09.29.2014, Question 1: We are testing the function $f(x)=c_{0} e^{2 x}$ $+C_{1} e^{-2 x}$ as a possible solution to a $D E$. After we substitute the function and its derivative into the DE we get $2 C_{0} e^{2 x}-2 C_{1} e^{-2 x}=-2\left(C_{0} e^{2 x}+C_{1} e^{-2 x}\right)$ $+3 e^{2 x}$. What value of C_{0} will allow this function to work as a solution?
(a) $C_{0}=\frac{3}{4}$
(c) $C_{0}=3$
(e) Any value of C_{0} will work.
(b) $C_{0}=\frac{3}{2}$
(d) $C_{0}=2$
(f) No value of C_{0} will work.

09.29.2014, Question 2: When we have $y^{\prime}=7 y+2 x$ we should conjecture $y=C_{0} e^{7 x}+C_{1} x+C_{2}$. Why include the C_{2} ?

(a) Because the $7 y$ becomes a constant 7 when we take the derivative and we need a term to cancel this out.
(b) Because when we take the derivative of $C_{1} x$ we get a constant C_{1} and we need a term to cancel this out.
(c) Because this will allow us to match different initial conditions.
(d) This does not affect the equation because it goes away when we take the derivative.

09.29.2014, Question 3: We have the equation $y^{\prime}=2 y+\sin (3 t)$. What should our conjecture for $y(t)$

 be?(a) $y=C_{0} e^{2 t}+\sin 3 t$
(b) $y=C_{0} e^{2 t}+\sin 3 t+\cos 3 t$
(c) $y=C_{0} e^{2 t}+C_{1} \sin 3 t$
(d) $y=C_{0} e^{2 t}+C_{1} \sin 3 t+C_{2} \cos 3 t$
(e) $y=C_{0} e^{2 t}+C_{1} e^{-2 t}+C_{2} \sin 3 t+C_{3} \cos 3 t$
(f) None of the above
09.29.2014, Question 4: Which of the following is NOT a solution to $y^{\prime}(t)=5 y+3 t$?
(a) $y=8 e^{5 t}$
(b) $y=-\frac{3}{5} t-\frac{3}{25}$
(c) $y=8 e^{5 t}-\frac{3}{5} t-\frac{3}{25}$
(d) All are solutions.

