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SUMMARY
An introduction to the wild and wacky Dirac delta “function.”

1. The Unit Impulse Function

Consider the unit impulse function δa(t) =





0, 0 ≤ t < t0 − a
1

2a
, t0 − a < t < t0 + a

0, t0 + a < t

DEFINITION: Dirac Delta Function The Dirac Delta Function is denoted by δ(t−t0)
and is the object (it’s not really a function) which results when one takes the limit as a → 0

of the unit impulse function δa(t − t0). In other words, δ(t− t0) =

{
0, t 6= t0

∞, t = t0
.

The Dirac Delta Function also has the property that
∫ ∞

−∞
δ(t− t0) dt = 1

THEOREM: The Laplace Transform of the Dirac Delta Function

For t0 > 0, L[δ(t− t0)] = e−st0 and L−1[e−st0] = δ(t− t0). (For more details, see Zill, p. 316).

Interestingly, we can relate the Heaviside function H(t) and Dirac Delta Function δ(t).

Consider the following integrally defined function f(x) =
∫ x

−∞
δ(t− t0) dt.

Q: What does f(x) look like? A: Depends on the relationship between x and t0. How?

The integral of the is the , and
the of Heaviside Function is equal to the Dirac Delta Function.
(Pretty cool, eh?) Sketch the Heaviside Function and Dirac Delta Function for all t values.



2. Delta Function as Source Term
What’s interesting about the Dirac Delta Function is that it allows us to model situations
where an instantaneous impulse is applied to a system at a certain time. Laplace Transforms
are really the only technique which allow solution of such initial value problems.

EXAMPLE Zill, page 316, Example 1. Solve y′′ + y = 4δ(t − 2π) where
(a) y(0) = 1, y′(0) = 0 and (b) y(0) = 0, y′(0) = 0

Exercise In the space below, sketch the solutions to the initial value problems from the
previous example, i.e. y′′ + y = 4δ(t− 2π), y(0) = 1, y′(0) = 0 and
y′′ + y = 4δ(t − 2π), y(0) = 0, y′(0) = 0


