Differential Equations

MWF 8:30-9:25am Fowler North 2
(C) 2005 Ron Buckmire

Class 23: Monday March 28

TITLE The Matrix Exponential
CURRENT READING Zill 8.4

Homework Set \#9

Zill, Section 8.3: 3*, 9*, 11*, 19* EXTRA CREDIT 32
Zill, Section 8.4: 1*, 2*, 5*, 23* EXTRA CREDIT 26
Zill, Chapter 8 In Review: $3^{*}, 4^{*}, 11^{*}, 15^{*}$

SUMMARY

One way of writing the solution of the homogeneous linear systems $\vec{x}^{\prime}=A \vec{x}$ is $\vec{x}=e^{A t} \vec{c}$.

1. Matrix Exponential

DEFINITION: matrix exponential

For any $n \times n$ square matrix $A, \quad e^{A t}=I+A t+A^{2} \frac{t^{2}}{2!}+A^{3} \frac{t^{3}}{3!}+\ldots+A^{k} \frac{t^{k}}{k!}$
The matrix $e^{A t}$ is a fundamental matrix; it has the property that $\left(e^{A t}\right)^{\prime}=A\left(e^{A t}\right)$.

Exercise

Show that the solution of the single linear first-order differential equation $\frac{d x}{d t}=a x+f(t)$ is the sum of the homogeneous and nonhomogeneous solutions $x(t)=x_{h}+x_{p}$, in other words, $x(t)=c e^{a t}+e^{a t} \int_{t_{0}}^{t} e^{-a s} f(s) d s$

Similarly, the solution to $\vec{x}=A \vec{x}+\vec{f}(t)$ can be written as $\vec{x}=\vec{x}_{h}+\vec{x}_{p}=e^{A t} \vec{c}+e^{A t} \int_{t_{0}}^{t} e^{-A s} \vec{f}(s) d s$

RECALL

If one can diagonalize a matrix $A=S D S^{-1}$ where S is a matrix consisting of the eigenvectors of A and D is a diagonal matrix with the eigenvalues of A along the diagonal then $e^{A t}=S e^{D t} S^{-1}$
EXAMPLE Let's solve $\vec{x}^{\prime}=\left[\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right] \vec{x}$ using the matrix exponential.

Introducing The Laplace Transform

Zill mentions that another way to use the matrix exponential is to solve the problem using the Laplace Transform. See Zill, Example 1 on page 362.

A Laplace Transform \mathcal{L} is an operator which takes a function $F(t)$ as its input and produces $f(s)$ as its input. The Inverse Laplace Transform \mathcal{L}^{-1} takes $f(s)$ as input and produces $F(t)$ as output. It turns out (we'll see why later!) that $\mathcal{L}\left[e^{A t}\right]=(s \mathcal{I}-A)^{-1}$ which means that $\mathcal{L}^{-1}\left[(s \mathcal{I}-A)^{-1}\right]=e^{A t}$ also.
Exercise Show that when $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right],(s \mathcal{I}-A)^{-1}=\left[\begin{array}{cc}\frac{s+2}{s(s+1)} & \frac{-1}{s(s+1)} \\ \frac{2}{s(s+1)} & \frac{s-1}{s(s+1)}\end{array}\right]$

Using partial fractions one can re-write this matrix as $(s \mathcal{I}-A)^{-1}=\left[\begin{array}{l}\frac{2}{s}-\frac{1}{s+1} \\ \frac{-1}{s}+\frac{1}{s+1} \\ \frac{2}{s}-\frac{2}{s+1}\end{array}\right]$
which when the Inverse Laplace Transform is applied,
$e^{A t}=\mathcal{L}^{-1}\left[(s \mathcal{I}-A)^{-1}\right]=\left[\begin{array}{cc}2-e^{-t} & -1+e^{-t} \\ 2-2 e^{-t} & -1+2 e^{-t}\end{array}\right]$

