Math 870 Numerical Analysis Term Project Fall 2000

Version: November 29, 2000
Due Date: Tuesday December 12, 5:00pm

1 Background

The flow of a fluid (liquid or gas) is governed, in general, by a system of coupled, non-linear partial
differential equations. We shall consider the simplified case of modelling an inviscid (no viscosity), irro-
tational (no wakes, boundary layers or vortices) and incompressible (density doesn’t change with change
in pressure) fluid. For this specialized case, which occurs in a wide number of actual physical situations
(for example flow of air of around comercial aircraft, flow of water in cylindrical pipes, et cetera), the
dynamics of the fluid are described by potential theory. Specifically, in this project we will be looking at
two-dimensional, incompressible potential flow.

Our goal is to write down boundary value problems (which consist of a partial differential equation
combined with boundary conditions) for a number of classical flow situations, and to solve these problems
numerically. We shall consider a problem solved when we can produce a contour map of the converged
numerical solution describing the fluid flow throughout the region of interest.

2 The Model: Potential Theory

Potential Theory assumes that a velocity potential ¢ exists such that the velocity of the fluid at any
point can be obtained by computing ¥ = V¢. In cartesian coordinates, this means that the velocity at
any point in the plane (z,y) is given by

T=u +v§=—2+ 7. (1)
In polar coordinates, the velocity can be found at any point (r,6) by
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where v, and vy are the components in the radial and angular directions.
In addition to the velocity potential function, there is another function which assists in the description

of fluid flow: the stream function, 1. The stream function is defined using the equations
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In potential flow, the points in the plane at which the velocity potential is constant are curves called
equipotentials. When the stream function is constant the corresponding curves are called streamlines
and represent the path that particles will travel in the flow. Particles will travel parallel to streamlines
and thus this means the flow will not cross them. Therefore streamlines can represent flow boundaries.
This idea is important in mathematically describing the flow around differently-shaped objects.

The governing equation for two dimensional, incompressible flow is Laplace’s Equation

V24 = 0. (4)
In cartesian coordinates this becomes
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In polar coordinates Laplace’s Equation it is
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From the multiple definition of the velocity components in (3) and (1) one can see that the stream

function and the velocity potential can be mathematically related to each other. The equations which

relate the two functions are known as the Cauchy-Riemann equations,
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And, the corresponding version of the Cauchy-Riemann equations in polar coordinates are
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From Complex Analysis it is known that functions which satisfy the Cauchy-Riemann Equations are
harmonic functions, which means that they also satisfy Laplace’s Equation. In other words not only

does the velocity potential satisfy 5, but so does the stream function:
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Boundary Value Problems

The problem of describing the flow of a fluid in a region mathematically is one of solving a boundary value
problem for either ¢ and/or ¢ (if you have one, you can get the other). Let us consider a rectangular
domain in the zy-plane. A solution of the problem would be a functional representation of ¢ (x,y) which
we could differentiate and thus give the velocity components u(x,y) and v(x,y) at every point in our
domain. We know that ¢(x,y) and ¢ (z,y) satisfy Laplace’s Equation at every point in the interior of the
domain, but we also need to have equations for ¢ or ¥ on the boundary of the domain. These equations
are called boundary conditions. This is very similar to the idea that when solving initial value problems
one needs not only a differential equation but an initial condition to obtain a unique solution. With
boundary value problems one needs a partial differential equation and boundary conditions.

3 The Problem: Theoretical Fluid Mechanics

The project will be to mathematically describe and compute solutions for classic theoretical fluid me-
chanic scenarios. These will be Fluid Around a Corner, Fluid Into A Semi-Infinite Channel, Fluid
Around A o-Wedge, and Fluid Past A Circular Object (Extra Credit).

Situation A: Flow Around A Corner

Consider the figure below. The problem of incompressible inviscid flow around a 90° corner (at the
origin) can be written as a boundary value problem for the stream function ¥ (x, y). Let the speed of the
fluid down into the corner be unity, and equal to the speed of the flow to the right exiting the corner.
Let’s derive the boundary condition for this situation.

The governing partial differential equation for all our situations is Laplace’s Equation

V2 =0,A.1

Along y = 0 there is a wall, and the flow will be directly vertical downwards, in other words v(z,0) =
—tp(x,0) = —1 and u(x,0) = 1), = 0. So, since v = 1), and v = —1p, we know that

—g—qf =-1=¢(z,0) =2



Similarly, as the flow leaves the corner it is completely horizontal, so v(l,y) = —¢.(1,y) = 0 and
u(1,y) =¥y (1,y) = 1, which means that
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The boundaries of the flow (i.e. the wall and the floor) are represented by the constant value of the
stream function along the y-axis and z-axis. The value of the constant is usually taken to be zero along
flow boundaries.

Situation B: Flow at the End of a Semi-Infinite Channel

Consider the figure below. Write down a boundary value problem for the stream function for the fluid
flow into a channel which has walls at x = —7/2 and = 7/2 and a floor at y = 0.
The exact solution for this problem is ¢ (x,y) = sinh(y) cos(x).

