Differential Equations

Math 341 Spring 2005 ©2005 Ron Buckmire MWF 8:30 - 9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Class 26: Monday April 4

TITLE Translations and The Laplace Transform **CURRENT READING** Zill 7.3

Homework Set #11 Zill, Section 7.3: 3*, 7*, 15*, 22*, 39*, 43* EXTRA CREDIT 49-54 Zill, Section 7.4: 1*, 2*, 19*, 27*,33*, 41* EXTRA CREDIT 45, 49 Zill, Section 7.5: 3*, 9* Zill, Chapter 7 Review: 25*,26*,27*,28*,29* EXTRA CREDIT 37

SUMMARY

We will look at what happens when the independent and dependent variables in the Laplace transform are translated (or shifted).

1. Translation in s

THEOREM: First Translation Theorem

If $F(s) = \mathcal{L}[f(t)]$ and a is any real number, then $\mathcal{L}[e^{at}f(t)] = F(s-a)$. Sometimes the notation $\mathcal{L}[e^{at}f(t)] = \mathcal{L}[f(t)]|_{s \to s-a}$ is used.

Corollary

The inverse of the First Translation Theorem can be written as $\mathcal{L}^{-1}[F(s-a)] = e^{at}f(t)$.

Exercise Given that
$$\frac{2s+5}{(s-3)^2} = \frac{2}{s-3} + \frac{11}{(s-3)^2}$$
, compute $\mathcal{L}^{-1}\left[\frac{2s+5}{(s-3)^2}\right]$. (HINT: recall that $\mathcal{L}^{-1}\left[\frac{1}{s^2}\right] = t$)

EXAMPLE Compute
$$\mathcal{L}^{-1}\left[\frac{s/2+5/3}{s^2+4s+6}\right]$$

EXAMPLE Zill, Example 3, page 295. Let's use Laplace Transforms to show that the solution of $y'' - 6y' + 9y = t^2e^{3t}$, y(0) = 2, y'(0) = 17 is $y(t) = 2e^{3t} + 11te^{3t} + \frac{1}{12}t^4e^{3t}$.

2. Translation in t

DEFINITION: Heaviside function

The **unit step function** or **Heaviside function** $\mathcal{H}(t)$ is defined to be **0** when its argument is less than zero and **1** when its argument is greater than or equal to zero. Generally, it is written as $\mathcal{H}(t-a) = \begin{cases} 0, & 0 \leq t < a \\ 1, & t \geq a \end{cases}$

GROUPWORK Confirm that $f_1(t) \begin{cases} g(t), & 0 \le t < a \\ h(t), & t \ge a \end{cases}$ can be written as $f(t) = g(t) - g(t)\mathcal{H}(t-a) + h(t)\mathcal{H}(t-a)$

How would you combine Heaviside functions to represent the following function?

 $f_2(t) = \begin{cases} 0, & 0 \le t < a \\ g(t), & a \le t < b \\ 0, & t \ge b \end{cases}$

THEOREM: Second Translation Theorem

If $F(s) = \mathcal{L}[f(t)]$ and a > 0 is any positive real number, then $\mathcal{L}[f(t-a)\mathcal{H}(t-a)] = e^{-as}F(s)$. It directly follows then that $\mathcal{L}[\mathcal{H}(t-a)] = \frac{e^{-as}}{s}$. **Corollary** $\mathcal{L}^{-1}[e^{-as}F(s)] = f(t-a)\mathcal{H}(t-a)$

THEOREM: Alternate form of the Second Translation Theorem

It can be annoying to try and get the function which is multiplying the Heaviside function into the form f(t-a) for use in the previous version of the Second Translation Theorem so a more useful results is: $\mathcal{L}[g(t)\mathcal{H}(t-a)] = e^{-as}\mathcal{L}[g(t+a)]$

EXAMPLE Compute and graph $\mathcal{L}^{-1}\left[\frac{s}{s^2+9}e^{-\pi s/2}\right]$ on $t \ge 0$.

Exercise Zill, page 299, Example 7. Compute $\mathcal{L}[\cos(t)\mathcal{H}(t-\pi)]$

3. Application Problems/Examples/Exercises

Let's use our knowledge of Laplace Transforms to solve some otherwise difficult initial value problems and boundary value problems.

Application

Zill, page 303, #31. y'' + y = f(t), y(0) = 0, y'(0) = 1 where $f(t) \begin{cases} 0, & 0 \le t < \pi \\ 1, & \pi \le t < 2\pi \\ 0, & 2\pi \le t \end{cases}$

Application Zill, page 301, #31. y'' + 2y' + y = 0, y'(0) = 2, y(1) = 2.