Differential Equations

Math 341 Spring 2005 ©2005 Ron Buckmire MWF 8:30 - 9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Class 25: Friday April 1

TITLE The Inverse Laplace Transform **CURRENT READING** Zill 7.2

Homework Set #10

Zill, Section 7.1: 4*, 9*, 11*, 20* *EXTRA CREDIT 41* Zill, Section 7.2: 2*, 7*, 11*, 25*, 41* *EXTRA CREDIT 42*

SUMMARY

We will start using the Lapace Transform (and the Inverse Laplace Transform) to solve differential equations.

1. The Inverse Laplace Transform

DEFINITION: Inverse Laplace Transform

If F(s) represents the Laplace Transform of a function f(t) such that $\mathcal{L}[f(t)] = F(s)$ then the Inverse Laplace Transform of F(s) is f(t), i.e. $\mathcal{L}^{-1}[F(s)] = f(t)$.

Exercise

Compute $\mathcal{L}^{-1}[\frac{1}{s^5}]$ and $\mathcal{L}^{-1}[\frac{1}{s^2+7}]$

EXAMPLE Let's show that
$$\mathcal{L}^{-1}\left[\frac{-2s+6}{s^2+4}\right] = -2\cos(2t) + 3\sin(2t)$$

2. Transforming A Derivative

We can show that $\mathcal{L}[f'(t)] = sF(s) - f(0)$

RECALD The function e^{At} is a solution of $(e^{At})' = Ae^{At}$ where $e^{A0} = \mathcal{I}$. We can now show that $e^{At} = \mathcal{L}^{-1}[(s\mathcal{I} - A)^{-1}]$.

Inverse Laplace Transforms	
F(s)	$f(t) = \mathcal{L}^{-1}[F(s)]$
$\frac{1}{s}$	1
$\frac{n!}{s^{n+1}}$	t^n
$\frac{1}{s-a}$	e^{at}
$\frac{k}{s^2 + k^2}$	$\sin(kt)$
$\frac{s}{s^2 + k^2}$	$\cos(kt)$
$\frac{k}{s^2 - k^2}$	$\sinh(kt)$
$\frac{s}{s^2 - k^2}$	$\cosh(kt)$

THEOREM If $f, f', f'', f^{(n-1)}, \ldots, f^{(n-1)}$ are continuous on $[0, \infty)$ and of exponential order c and if $f^{(n)}$ is piecewise continuous on $[0, \infty)$, then $\mathcal{L}[f^{(n)}(t)] = s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$

3. Using Transforms To Solve Differential Equations

EXAMPLE Zill, Example 4, page 289. Use the Laplace Transform to solve the initial value problem $\frac{dy}{dt} + 3y = 13 \sin 2t$, y(0) = 6

Exercise Zill, Example 5, page 289. Use the Laplace Transform to solve the initial value problem $y'' - 3y' + 2y = e^{-4t}$, y(0) = 1, y'(0) = 5