Differential Equations

Math 341 Spring 2005 ©2005 Ron Buckmire MWF 8:30 - 9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Class 27: Wednesday April 6

TITLE Derivatives of Laplace Transforms and Laplace Transforms of Integrals **CURRENT READING** Zill 7.4

Homework Set #11

Zill, Section 7.3: 3*, 7*, 15*, 22*, 39*, 43* EXTRA CREDIT 49-54 Zill, Section 7.4: 1*, 2*, 19*, 27*,33*, 41* EXTRA CREDIT 45, 49 Zill, Section 7.5: 3*, 9* Zill, Chapter 7 Review: $25^*, 26^*, 27^*, 28^*, 29^*$ EXTRA CREDIT 37

SUMMARY

We will look at the derivative of a Laplace Transform and introduce the concept of **convo-lution**.

1. Derivatives of Laplace Transforms

EXAMPLE Show that $\frac{d}{ds}F(s) = -\mathcal{L}[tf(t)]$ and $\frac{d^2}{ds^2}F(s) = \mathcal{L}[t^2f(t)].$

THEOREM When $F(s) = \mathcal{L}[f(t)]$, and $n = 0, 1, 2, \dots \mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s)$ **Exercise** We now have TWO different ways to show that $\mathcal{L}^{-1}[-te^{at}] = \frac{1}{(s-a)^2}$

EXAMPLE Solve $x'' + 16x = \cos(4t)$, x(0) = 0, x'(0) = 1 using Laplace Transforms.

2. Products of Laplace Transforms

DEFINITION: convolution

If two functions f(t) and g(t) are piecewise continuous on $[0, \infty)$ then **the convolution of** f **and** g, usually denoted f * g is defined to be $\int_0^t f(\tau)g(t-\tau)d\tau$. Note: this "product" is a function of t. The use of the "*" symbol is deliberate, since the convolution operation has these familiar properties:

THEOREM: properties of convolution

If f, g and h are piecewise continuous on $[0, \infty)$, then I. f * g = g * f (Commutative) II. f * (g + h) = f * g + f * h (Distributive Under Addition) III. f * (g * h) = (f * g) * h (Associative) IV. f * 0 = 0

THEOREM: The convolution theorem If f and g are piecewise continuous on $[0, \infty)$ and of exponential order so that $F(s) = \mathcal{L}[f(t)]$ and $G(s) = \mathcal{L}[g(t)]$ then $\mathcal{L}[f * g] = F(s)G(s)$ Corollary

 $\mathcal{L}^{-1}[F(s)G(s)] = f * g.$

EXAMPLE The convolution theorem allows us to find inverse Laplace Transforms without resorting to partial fractions. For example, show that $\mathcal{L}^{-1}\left[\frac{k}{s^4 + k^2s^2}\right] = \frac{kt - |sin(kt)|}{k^2}$ by using the Convolution Theorem.

Exercise Evaluate
$$\mathcal{L}\left[\int_0^t e^{\tau} \sin(t-\tau) d\tau\right].$$

3. Laplace Transform of an Integral

We can use the Convolution Theorem with g(t) = 1 and show that $\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{F(s)}{s}$ **NOTE**

Multiplication of f(t) by t involves **differentiation** of its Laplace transform F(s) in s **Division** by s of F(s) involves **anti-differentiation** of the its Inverse Laplace Transform

Exercise Find
$$\mathcal{L}^{-1}\left[\frac{1}{s(s^2+1)}\right]$$
 and $\mathcal{L}^{-1}\left[\frac{1}{s^2(s^2+1)}\right]$ and $\mathcal{L}^{-1}\left[\frac{1}{s^3(s^2+1)}\right]$

4. Volterra Integral Equations

A Volterra integral equation or integro-differential equation is an equation where the unknown function f(t) (and/or f'(t)) appears on one side of the equation and in an integral on the other side, i.e. $f(t) = g(t) + \int_0^t f(\tau)h(t-\tau)d\tau$

EXAMPLE Zill, page 309, Example 5. Solve $f(t) = 3t^2 - e^{-t} - \int_0^t f(\tau)e^{t-\tau}d\tau$

Exercise Zill, page 313, HW #46. Solve $y'(t) + 6y(t) + 9 \int_0^t y(\tau) d\tau$, y(0) = 0

THEOREM: Laplace Transform of a Periodic Function

If f(t) is piecewise continuous on $[0, \infty)$, of exponential order, and periodic with period T, then $\mathcal{L}[f(t)] = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$

EXAMPLE Let's derive this above formula.

Exercise Find
$$\mathcal{L}[f(t)] = F(s)$$
 where $f(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & 1 \le t < 2 \end{cases}$ and $f(t+2) = f(t)$.

Application Let's find the Laplace Transform of the Unit Triangle Wave of period 2. (See **Zill, Page 314, HW#49-54)**.