Differential Equations

Class 29: Friday April 15

TITLE Power Series Solutions of Differential Equations
CURRENT READING Zill 6.1

Homework Set \#12

Zill, Section 6.1: $10^{*}, 13^{*}, 15^{*}, 26^{*}, 29^{*}$
Zill, Section 6.2: $3^{*}, 4^{*}, 12^{*}, 13^{*}$ EXTRA CREDIT 33
Zill, Section 6.3: $5^{*}, 10^{*}, 25^{*}, 30^{*}$ EXTRA CREDIT 33
Zill, Chapter 6 Review: $4^{*}, 5^{*}, 10^{*}, 15^{*}, 20^{*}$ EXTRA CREDIT 22

SUMMARY

An introduction to the very powerful technique of using infinite series to represent the solution to a differential equation. We'll review concepts involving power series.

1. Review of Power Series

DEFINITION: Power Series

An infinite series of the form
$\sum_{k=0}^{\infty} c_{k}(x-a)^{k}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots$
is called a power series centered around a.

DEFINITION: Partial Sum

A partial sum, $S_{N}(x)$ of an infinite series is the $N^{t h}$ degree polynomial formed from a sum of the first $N+1$ terms of the series, i.e. $\sum_{k=0}^{N} c_{k}(x-a)^{k}$.

DEFINITION: Convergence

A power series is said to be convergent at a specified value of x if the sequence of partial sums converges to a finite value, in other words the $\lim _{N \rightarrow \infty} S_{N}(x)$ exists. If the series does not converge at x, then it is said to be divergent at x.

DEFINITION: Radius of Convergence

A power series is said to have a Radius of Convergence $R>0$ if the series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ converges for all x values $|x-a|<R$ (it will also diverge for $|x-a|>R$.) The open interval ($a-R, a+R$) is called the interval of convergence. The endpoints of the interval at $x=a-R$ and $x=a+R$ may or may not be convergent points. If the series converges for every value of x the radius of convergence is said to be infinite.

DEFINITION: Absolute Convergence

In the interval of convergence a power series converges absolutely. In other words,
$\sum_{k=0}^{\infty}\left|c_{k}(x-a)^{k}\right|$ converges for $|x-a|<R$. If a series converges absolutely, then it converges. The converse is not necessarily true.

DEFINITION: Power Series as a Function

A function $f(x)$ is said to be analytic at a point a if it can be represented by a power series which includes a in its interval of converence. One can think of a power series with a non-zero radius of convergence as a continuous, differentiable and integrable function where the interval of convergence is its domain of definition. The derivative and anti-derivative of a power series all have the same radius of convergence of the initial power series. Often power series are computed as Taylor Series (or Maclaurin Series when $a=0$) where $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}}{k!}(x-a)^{k}$. Typical elementary functions like $e^{x}, \sin (x)$ and $\cos (x)$ all have power series with an infinite radius of convergence. The function $\ln (x+1)$ is analytic on the interval $[-1,1)$. It's derivative $\frac{1}{x+1}$ is analytic on the interval $(-1,1)$.

2. Power Series Solutions of DEs

DEFINITION: Singular and Ordinary Points

Consider the general form of the second-order linear differential equation $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+$ $a_{0}(x) y=0$. When put into standard form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ where $P(x)=\frac{a_{1}(x)}{a_{2}(x)}$ and $Q(x)=\frac{a_{0}(x)}{a_{2}(x)}$ the point x_{0} is said to be a ordinary point of the differential equation if $P(x)$ and $Q(x)$ are analytic at x_{0}. Otherwise x_{0} is called a singular point of the differential equation.

THEOREM: Power Series Solution

If $x=x_{0}$ is an ordinary point of the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ we can find two linearly independent solutions which can each be written as power series centered at x_{0}, i.e. $\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}$ which converge in some interval $\left|x-x_{0}\right|<R$ where R is the distance to the nearest singular point.
EXAMPLE Let's solve $y^{\prime \prime}-2 x y^{\prime}-2 y=0$ using power series.

Exercise Zill, page 245, Example 4. Solve $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$ and give the interval of convergence of the solution $y(x)$.

ANSWER: $y_{1}(x)=x$ and $y_{2}(x)=\left(1+x^{2}\right)^{1 / 2}=1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+\frac{1}{16} x^{6}-\ldots$ where the interval of convergence is $|x|<1$.

3. Classifying Singular Points

DEFINITION: Regular and Irregular Singular Points

A point x_{0} is said to be a regular singular point of the $\mathrm{DE} y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ if the functions $p(x)=\left(x-x_{0}\right) P(x)$ and $q(x)=\left(x-x_{0}\right)^{2} Q(x)$ are BOTH analytic at x_{0}. A singular point which is not regular is said to be an irregular singular point.
EXAMPLE Classify the singular point(s) of the differential equation $\left(x^{2}-4\right)^{2} y^{\prime \prime}+3(x-2) y^{\prime}+5 y=0$.

Exercise Classify the singular point(s) of $x^{3} y^{\prime \prime}-2 x y^{\prime}+8 y=0$

