Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 27: Wednesday April 6

TITLE Derivatives of Laplace Transforms and Laplace Transforms of Integrals CURRENT READING Zill 7.4

Homework Set \#11

Zill, Section 7.3: 3*, $7^{*}, 15^{*}, 22^{*}, 39^{*}, 43^{*}$ EXTRA CREDIT 49-54
Zill, Section 7.4: 1*, 2*, 19*, 27*,33*, 41* EXTRA CREDIT 45, 49
Zill, Section 7.5: 3*, 9*
Zill, Chapter 7 Review: $25^{*}, 26^{*}, 27^{*}, 28^{*}, 29^{*}$ EXTRA CREDIT 37

SUMMARY

We will look at the derivative of a Laplace Transform and introduce the concept of convolution.

1. Derivatives of Laplace Transforms

EXAMPLE Show that $\frac{d}{d s} F(s)=-\mathcal{L}[t f(t)]$ and $\frac{d^{2}}{d s^{2}} F(s)=\mathcal{L}\left[t^{2} f(t)\right]$.

THEOREM When $F(s)=\mathcal{L}[f(t)]$, and $n=0,1,2, \ldots \mathcal{L}\left[t^{n} f(t)\right]=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$ Exercise We now have TWO different ways to show that $\mathcal{L}^{-1}\left[-t e^{a t}\right]=\frac{1}{(s-a)^{2}}$

EXAMPLE Solve $x^{\prime \prime}+16 x=\cos (4 t), \quad x(0)=0, \quad x^{\prime}(0)=1$ using Laplace Transforms.

2. Products of Laplace Transforms

DEFINITION: convolution

If two functions $f(t)$ and $g(t)$ are piecewise continuous on $[0, \infty)$ then the convolution of f and g, usually denoted $f * g$ is defined to be $\int_{0}^{t} f(\tau) g(t-\tau) d \tau$. Note: this "product" is a function of t. The use of the "*" symbol is deliberate, since the convolution operation has these familiar properties:

THEOREM: properties of convolution
If f, g and h are piecewise continuous on $[0, \infty)$, then
I. $f * g=g * f$ (Commutative)
II. $f *(g+h)=f * g+f * h$ (Distributive Under Addition)
III. $f *(g * h)=(f * g) * h$ (Associative)
IV. $f * 0=0$

THEOREM: The convolution theorem If f and g are piecewise continuous on $[0, \infty)$ and of exponential order so that $F(s)=\mathcal{L}[f(t)]$ and $G(s)=\mathcal{L}[g(t)]$ then $\mathcal{L}[f * g]=F(s) G(s)$ Corollary
$\mathcal{L}^{-1}[F(s) G(s)]=f * g$.
EXAMPLE The convolution theorem allows us to find inverse Laplace Transforms without resorting to partial fractions. For example, show that $\mathcal{L}^{-1}\left[\frac{k}{s^{4}+k^{2} s^{2}}\right]=\frac{k t-] \sin (k t)}{k^{2}}$ by using the Convolution Theorem.

Exercise Evaluate $\mathcal{L}\left[\int_{0}^{t} e^{\tau} \sin (t-\tau) d \tau\right]$.

3. Laplace Transform of an Integral

We can use the Convolution Theorem with $g(t)=1$ and show that $\mathcal{L}\left[\int_{0}^{t} f(\tau) d \tau\right]=\frac{F(s)}{s}$

NOTE

Multiplication of $f(t)$ by t involves differentiation of its Laplace transform $F(s)$ in s Division by s of $F(s)$ involves anti-differentiation of the its Inverse Laplace Transform

Exercise Find $\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+1\right)}\right]$ and $\mathcal{L}^{-1}\left[\frac{1}{s^{2}\left(s^{2}+1\right)}\right]$ and $\mathcal{L}^{-1}\left[\frac{1}{s^{3}\left(s^{2}+1\right)}\right]$

4. Volterra Integral Equations

A Volterra integral equation or integro-differential equation is an equation where the unknown function $f(t)$ (and/or $f^{\prime}(t)$) appears on one side of the equation and in an integral on the other side, i.e. $f(t)=g(t)+\int_{0}^{t} f(\tau) h(t-\tau) d \tau$
EXAMPLE Zill, page 309, Example 5. Solve $f(t)=3 t^{2}-e^{-t}-\int_{0}^{t} f(\tau) e^{t-\tau} d \tau$

Exercise Zill, page 313, HW \#46. Solve $y^{\prime}(t)+6 y(t)+9 \int_{0}^{t} y(\tau) d \tau, \quad y(0)=0$

If $f(t)$ is piecewise continuous on $[0, \infty)$, of exponential order, and periodic with period T, then $\mathcal{L}[f(t)]=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t$
EXAMPLE Let's derive this above formula.

Exercise Find $\mathcal{L}[f(t)]=F(s)$ where $f(t)=\left\{\begin{array}{ll}1, & 0 \leq t<1 \\ 0, & 1 \leq t<2\end{array}\right.$ and $f(t+2)=f(t)$.

Application Let's find the Laplace Transform of the Unit Triangle Wave of period 2. (See Zill, Page 314, HW\#49-54).

