Question 1

If we are told that the general solution to the linear homogeneous system $Y^{\prime}=A Y$ is $Y=c_{1} e^{-4 t}\left[\begin{array}{c}-2 \\ 1\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}2 \\ 3\end{array}\right]$, then an equivalent form of the solution is
(a) $y_{1}=-2 c_{1} e^{-4 t}+c_{1} e^{-4 t}$ and $y_{2}=2 c_{2} e^{3 t}+3 c_{2} e^{3 t}$
(b) $y_{1}=-2 c_{1} e^{-4 t}+2 c_{2} e^{3 t}$ and $y_{2}=c_{1} e^{-4 t}+3 c_{2} e^{3 t}$
(c) $y_{1}=-2 c_{1} e^{-4 t}+c_{1} e^{3 t}$ and $y_{2}=2 c_{2} e^{-4 t}+3 c_{2} e^{3 t}$
(d) All of the above.
(e) None of the above.

Question 2

If $Y=e^{-2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]+e^{-4 t}\left[\begin{array}{l}2 \\ 3\end{array}\right]$ is a solution to the linear homogeneous system $Y^{\prime}=A Y$
which of the following is also a solution?
(a) $Y=2 e^{-2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(b) $Y=3 e^{-2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]-4 e^{-4 t}\left[\begin{array}{l}2 \\ 3\end{array}\right]$
(c) $Y=1 / 4 e^{-4 t}\left[\begin{array}{l}2 \\ 3\end{array}\right]$

(d) All of the above
 (e) None of the above

Question 3

The eigenvalues and eigenvectors for the coefficient matrix A in the linear homogeneous system $Y^{\prime}=A Y$ are $\lambda_{1}=4$ with $v_{1}=<1,2>$ and $\lambda_{2}=-3$ with $v_{2}=<-2,1>$. In the long term, phase trajectories:
(a) become parallel to the vector $\left.v_{2}=<-2,1\right\rangle$.
(b) tend towards positive infinity.
(c) become parallel to the vector $v_{1}=<1,2>$.
(d) tend towards 0.
(e) None of the above

Question 4

The differential equation $\frac{d \vec{Y}}{d t}=A \vec{Y}$ has two straight line solutions corresponding to eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ that are shown on the direction field below. We denote the associated eigenvalues by λ_{1} and λ_{2}.

We can deduce that λ_{2} is
(c) zero
(a) positive real
(d) complex
(b) negative real
(e) There is not enough information

Question 5

The differential equation $\frac{d \vec{Y}}{d t}=A \vec{Y}$ has two straight line solutions corresponding to eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ that are shown on the direction field below. We denote the associated eigenvalues by λ_{1} and λ_{2}. Suppose we have a solution $\vec{Y}(t)$ to this system of differential equations which satisfies initial condition $\vec{Y}(t)=\left(x_{0}, y_{0}\right)$ where the point $\left(x_{0}, y_{0}\right)$ is not on the line through the point $(1,-2)$. Which statement best describes the behavior of the solution as $t \rightarrow \infty$?

(a) The solution tends towards the origin.
(b) The solution moves away from the origin and asymptotically approaches the line through $\langle 1,2\rangle$.
(c) The solution moves away from the origin and asymptotically approaches the line through $\langle 1,-2\rangle$.
(d) The solution spirals and returns to the point $\left(x_{0}, y_{0}\right)$.
(e) There is not enough information.

Question 6

Which phase portrait below corresponds to the linear, homogeneous, system of differential equations with constant coefficients whose coefficient matrix has the following eigensystem: eigenvalues -5 and -2 and eigenvectors $\langle-1,2\rangle$ and $\langle-4,5\rangle$, respectively?

