10.03.2014, Question 1: We have the system of differential equations $x^{\prime}=3 x-2 y$ and $y^{\prime}=4 y^{2}-7 x$. If we know that $x(0)=2$ and $\boldsymbol{y}(0)=1$, estimate the value of \boldsymbol{x} and \boldsymbol{y} at $t=0.1$.
(a) $x(0.1)=4, y(0.1)=-10$
(b) $x(0.1)=6, y(0.1)=-9$
(c) $x(0.1)=2.4, y(0.1)=0$
(d) $x(0.1)=0.4, y(0.1)=-1$
(e) None of the above
10.03.2014, Question 2: TRUE or FALSE. The function $h(t)=4+3 t$ is a linear combination of the functions $f(t)=1+2 t+t^{2}$ and $g(t)=2-t-t^{2}$.
(a)TRUE, and I am very confident.
(b)TRUE, but I am not very confident.
(c) FALSE, but I am not very confident.
(d)FALSE, and I am very confident.
10.03.2014, Question 3: Suppose $y_{1}(t)=\exp (2 t)$. For which of the functions will $\left\{y_{1}(t), y_{2}(t)\right\}$ be a linearly independent set?
(a) $y_{2}(t)=\exp (-2 t)$.
(b) $y_{2}(t)=\exp (3 t)$.
(c) $y_{2}(t)=1$.
(d) All of the above.
(e) None of the above.
10.03.2014, Question 4: Can the functions $y_{1}(t)=t$ and $y_{2}(\boldsymbol{t})=\boldsymbol{t}^{2}$ be a linearly independent pair of solutions for an ODE of the form $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ where $p(t)$ and $q(t)$ are continuous functions?
(a) YES, and I am very confident.
(b) YES, but I am not very confident.
(c) NO, but I am not very confident.
(d) NO, and I am very confident

