Differential Equations

Class 28: Friday April 8

TITLE The Dirac Delta Function
CURRENT READING Zill 7.5

Homework Set \#11

Zill, Section 7.3: 3*, 7^{*}, 15*, 22*, 39*, 43* EXTRA CREDIT 49-54
Zill, Section 7.4: 1*, 2*, 19*, 27*, 33*, 41* EXTRA CREDIT 45, 49
Zill, Section 7.5: 3*, 9^{*}
Zill, Chapter 7 Review: $25^{*}, 26^{*}, 27^{*}, 28^{*}, 29^{*}$ EXTRA CREDIT 37

SUMMARY

An introduction to the wild and wacky Dirac delta "function."

1. The Unit Impulse Function

Consider the unit impulse function $\delta_{a}(t)= \begin{cases}0, & 0 \leq t<t_{0}-a \\ \frac{1}{2 a}, & t_{0}-a<t<t_{0}+a \\ 0, & t_{0}+a<t\end{cases}$
DEFINITION: Dirac Delta Function The Dirac Delta Function is denoted by $\delta\left(t-t_{0}\right)$ and is the object (it's not really a function) which results when one takes the limit as $a \rightarrow 0$ of the unit impulse function $\delta_{a}\left(t-t_{0}\right)$. In other words, $\delta\left(t-t_{0}\right)=\left\{\begin{array}{cc}0, & t \neq t_{0} \\ \infty, & t=t_{0}\end{array}\right.$.
The Dirac Delta Function also has the property that $\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) d t=1$

THEOREM: The Laplace Transform of the Dirac Delta Function

For $t_{0}>0, \mathcal{L}\left[\delta\left(t-t_{0}\right)\right]=e^{-s t_{0}}$ and $\mathcal{L}^{-1}\left[e^{-s t_{0}}\right]=\delta\left(t-t_{0}\right)$. (For more details, see Zill, p. 316).
Interestingly, we can relate the Heaviside function $\mathcal{H}(t)$ and Dirac Delta Function $\delta(t)$. Consider the following integrally defined function $f(x)=\int_{-\infty}^{x} \delta\left(t-t_{0}\right) d t$.
Q: What does $f(x)$ look like? A: Depends on the relationship between x and t_{0}. How?

The integral of the \qquad is the \qquad and the \qquad of Heaviside Function is equal to the Dirac Delta Function. (Pretty cool, eh?) Sketch the Heaviside Function and Dirac Delta Function for all t values.

2. Delta Function as Source Term

What's interesting about the Dirac Delta Function is that it allows us to model situations where an instantaneous impulse is applied to a system at a certain time. Laplace Transforms are really the only technique which allow solution of such initial value problems.

EXAMPLE Zill, page 316, Example 1. Solve $y^{\prime \prime}+y=4 \delta(t-2 \pi)$ where (a) $y(0)=1, \quad y^{\prime}(0)=0$ and (b) $y(0)=0, \quad y^{\prime}(0)=0$

Exercise In the space below, sketch the solutions to the initial value problems from the previous example, i.e. $y^{\prime \prime}+y=4 \delta(t-2 \pi), \quad y(0)=1, y^{\prime}(0)=0$ and $y^{\prime \prime}+y=4 \delta(t-2 \pi), \quad y(0)=0, y^{\prime}(0)=0$

