOL$

Criteria 4: $|f(x_n)| \le FTOL \text{ OR } |x_n - x_{n-1}| \le FTOL$

(c) [10 points] The data in the table is consistent with using which of the termination criteria? Note FTOL = XTOL = 5.000e-008 in this problem.

(d) [10 points] Suppose FTOL = 5.000e-004 and XTOL = 5.000e-004. Where would each of the Methods have terminated if each of the 4 criteria had been applied?