Situation C: Flow Into An o-Wedge

Consider changing Situation A so that instead of the corner being a 90° it is a.. Write down a boundary
value problem for the stream function the flow into the “a-Wedge”. The main feature of this problem
with this problem is that it is more easily expressed in polar coordinates. Also note that Situation B is
a special case of Situation C (with @ = 7/2). Can you show this?

0
The exact solution is t(r,0) = r™/®gin (%)

Situation D: Flow Past A Cylinder

Write down the boundary value problem for flow past a cylinder of unit radius at the origin.



1
The exact solution of this problem is ¢(r, 0) = (r - ;) sin(6)

4 Computational Fluid Dynamics

Approximating Laplace’s Equation Numerically

Let us say we are only interested in a portion of the zy-plane which we call D : (z,y) € a < x < b,¢ <
y < d. Let us partition the horizontal (z-axis) and vertical (y-axis) coordinates, into n and m pieces,
respectively. Thus we have changed our region of interest from the infinite number of points in the plane
to the finite number of n x m discrete points. This process is called discretization.

We can write formulas for the precise points in the plane which we are considering. They all have
the form (x;,y;) where ¢ ranges from 1 to m and j ranges from 1 to n.

x; = a+ (i—1)Az where Az = b=

a
1 is the separation between neighbouring points (on the z-axis).
d—c
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Similarly, y; = ¢+ (j — 1)Ay where Ay =

Our numerical problem will be to find the value of the stream function at each of these discrete points.
We will thus need to produce n x m equations for n x m variables. We shall denote these variables as

Vs,5, where ¥; ; = (4, ;).
The derivatives in the Laplacian can be approximated using finite differences. This involves using

the idea that A A
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Thus in the case of the second derivatives of the stream function in Laplace’s Equation we can use
this idea to produce an approximation for v, at each (z;,y;),
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You should be able to show that at the internal parts of the domain the discrete form of Laplace’s
Equation is:
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This can be re-arranged to form an explicit equation for %; ;,
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If Az = Ay then the equation becomes
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Notice that Laplace’s Equation will only be the governing equation for (n —2)(m —2) = nm — 2n —
2m—+4 of the variables. The boundary conditions will take care of 2n+2(m—2) = 2n+2m— 4 equations.
Together, you will have n X m equations in n X m unknowns.

For example, for n = m = 5 the set of (n — 2) x (m — 2) = 9 equations for the 9 internal ¢, ; values
will be
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There are 2n + 2m — 4 = 16 boundary conditions (for n = m = 5). Along the y-axis, there is a wall

Pr2=vY13=%14=10%15=0

Along the z-axis, there is another boundary

o1 =31 =g =51 =0

And at the intersection (corner)

P11 =0
At the input and output parts of
P52 = TsY2
Y53 = Tsy3
Y54 = TsYs
Y55 = TsYs
a5 = T2ys
Y35 = Z3ys
Yas = Tays

To avoid confusion, it might be useful to rename the unknown variables v; ; as In matrix form, the
equations can be written as

-4 1 0 1 0 0 0 0 O a9 —1)a1 — P12
1 -4 1 0 1 0 0 0 0 P30 —131
0O 1 -4 0 0 1 0 0 O Pq2 —152 — Ya1
1 0 1 -4 1 0 1 0 0 o3 —13
01 0 1 -4 1 0 1 0 3z [ =1 0
0 0 1 0 1 —-4 0 0 1 a3 —53
0O 0 0 1 0 0 -4 1 0 oy —tp14 — o5
0 O 0 0 1 0 1 —4 1 P34 —35
o 0 0o 0o 0O 1 0 1 -4 Paq —thys — P54

Notice that you can think of the matrix in this equation as having the form

AT 0 3
I A I |Z=b
0 I A



where A and I are 3 x 3 matrices (also known as “blocks.” In other words, the matrix in questional
is block tri-diagonal, symmetric and positive definite. Thus if we use SOR we can find an optimal w
parameter which accelerates convergence.

We shall consider the problem solved when the difference between the exact solution and the com-

puted solution is small. One choice is to have |, max [¥i; — (24, y;)| < € where € is about 1072,
i ml j n

4.1 Using Gauss-Seidel and SOR To Solve The System

There is more than one way to implement the solution of the mn linear equations. One could use
the given sor.m and gseidel.m and even jacobi.m routines. But then you would have to come up
with a way to compute the matrix representing the system of equations for each case. Another way to
implement Gauss-Seidel and SOR  is as recurrence relations Gauss-Seidel can be written as

k k1 k k1
(k+1) 1/’§,j)+1 + 1/’1(,3'—1) + 1/}z(+)1,j + 1/’1'(—1,3')

Successive Over Relaxation can be written as
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The reason there is the symbol (k + 1) over some of the 1; ; values and (k) over others indicates
which iterate one is looking at. If one is running through the variables, then to compute the next .i.e.
(k+ 1) value of 9, ;, one already knows the values at ;1 ; and ¥; ;_1.

It can be shown that the optimal w for Successive Over-Relaxation of the system obtained from
discretizing Laplace’s Equation is

4 ™ . T
Wopt = PPy where ¢ = cos (ﬁ) + sin <m> (12)

where the number of grid separations is n and m.

