Differential Equations

Math 341 Spring 2005 ©2005 Ron Buckmire MWF 8:30 - 9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Class 28: Friday April 8

TITLE The Dirac Delta Function **CURRENT READING** Zill 7.5

Homework Set #11

Zill, Section 7.3: 3*, 7*, 15*, 22*, 39*, 43* EXTRA CREDIT 49-54 Zill, Section 7.4: 1*, 2*, 19*, 27*,33*, 41* EXTRA CREDIT 45, 49 Zill, Section 7.5: 3*, 9* Zill, Chapter 7 Review: 25*,26*,27*,28*,29* EXTRA CREDIT 37

SUMMARY

An introduction to the wild and wacky Dirac delta "function."

1. The Unit Impulse Function

Consider the unit impulse function $\delta_a(t) = \begin{cases} 0, & 0 \le t < t_0 - a \\ \frac{1}{2a}, & t_0 - a < t < t_0 + a \\ 0, & t_0 + a < t \end{cases}$

DEFINITION: Dirac Delta Function The Dirac Delta Function is denoted by $\delta(t-t_0)$ and is the object (it's not really a function) which results when one takes the limit as $a \to 0$ of the unit impulse function $\delta_a(t-t_0)$. In other words, $\delta(t-t_0) = \begin{cases} 0, & t \neq t_0 \\ \infty, & t = t_0 \end{cases}$. The Dirac Delta Function also has the property that $\int_{-\infty}^{\infty} \delta(t-t_0) dt = 1$

THEOREM: The Laplace Transform of the Dirac Delta Function

For $t_0 > 0$, $\mathcal{L}[\delta(t-t_0)] = e^{-st_0}$ and $\mathcal{L}^{-1}[e^{-st_0}] = \delta(t-t_0)$. (For more details, see Zill, p. 316). Interestingly, we can relate the Heaviside function $\mathcal{H}(t)$ and Dirac Delta Function $\delta(t)$. Consider the following integrally defined function $f(x) = \int_{-\infty}^{x} \delta(t-t_0) dt$.

Q: What does f(x) look like? **A:** Depends on the relationship between x and t_0 . How?

The integral of the _______ is the ______, and the _______ of Heaviside Function is equal to the Dirac Delta Function. (Pretty cool, eh?) Sketch the Heaviside Function and Dirac Delta Function for all t values.

2. Delta Function as Source Term

What's interesting about the Dirac Delta Function is that it allows us to model situations where an instantaneous impulse is applied to a system at a certain time. Laplace Transforms are really the only technique which allow solution of such initial value problems.

EXAMPLE Zill, page 316, Example 1. Solve $y'' + y = 4\delta(t - 2\pi)$ where **(a)** y(0) = 1, y'(0) = 0 and **(b)** y(0) = 0, y'(0) = 0

Exercise In the space below, sketch the solutions to the initial value problems from the previous example, i.e. $y'' + y = 4\delta(t - 2\pi)$, y(0) = 1, y'(0) = 0 and $y'' + y = 4\delta(t - 2\pi)$, y(0) = 0, y'(0) = 0