Differential Equations

Class 30: Monday April 18

TITLE The Method of Frobenius
CURRENT READING Zill 6.2

Homework Set \#12

Zill, Section 6.1: $10^{*}, 13^{*}, 15^{*}, 26^{*}, 29^{*}$
Zill, Section 6.2: $3^{*}, 4^{*}, 12^{*}, 13^{*}$ EXTRA CREDIT 33
Zill, Section 6.3: $5^{*}, 10^{*}, 25^{*}, 30^{*}$ EXTRA CREDIT 33
Zill, Chapter 6 Review: $4^{*}, 5^{*}, 10^{*}, 15^{*}, 20^{*}$ EXTRA CREDIT 22

SUMMARY

The Method of Frobenius is used to find series solutions around differential equations which have regular singular points.

1. The Method of Frobenius

THEOREM: Frobenius' Theorem
If a point x_{0} is a regular singular point of the DE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ then there exists at least one solution of the form $y=\left(x-x_{0}\right)^{r} \sum_{k=0}^{\infty}\left(x-x_{0}\right)^{k}$ where r is the root of the indicial equation of the DE.
DEFINITION: indicial equation The indicial equation is a quadratic equation which is obtained from the DE after substituting $y=\sum_{k=0}^{\infty}\left(x-x_{0}\right)^{k+r}$ into the DE and setting the coefficient of the lowest power of x to zero. For example, in a DE of the form $y^{\prime \prime}+P(x) y^{\prime}+$ $Q(x) y=0$ which has a regular singular point at $x=0$ then the power series expansion $p(x)=x P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ and $q(x)=x^{2} Q(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots$ lead to the inidicial equation $r(r-1)+a_{0} r+b_{0}=0$. The roots r_{1} and r_{2} of this equation are called the exponents at the singularity.
EXAMPLE Zill, page 252, Example 2. Solve $3 x y^{\prime \prime}+y^{\prime}-y=0$ by the Method of Frobenius.

RECALL One can obtain the values a_{0} and b_{0} from the functions $p(x)=\left(x-x_{0}\right) P(x)$ and $q(x)=\left(x-x_{0}\right) Q(x)$ by simply taking the limit as $x \rightarrow x_{0}$ so that $a_{0}=\lim _{x \rightarrow x_{0}} p(x)$ and $b_{0}=\lim _{x \rightarrow x_{0}} q(x)$. Then the indicial equation is $r(r-1)+a_{0} r+b_{0}=0$.
Exercise Find the indicial equation of $2 x y^{\prime \prime}+(1+x) y^{\prime}+y=0$

EXAMPLE Zill, page 252, Example 4. Show that $x y^{\prime \prime}+y=0$ has the solution $y(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+1)!} x^{k+1}=x-\frac{1}{2} x^{2}+\frac{1}{12} x^{3}-\frac{1}{144} x^{4}+\ldots$

Case I: Two real distinct roots where $r_{1}-r_{2}$ is NOT an integer The solution has the form $y_{1}(x)=\sum_{k=0}^{\infty} c_{n} x^{k+r_{1}}$ and
$y_{2}(x)=\sum_{k=0}^{\infty} b_{n} x^{k+r_{2}}$ where c_{0} and b_{0} are non-zero.
Case II: Two real distinct roots where $r_{1}-r_{2}$ IS an integer The solution has the form $y_{1}(x)=\sum_{k=0}^{\infty} c_{n} x^{k+r_{1}}, c_{0} \neq 0$ and $y_{2}(x)=C y_{1}(x) \ln (x)+\sum_{k=0}^{\infty} b_{n} x^{k+r_{2}}, b_{0} \neq 0$ where C is a constant which may be zero in some instances.

Case III: One real root r_{1}

The solution has the form $y_{1}(x)=\sum_{k=0}^{\infty} c_{n} x^{k+r_{1}}, c_{0} \neq 0$ and
$y_{2}(x)=y_{1}(x) \ln (x)+\sum_{k=1}^{\infty} b_{n} x^{k+r_{1}}, b_{0}=0$

2. Bessel's Equation

The equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0$, which is known as Bessel's Equation.
Consider the cases $\nu=0, \nu=\frac{1}{2}$ and $\nu=1$. Obtain the indicial equation for these values of ν and state which Case the roots fall under. We'll continue our exploration of this very rich equation next time.

