Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 26: Monday April 4

TITLE Translations and The Laplace Transform
CURRENT READING Zill 7.3

Homework Set \#11

Zill, Section 7.3: 3*, $7^{*}, 15^{*}, 22^{*}, 39^{*}, 43^{*}$ EXTRA CREDIT 49-54
Zill, Section 7.4: 1*, 2*, 19*, 27*,33*, 41* EXTRA CREDIT 45, 49
Zill, Section 7.5: 3*, 9*
Zill, Chapter 7 Review: $25^{*}, 26^{*}, 27^{*}, 28^{*}, 29^{*}$ EXTRA CREDIT 37

SUMMARY

We will look at what happens when the independent and dependent variables in the Laplace transform are translated (or shifted).

1. Translation in s

THEOREM: First Translation Theorem
If $F(s)=\mathcal{L}[f(t)]$ and a is any real number, then $\mathcal{L}\left[e^{a t} f(t)=F(s-a)\right.$. Sometimes the notation $\mathcal{L}\left[e^{a t} f(t)\right]=\left.\mathcal{L}[f(t)]\right|_{s \rightarrow s-a}$ is used.

Corollary

The inverse of the First Translation Theorem can be written as $\mathcal{L}^{-1}[F(s-a)]=e^{a t} f(t)$.
Exercise Given that $\frac{2 s+5}{(s-3)^{2}}=\frac{2}{s-3}+\frac{11}{(s-3)^{2}}$, compute $\mathcal{L}^{-1}\left[\frac{2 s+5}{(s-3)^{2}}\right]$. (HINT: recall that $\mathcal{L}^{-1}\left[\frac{1}{s^{2}}\right]=t$)

EXAMPLE Compute $\mathcal{L}^{-1}\left[\frac{s / 2+5 / 3}{s^{2}+4 s+6}\right]$

EXAMPLE Zill, Example 3, page 295. Let's use Laplace Transforms to show that the solution of $y^{\prime \prime}-6 y^{\prime}+9 y=t^{2} e^{3 t}, \quad y(0)=2, \quad y^{\prime}(0)=17$ is $y(t)=2 e^{3 t}+11 t e^{3 t}+\frac{1}{12} t^{4} e^{3 t}$.

2. Translation in t

DEFINITION: Heaviside function

The unit step function or Heaviside function $\mathcal{H}(t)$ is defined to be $\mathbf{0}$ when its argument is less than zero and 1 when its argument is greater than or equal to zero. Generally, it is written as $\mathcal{H}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}$
GroupWork Confirm that $f_{1}(t) \begin{cases}g(t), & 0 \leq t<a \\ h(t), & t \geq a\end{cases}$
can be written as $f(t)=g(t)-g(t) \mathcal{H}(t-a)+h(t) \mathcal{H}(t-a)$

How would you combine Heaviside functions to represent the following function?
$f_{2}(t)=\left\{\begin{aligned} 0, & 0 \leq t<a \\ g(t), & a \leq t<b \\ 0, & t \geq b\end{aligned}\right.$

THEOREM: Second Translation Theorem
If $F(s)=\mathcal{L}[f(t)]$ and $a>0$ is any positive real number, then $\mathcal{L}[f(t-a) \mathcal{H}(t-a)]=e^{-a s} F(s)$. It directly follows then that $\mathcal{L}[\mathcal{H}(t-a)]=\frac{e^{-a s}}{s}$.
Corollary
$\mathcal{L}^{-1}\left[e^{-a s} F(s)\right]=f(t-a) \mathcal{H}(t-a)$

It can be annoying to try and get the function which is multiplying the Heaviside function into the form $f(t-a)$ for use in the previous version of the Second Translation Theorem so a more useful results is: $\mathcal{L}[g(t) \mathcal{H}(t-a)]=e^{-a s} \mathcal{L}[g(t+a)]$
EXAMPLE Compute and graph $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+9} e^{-\pi s / 2}\right]$ on $t \geq 0$.

Exercise Zill, page 299, Example 7. Compute $\mathcal{L}[\cos (t) \mathcal{H}(t-\pi)]$

3. Application Problems/Examples/Exercises

Let's use our knowledge of Laplace Transforms to solve some otherwise difficult initial value problems and boundary value problems.

Application

Zill, page 303, \#31. $y^{\prime \prime}+y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=1$ where $f(t) \begin{cases}0, & 0 \leq t<\pi \\ 1, & \pi \leq t<2 \pi \\ 0, & 2 \pi \leq t\end{cases}$

Application Zill, page 301, \#31. $y^{\prime \prime}+2 y^{\prime}+y=0, \quad y^{\prime}(0)=2, \quad y(1)=2$.

