Differential Equations

Math 341 Spring 2005 ©2005 Ron Buckmire

MWF 8:30 - 9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Class 29: Friday April 15

TITLE Power Series Solutions of Differential Equations CURRENT READING Zill 6.1

Homework Set #12

Zill, Section 6.1: 10*,13*,15*,26*,29* Zill, Section 6.2: 3*,4*,12*,13* EXTRA CREDIT 33 Zill, Section 6.3: 5*,10*,25*,30* EXTRA CREDIT 33 Zill. Chapter 6 Review: 4*,5*,10*,15*,20* EXTRA CREDIT 22

SUMMARY

An introduction to the very powerful technique of using infinite series to represent the solution to a differential equation. We'll review concepts involving power series.

1. Review of Power Series

DEFINITION: Power Series An infinite series of the form $\sum_{k=0}^{\infty} c_k (x-a)^k = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$ is called a **power series centered around** *a*.

DEFINITION: Partial Sum

A partial sum, $S_N(x)$ of an infinite series is the N^{th} degree polynomial formed from a sum

of the first
$$N + 1$$
 terms of the series, i.e. $\sum_{k=0}^{N} c_k (x - a)^k$.

DEFINITION: Convergence

A power series is said to be **convergent** at a specified value of x if the sequence of partial sums converges to a finite value, in other words the $\lim_{N\to\infty} S_N(x)$ exists. If the series does not converge at x, then it is said to be **divergent** at x.

DEFINITION: Radius of Convergence

A power series is said to have a Radius of Convergence R > 0 if the series $\sum_{k=1}^{\infty} c_k (x-a)^k$ converges for all x values |x-a| < R (it will also diverge for |x-a| > R.) The open interval (a - R, a + R) is called the **interval of convergence**. The endpoints of the interval at x = a - R and x = a + R may or may not be convergent points. If the series converges for every value of x the radius of convergence is said to be infinite.

DEFINITION: Absolute Convergence

In the interval of convergence a power series converges absolutely. In other words,

 $\sum_{k=1}^{\infty} |c_k(x-a)^k| \text{ converges for } |x-a| < R. \text{ If a series converges absolutely, then it converges.}$

The converse is not necessarily true.

DEFINITION: Power Series as a Function

A function f(x) is said to be **analytic** at a point *a* if it can be represented by a power series which includes *a* in its interval of convergence. One can think of a power series with a non-zero radius of convergence as a continuous, differentiable and integrable function where the interval of convergence is its domain of definition. The derivative and anti-derivative of a power series all have the same radius of convergence of the initial power series. Often power series are computed as Taylor Series (or Maclaurin Series when a = 0) where $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}}{k!} (x-a)^k$. Typical elementary functions like e^x , $\sin(x)$ and $\cos(x)$ all have power series with an infinite radius of convergence. The function $\ln(x+1)$ is analytic on the interval [-1, 1). It's derivative $\frac{1}{x+1}$ is analytic on the interval (-1, 1).

2. Power Series Solutions of DEs DEFINITION: Singular and Ordinary Points

Consider the general form of the second-order linear differential equation $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$. When put into standard form y'' + P(x)y' + Q(x)y = 0 where $P(x) = \frac{a_1(x)}{a_2(x)}$ and $Q(x) = \frac{a_0(x)}{a_2(x)}$ the point x_0 is said to be a **ordinary point** of the differential equation if P(x) and Q(x) are analytic at x_0 . Otherwise x_0 is called a **singular point** of the differential equation.

THEOREM: Power Series Solution

If $x = x_0$ is an ordinary point of the differential equation y'' + P(x)y' + Q(x)y = 0 we can find two linearly independent solutions which can each be written as power series centered at x_0 , i.e. $\sum_{k=0}^{\infty} c_k (x - x_0)^k$ which converge in some interval $|x - x_0| < R$ where R is the distance to the nearest singular point.

EXAMPLE Let's solve y'' - 2xy' - 2y = 0 using power series.

Exercise Zill, page 245, Example 4. Solve $(x^2+1)y''+xy'-y=0$ and give the interval of convergence of the solution y(x).

ANSWER: $y_1(x) = x$ and $y_2(x) = (1 + x^2)^{1/2} = 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4 + \frac{1}{16}x^6 - \dots$ where the interval of convergence is |x| < 1.

3. Classifying Singular Points

DEFINITION: Regular and Irregular Singular Points

A point x_0 is said to be a **regular singular point** of the DE y'' + P(x)y' + Q(x)y = 0 if the functions $p(x) = (x - x_0)P(x)$ and $q(x) = (x - x_0)^2Q(x)$ are BOTH analytic at x_0 . A singular point which is not regular is said to be an **irregular singular point**.

EXAMPLE Classify the singular point(s) of the differential equation $(x^2 - 4)^2 y'' + 3(x - 2)y' + 5y = 0.$

Exercise Classify the singular point(s) of $x^3y'' - 2xy' + 8y = 0$