Differential Equations

MWF 8:30-9:25am Fowler North 2
(C) 2005 Ron Buckmire

Class 25: Friday April 1

TITLE The Inverse Laplace Transform
CURRENT READING Zill 7.2

Homework Set \#10

Zill, Section 7.1: 4*, 9*, 11*, 20* EXTRA CREDIT 41
Zill, Section 7.2: $2^{*}, 7^{*}, 11^{*}, 25^{*}$, 41* EXTRA CREDIT 42

SUMMARY

We will start using the Lapace Transform (and the Inverse Laplace Transform) to solve differential equations.

1. The Inverse Laplace Transform

DEFINITION: Inverse Laplace Transform

If $F(s)$ represents the Laplace Transform of a function $f(t)$ such that $\mathcal{L}[f(t)]=F(s)$ then the Inverse Laplace Transform of $F(s)$ is $f(t)$, i.e. $\mathcal{L}^{-1}[F(s)]=f(t)$.

Exercise

Compute $\mathcal{L}^{-1}\left[\frac{1}{s^{5}}\right]$ and $\mathcal{L}^{-1}\left[\frac{1}{s^{2}+7}\right]$

EXAMPLE Let's show that $\mathcal{L}^{-1}\left[\frac{-2 s+6}{s^{2}+4}\right]=-2 \cos (2 t)+3 \sin (2 t)$

2. Transforming A Derivative

We can show that $\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$

RECALL The function $e^{A t}$ is a solution of $\left(e^{A t}\right)^{\prime}=A e^{A t}$ where $e^{A 0}=\mathcal{I}$. We can now show that $e^{A t}=\mathcal{L}^{-1}\left[(s \mathcal{I}-A)^{-1}\right]$.

Inverse Laplace Transforms	
$F(s)$	$f(t)=\mathcal{L}^{-1}[F(s)]$
$\frac{1}{s}$	1
$\frac{n!}{s^{n+1}}$	t^{n}
$\frac{1}{s-a}$	$e^{a t}$
$\frac{k}{s^{2}+k^{2}}$	$\sin (k t)$
$\frac{s}{s^{2}+k^{2}}$	$\cos (k t)$
$\frac{k}{s^{2}-k^{2}}$	$\sinh (k t)$
$\frac{s}{s^{2}-k^{2}}$	$\cosh (k t)$

THEOREM

If $f, f^{\prime}, f^{\prime \prime}, f^{(n-1)}, \ldots, f^{(n-1)}$ are continuous on $[0, \infty)$ and of exponential order c and if $f^{(n)}$ is piecewise continuous on $[0, \infty)$, then $\mathcal{L}\left[f^{(n)}(t)\right]=s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$

3. Using Transforms To Solve Differential Equations

EXAMPLE Zill, Example 4, page 289. Use the Laplace Transform to solve the initial value problem $\frac{d y}{d t}+3 y=13 \sin 2 t, \quad y(0)=6$

Exercise Zill, Example 5, page 289. Use the Laplace Transform to solve the initial value problem $y^{\prime \prime}-3 y^{\prime}+2 y=e^{-4 t}, \quad y(0)=1, \quad y^{\prime}(0)=5$

