09.29.2014, Question 1: We are testing the function $f(x)=C_0e^{2x}$ + C_1e^{-2x} as a possible solution to a DE. After we substitute the function and its derivative into the DE we get $2C_0e^{2x}-2C_1e^{-2x} = -2(C_0e^{2x}+C_1e^{-2x})$ + $3e^{2x}$. What value of C_0 will allow this function to work as a solution?

(a)
$$C_0 = \frac{3}{4}$$
 (c) $C_0 = 3$ (e) Any value of C_0 will work.
(b) $C_0 = \frac{3}{2}$ (d) $C_0 = 2$ (f) No value of C_0 will work.

09.29.2014, Question 2: When we have y'=7y+2x we should conjecture $y=C_0e^{7x}+C_1x+C_2$. Why include the C_2 ?

- (a) Because the 7y becomes a constant 7 when we take the derivative and we need a term to cancel this out.
- (b) Because when we take the derivative of $C_1 x$ we get a constant C_1 and we need a term to cancel this out.
- (c) Because this will allow us to match different initial conditions.
- (d) This does not affect the equation because it goes away when we take the derivative.

09.29.2014, Question 3: We have the equation y'=2y+sin(3t). What should our conjecture for y(t) be? (a) $y = C_0e^{2t} + \sin 3t$ (d) $y = C_0e^{2t} + C_1\sin 3t + C_2\cos 3t$

- (b) $y = C_0 e^{2t} + \sin 3t + \cos 3t$
- (c) $y = C_0 e^{2t} + C_1 \sin 3t$

(d) $y = C_0 e^{2t} + C_1 \sin 3t + C_2 \cos 3t$ (e) $y = C_0 e^{2t} + C_1 e^{-2t} + C_2 \sin 3t + C_3 \cos 3t$ (f) None of the above

09.29.2014, Question 4: Which of the following is **NOT** a solution to y'(t)=5y+3t? (a) $y = 8e^{5t}$

(d) All are solutions.

(c) $y = 8e^{5t} - \frac{3}{5}t - \frac{3}{25}t$

(b) $y = -\frac{3}{5}t - \frac{3}{25}$ (e) More than one of (a) - (c) are not solutions.