You should write an m-file which implements SOR and use it to solve the numerical problems with
Gauss-Seidel (w = 1) and then determine the optimal w from (12) and run SOR with this value to show
the solution converges more rapidly.



Assignment

Theoretical Fluid Dynamics

1.

Show that ¥ (z,y) = xy is an exact solution of the boundary value problem for the stream function
for flow around a corner.

Write down a boundary value problem for the stream function describing the flow into a semi-
infinite channel of width 7w found at —3 <z < 5,y > 0.

Show that ¢(z,y) = sinh(y) cos(z) is an exact solution of this boundary value problem.

Write down a boundary value problem for ¢(r, 6), the stream function for flow into an a-wedge.

Show that 1(r,0) = ™/ sin(Z2) is an exact solution of this boundary value problem.

Computational Fluid Dynamics

1.
2.
3.

Discretize the boundary value problem for Situation A and Situation B withn=m =5
Write down the system of equations for the discrete version of Situation A and Situation B

Use Gauss-Seidel Iteration (i.e. SOR with w = 1) to produce a discrete solution to Situation A
and Situation B

Use SOR with optimal w to produce a discrete solution to Situation A and Situation B

Use SOR with optimal w and n = m = 10 and n = m = 25 to produce a discrete solution to
Situation A and Situation B

EXTRA CREDIT

1.

Write down a boundary value problem for ¢(r, 8), the stream function for flow across a unit cylinder
at the origin (situation D).

Show that the function ¢ (r,0) = (r — 1/r) sin() solves the boundary value problem for Situation
D

Discretize the boundary value problem for Situation C and Situation D with n =m =5
Write down the system of equations for the discrete version of Situation C and Situation D

Use SOR with optimal w to produce a discrete solution (with n = m = 25 to Situation C and D



Report

Write a concise report containing the following sections.

1.

Problem Overview: A brief statement of the project objective and a summary of the steps you
used to achieve it.

Mathematical Formulation: Summarize the equations used in your analysis. Describe each
variable in words. Be sure to identify the role of each equation in the overall analysis.

Program Listings: You should produce an m-file, stream.m which has an output of:

(i) a contour plot of ¥ (x,y) or 1 (r,0)
(ii) The error between the numerical solution and the exact solution
)

(iii) The discrete converged solution, in matrix form 1; ;
and has an input:

(i) m, number of horizontal divisions, m number of vertical divisions
(ii) w, the SOR parameter

(iii) k, the number of SOR iterations to execute

The purpose of each m-file should be stated in the text of your report. Code listings, especially
those that span multiple pages, should appear in an Appendix. The input and output variables
for the modules need not be described separately as long as they are adequately documented in
the function prologue.

Results and Discussion: Provide answers to the questions posed in the Assignment section,
above. Your report need not following the numbering convention in the Assignment so long as all
the issues raised there are discussed.

Feedback on Group Dynamics: Provide a summary of how your group worked together, sum-
marizing how many meetings occurred, how long they lasted, who was responsible for which sections
of the project, et cetera. This could be done through separate paragraphs, authored by each group
member.

Conclusion: In one crisp paragraph, summarize the results of this project. Do not present new
information in the Conclusion.

The report is to be delivered in hard copy by 5:00 PM on the due date for the project.

Submission of Code

In addition to the written report, the final working version of your MATLAB programs, along with basic
instructions for running them, are to be included on a disk submitted with the report. The instructions
should be contained in a plain text file (no MS Word, no HTML formatting) with a name like ReadMe. txt.
The instructions should briefly (one or two sentences should do) describe how to run your code. Be sure
to specify any input parameters that may be needed. When I run your code(s) I should be able to
recreate all the results in your report. I should not have to edit your code(s) to produce your results.



Grading Criteria

The following criteria will be used to grade the term project

Category Points
Technical content
Verification of theoretical results 20
Computational Fluid Dynamics 20
Numerical Results
Implementation of SOR 10
Contour Plots 10
Tabulated Results of Running Program 20
Documentation
Organization and documentation of m-files 5
Discussion of group dynamics 5
Grammar, style, spelling 10
Total 100
Extra Credit
Cylindrical Problem (Situation D) 15
Numerical Solution of Situation C and D 25
Extra Credit Total 40

Report Style
The following items fall under the category of “style”.
e The report should be organized into major sections.

e The text should be written in complete sentences. It should be free of slang. All abbreviations
and acronyms should be defined.

e Figures must have captions. Axes must have labels. Figures and tables of results may be placed
at the end of the text body, but should not be placed in an appendix. All figures and tables of
results that are not discussed in the body of the text will be ignored.

e Pages in your report should be numbered.

e Only items of secondary importance are put in an appendix.
To simplify your report, assume that the reader

e is familiar with the fluid dynamics,

e is a competent MATLAB user,

e is unimpressed by fancy report covers,

e is much more interested in technical content than in font selection, three-dimensional graphics,
and maximum vectorization of MATLAB code.

Do not assume that the reader has a copy of the assignment sheet. This requires, for example, that
you define all variables and constants that appear in any equations you present.



